Skip to main content

Wavelet and Fast Bilateral Filter Based Despeckling Method for Medical Ultrasound Images

  • Chapter
  • First Online:
Despeckling Methods for Medical Ultrasound Images
  • 400 Accesses

Abstract

In this chapter, a despeckling method which is based on the wavelet transformation and fast bilateral filter is introduced. According to the statistical properties of medical ultrasound image in the wavelet domain, an improved wavelet threshold function based on the universal wavelet threshold function is considered. The wavelet coefficients of noise-free signal and speckle noise are modeled as generalized Laplace distribution and Gaussian distribution, respectively. The Bayesian maximum a posteriori estimation is applied to obtain a new wavelet shrinkage algorithm. High-pass component speckle noise in the wavelet domain of ultrasound images is suppressed by the new shrinkage algorithm. Additionally, the coefficients of the low frequency signal in the wavelet domain are filtered by the fast bilateral filter, since the low-pass component of ultrasound images also contains some speckle noise. Compared with other de-speckling methods, experiments show that the proposed method has improved de-speckling performance for medical ultrasound images. It not only has better reduction performance than other methods but also can preserve image details such as the edge of lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Frost, J. Stiles, K. Shanmugan et al., A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 157–166 (1982)

    Article  Google Scholar 

  2. J. Yu, J. Tan, Y. Wang, Ultrasound speckle reduction by a SUSAN-controlledanisotropic diffusion method. Pattern Recognit. 43, 3083–3092 (2010). https://doi.org/10.1016/j.patcog.2010.04.006

    Article  Google Scholar 

  3. K. Krissian, C. Westin, R. Kikinis et al., Oriented speckle reducinganisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007). https://doi.org/10.1109/TIP.2007.891803

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood denois-ing with probabilistic patch based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009). https://doi.org/10.1109/TIP.2009.2029593

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Guo, Y. Wang, T. Hou, Speckle filtering of ultrasonic images using a modifiednon local-based algorithm. Biomed. Signal Process. Control 6, 129–138 (2011). https://doi.org/10.1016/j.bspc.2010.10.004

    Article  Google Scholar 

  6. K. Abd-Elmoniem, A. Youssef, Y. Kadah, Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Biomed. Eng. 49(9), 997–1014 (2002). https://doi.org/10.1109/TBME.2002.802051

    Article  Google Scholar 

  7. M.F. Insana, R.F. Wagner, B.S. Garra, D.G. Brown, T.H. Shawker, Analysis of ultra-sound image texture via generalized Rician statistics. Opt. Eng. 25(6), 743–748 (1986)

    Article  Google Scholar 

  8. P.M. Shankar, A general statistical model for ultrasonic backscatteringfrom tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 727–736 (2000)

    Article  Google Scholar 

  9. N. Gupta, M.N.S. Swamy, E. Plotkin, Despeckling of medical ultrasound images using data and rate adaptive lossy compression. IEEE Trans. Med. Imaging 24(6), 743–754 (2005). https://doi.org/10.1109/TMI.2005.847401

    Article  Google Scholar 

  10. P. Coupé, P. Hellier, C. Kervrann et al., Nonlocal means-based speckle filteringfor ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009). https://doi.org/10.1109/TIP.2009.2024064

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Lee, Digital image enhancement and noise filtering by use oflocal statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  12. S. Paris, F. Durand, A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vis. 81, 24–52 (2006)

    Article  Google Scholar 

  13. D.L. Donoho, I.M. Johnstone, Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  14. Z. Wang, A.C. Bovik, H.R. Sheikh, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  15. S. Finn, M. Glavin, E. Jones, Echocardiographic speckle reduction compari-son. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(1), 82–101 (2011). https://doi.org/10.1109/TUFFc.2011.1776

    Article  Google Scholar 

  16. B. Kozintsev, B. Kedem, Generation of “similar” images from a given discreteimage. J. Comput. Graph. Stat. 9(2), 286–302 (2000)

    Google Scholar 

  17. S. Balocco, C. Gatta, O. Pujol et al., SRBF: speckle reducing bilateral filtering. Ultrasoun. Med. Biol. 36(8), 1353–1363 (2010)

    Article  Google Scholar 

  18. S. Aja-Fernández, C. Alberola-López, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006). https://doi.org/10.1109/TIP.2006.877360

    Article  Google Scholar 

  19. G. Andria, F. Attivissimo, G. Cavone et al., Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement 45, 1792–1800 (2012)

    Article  Google Scholar 

  20. S. Parrilli, M. Poderico, C.V. Angelino et al., A nonlocal SAR image denoisingalgorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. RemoteSens. 50(2), 606–616 (2012). https://doi.org/10.1109/TGRS.2011.2161586

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Cheng, Y. (2020). Wavelet and Fast Bilateral Filter Based Despeckling Method for Medical Ultrasound Images. In: Despeckling Methods for Medical Ultrasound Images. Springer, Singapore. https://doi.org/10.1007/978-981-15-0516-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0516-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0515-7

  • Online ISBN: 978-981-15-0516-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics