Skip to main content

Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Extracellular vesicles (EVs) are small lipid-based membrane-bound vesicles secreted by most cells under both physiological and pathological conditions. A key function of EVs is to mediate cell–cell communication via transferring mRNAs, miRNAs and proteins from parent cells to recipient cells. These unique features of EVs have spurred a renewed interest in their utility for therapeutics. Given the growing evidence for EV-mediated renal diseases, strategies that could block the release or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic potential of EVs predominantly from stem cells in renal diseases will be outlined. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y et al (2011) Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 19:395–399

    Article  CAS  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106:3794–3799

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  • Andaloussi SEL, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  CAS  Google Scholar 

  • Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Munagala R et al (2016) Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 101:12–21

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson I, Ståhl AL, Hedström MM, Kristoffersson AC, Rylander C, Westman JS et al (2015) Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol 194:2309–2318

    Article  CAS  PubMed  Google Scholar 

  • Barrès C, Blanc L, Bette-Bobillo P, André S, Mamoun R, Gabius HJ et al (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705

    Article  PubMed  CAS  Google Scholar 

  • Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC et al (2012) Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res 72:4920–4930

    Article  CAS  PubMed  Google Scholar 

  • Borges FT, Melo SA, Özdemir BC, Kato N, Revuelta I, Miller CA et al (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24:385–392

    Article  CAS  PubMed  Google Scholar 

  • Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Collino F, Deregibus MC, Grange C, Tetta C, Camussi G (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22:758–771

    Article  CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  CAS  PubMed  Google Scholar 

  • Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC et al (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427

    Article  CAS  PubMed  Google Scholar 

  • Cantaluppi V, Medica D, Mannari C, Stiaccini G, Figliolini F, Dellepiane S et al (2014) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 30:410–422

    Article  PubMed  CAS  Google Scholar 

  • Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HY, Moon SJ, Ratliff BB, Ahn SH, Jung A, Lee M et al (2014) Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS ONE 9:e87853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi HY, Lee HG, Kim BS, Ahn SH, Jung A, Lee M et al (2015) Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction. Stem Cell Res Ther 6:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P et al (2015) AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol 26:2349–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta SK, Le A, Chavakis T, Rumbaut RE, Thiagarajan P (2012) Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Dominguez JH, Liu Y, Gao H, Dominguez JM 2nd, Xie D, Kelly KJ (2017) Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury. J Am Soc Nephrol 28:3533–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ et al (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdbrügger U, Le TH (2016) Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol 27:12–26

    Article  PubMed  CAS  Google Scholar 

  • Faille D, El-Assaad F, Mitchell AJ, Alessi MC, Chimini G, Fusai T et al (2012) Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med 16:1731–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann G, Herrmann IK, Stevens MM (2015) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furini G, Schroeder N, Huang L, Boocock D, Scarpellini A, Coveney C et al (2018) Proteomic profiling reveals the transglutaminase-2 externalization pathway in kidneys after unilateral ureteric obstruction. J Am Soc Nephrol 29:880–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grange C, Iampietro C, Bussolati B (2017) Stem cell extracellular vesicles and kidney injury. Stem Cell Investig 4:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu D, Zou X, Ju G, Zhang G, Bao E, Zhu Y (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int 2016:2093940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J et al (2013) Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–7710

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC et al (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju GQ, Cheng J, Zhong L, Wu S, Zou XY, Zhang GY et al (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 10:e0121534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamaly N, He JC, Ausiello DA, Farokhzad OC (2016) Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 12:738–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA et al (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpman D, Ståhl AL, Arvidsson I (2017) Extracellular vesicles in renal disease. Nat Rev Nephrol 13:545–562

    Article  CAS  PubMed  Google Scholar 

  • Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC et al (2018) Human liver stem cell-derived extracellular vesicles prevent aristolochic acid-induced kidney fibrosis. Front Immunol 9:1639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim J, Jeong M, Lee H, Goh U, Kim H et al (2015) Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. Nano Lett 15:2938–2944

    Article  CAS  PubMed  Google Scholar 

  • Lima LG, Chammas R, Monteiro RQ, Moreira ME, Barcinski MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 283:168–175

    Article  CAS  PubMed  Google Scholar 

  • Lin KC, Yip HK, Shao PL, Wu SC, Chen KH, Chen YT et al (2016) Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol 216:173–185

    Article  PubMed  Google Scholar 

  • Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL et al (2012) Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 287:15874–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv LL, Feng Y, Wen Y, Wu WJ, Ni HF, Li ZL et al (2018a) Exosomal CCL2 from tubular epithelial cells is critical for albumin-induced tubulointerstitial inflammation. J Am Soc Nephrol 29:919–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv LL, Wu WJ, Feng Y, Li ZL, Tang TT, Liu BC (2018b) Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 22:728–737

