Skip to main content

Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain)

  • Chapter
  • First Online:
Sustainable Agriculture, Forest and Environmental Management

Abstract

Bioclimatology is applied to agricultural and forestry ordinations, as farmlands and woodlands have a bioclimatic optimum for their development. It is essential to consider the thermo-climate and ombro-climate of the bioclimatic belts in the ordination of the territory to guarantee the maximum yield with minimum environmental costs. These bioclimatic parameters (thermo-climatic and ombro-climatic index, It/Itc and Io) are of particular interest in agriculture as a way of mitigating climate change. The main objective is to establish the climate trends and propose a phyto-bioclimatic model to mitigate sudden climate change in agriculture. The spatial pattern of temperature trends in southern Spain (Andalusia) between 1975 and 2007 was determined by analysing time series data from 48 climate stations distributed homogeneously throughout the study area on a monthly, seasonal and annual basis. The regression slopes were calculated with Sen’s test, and the statistical significance of the trends was determined using the Mann-Kendall non-parametric test after pre-whitening the series with autocorrelation. The trends detected on the maps were spatially visualised by applying geo-statistical data interpolation techniques. The study found that positive trends have prevailed over negative trends in the last three decades, with increases of up to 4 °C in spring and summer clearly reflecting the highest percentages of stations with a significant positive trend (92% and 85%, respectively). The trends towards the greatest temperature increase were observed in May and June, with somewhat more moderate increases in April and July. Increases in the range of 0.15–0.4 °C/decade were found at the annual level with 87% of stations significant. The temperature increase reduces flowering and produces losses in agricultural yield as a consequence. It is demonstrated that the vegetation cover acts as a soil water reservoir and retains moisture during the summer months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alt:

Altitude

ETP:

Potential evapotranspiration

Io:

Ombrothermic index

IPCC:

Intergovernmental Panel on Climate Change

Is:

Summer ombrothermic indices

It/Itc:

Thermo-climatic index

P:

Precipitation

PAV:

Period of vegetative activity

RC:

Soil water retention capacity

Tm:

Mean temperature

References

  • Almarza C, Luna C (2005) Homogeneidad y variabilidad de la precipitación y la temperatura en zonas climáticamente homogéneas de la Península Ibérica. Available: http://www.ame-web.org/JORNADAS/C10-trabajo%20"Almarza%20y%20Luna.pdf

  • Attorre F, Alfo M, de Sanctis M, Francesconi F, Bruno F (2007) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27(13):1825–1843. https://doi.org/10.1002/joc.1495

    Article  Google Scholar 

  • Aznar JC, Gloaguen E, Tapsoba D, Hachem S, Caya D, Bégin Y(2012) Interpolation of monthly mean temperatures using cokriging in spherical coordinates. Int J Climatol 33:758–769, https://doi.org/https://doi.org/10.1002/joc.3468

    Article  Google Scholar 

  • Barranco ND, Fernández ER, Rallo L (1998) El cultivo del olivo. Ed. Mundi-Prensa, Junta Andalucía, pp 1–651

    Google Scholar 

  • Beranova R, Huth R (2007) Time variations of the relationships between the North Atlantic Oscillation and European winter temperature and precipitation. Stud Geophys Geod 51(4):575–590

    Article  Google Scholar 

  • Braun-Blanquet J (1979) Fitosociología. Ed. Blume, Madrid, pp 1–820

    Google Scholar 

  • Brunet M, Casado MJ, de Castro M, Galán P, López JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodríguez E, Sanz I, Torres L (2009) Generación de escenarios de cambio climático regionalizados para España. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente, Madrid, p 158

    Google Scholar 

  • Brunet M, Asin J, Sigró J, Manuel Bañón M, García F, Aguilar E, Palenzuela JE, Peterson TC, Jones P (2010) The minimization of the screen bias from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. Int J Climatol Published online in Wiley InterScience (www.interscience.wiley.com) https://doi.org/10.1002/joc.2192

    Article  Google Scholar 

  • Cano E, Cano-Ortiz A (2013) Bioclimatología y Bioindicadores del olivar: Bases fundamentales para un desarrollo sostenible in “Andalucía, El Olivar”. Ed. Asociación Grupo de Estudios Avanzados-Grupo Textura, p 83–97

    Google Scholar 

  • Cano E, García Fuentes A, Torres JA, Salazar C, Melendo M, Pinto Gomes CJ, Valle F (1997) Phytosociologie appliquée a la planification agricole. Colloques Phytosociologiques XXVII:1008–1022

    Google Scholar 

  • Cano E, Ruiz L, Cano-Ortiz A, Nieto J (2003a) Bases para el establecimiento de modelos de gestión agrícola y forestal. In: Memoriam al Prof. Dr. Isidoro Ruiz Martínez, pp 131–142

    Google Scholar 

  • Cano E, Cano-Ortiz A, Montilla RJ (2003b) Encuadre bioclimático de algunas variedades de Olea europaea L. en el sur de España. Boletín Inst Est Giennenses 184:31–36

    Google Scholar 

  • Cano E, Ruiz L, Melendo M, Nieto J, Cano-Ortix A (2004) Bases bioclimáticas para la planificación del olivar en el centro-sur de la Península Ibérica (España, Portugal). Actas IFOAN. Sociedad Española de Agricultura Ecológica. SEAE, p. 304–311

    Google Scholar 

  • Cano E, Musarella CM, Cano-Ortiz A, Piñar Fuentes