    Article  PubMed  CAS  Google Scholar 

  • Maguire CA, Balaj L, Sivaraman S, Crommentuijn MH, Ericsson M, Mincheva-Nilsson L et al (2012) Microvesicle-associated AAV vector as a novel gene delivery system. Mol Ther 20:960–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-Marques T, Pinho MJ, Zuzarte M, Oliveira C, Pereira P, Sluijter JP et al (2016) Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin. J Extracell Vesicles 5:32538

    Article  PubMed  CAS  Google Scholar 

  • Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M et al (2018) Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3:99263

    Article  PubMed  Google Scholar 

  • Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108

    Article  CAS  PubMed  Google Scholar 

  • Morel O, Jesel L, Freyssinet JM, Toti F (2011) Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 31:15–26

    Article  CAS  PubMed  Google Scholar 

  • Morrison EE, Bailey MA, Dear JW (2016) Renal extracellular vesicles: from physiology to clinical application. J Physiol 594:5735–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossberg M, Ståhl AL, Kahn R, Kristoffersson AC, Tati R, Heijl C et al (2017) C1-inhibitor decreases the release of vasculitis-like chemotactic endothelial microvesicles. J Am Soc Nephrol 28:2472–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641

    Article  CAS  Google Scholar 

  • Nargesi AA, Lerman LO, Eirin A (2017) Mesenchymal stem cell-derived extracellular vesicles for renal repair. Curr Gene Ther 17:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30

    Article  CAS  PubMed  Google Scholar 

  • Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E et al (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M et al (2017) The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M (2015) Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release 220:727–737

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Liu J, Zhang F, Wang Y, Qin Y, Zhou Z et al (2016) CCR68 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury. Stem Cells Int 2016:1240301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R et al (2016) Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 6:38541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syn NL, Wang L, Chow EK, Lim CT, Goh BC (2017) Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol 35:665–676

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Zhang Y, Zhang H, Xu P, Liu J, Ma J et al (2012) Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 3:1282

    Article  PubMed  CAS  Google Scholar 

  • Tang TT, Lv LL, Lan HY, Liu BC (2019) Extracellular vesicles: opportunities and challenges for the treatment of renal diseases. Front Physiol 10:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390

    Article  CAS  PubMed  Google Scholar 

  • Toffoli G, Hadla M, Corona G, Caligiuri I, Palazzolo S, Semeraro S et al (2015) Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine 10:2963–2971

    Article  CAS  PubMed  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29:325–326

    Article  PubMed  CAS  Google Scholar 

  • van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705

    Article  PubMed  CAS  Google Scholar 

  • van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW, Wood MJ et al (2012) Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 161:635–644

    Article  PubMed  CAS  Google Scholar 

  • Viñas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P et al (2016) Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int 90:1238–1250

    Article  PubMed  CAS  Google Scholar 

  • Wahlgren J, Karlson TDL, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Yao K, Huuskes BM, Shen HH, Zhuang J, Godson C et al (2016) Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 24:1290–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano Y, Shiba E, Kambayashi J, Sakon M, Kawasaki T, Fujitani K et al (1993) The effects of calpeptin (a calpain specific inhibitor) on agonist induced microparticle formation from the platelet plasma membrane. Thromb Res 71:385–396

    Article  CAS  PubMed  Google Scholar 

  • Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H et al (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun 7:12277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E et al (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafrani L, Gerotziafas G, Byrnes C, Hu X, Perez J, Lévi C et al (2012) Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am J Respir Crit Care Med 185:744–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A et al (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 68:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G et al (2016a) Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats. Kidney Blood Press Res 41:119–128

    Article  PubMed  Google Scholar 

  • Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z (2016b) Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 311:F844–F851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xiong M, Fang L, Jiang L, Wen P, Dai C et al (2013a) miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein. Am J Pathol 183:1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y et al (2013b) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G et al (2014) Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou X, Gu D, Xing X, Cheng Z, Gong D, Zhang G et al (2016) Human mesenchymal stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats. Am J Transl Res 8:4289–4299

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This chapter was modified from a paper reported by our group in Front Physiol (Tang et al. 2019).

This study was supported by grants from the National Key Research and Development Program of China (2018YFC1314004), the National Natural Science Foundation of China (No.81720108007, 81670696, 81470922 and 31671194), the Clinical Research Center of Jiangsu Province (No. BL2014080) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX18_0171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Cheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, TT., Liu, BC. (2019). Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_34

Download citation

Publish with us

Policies and ethics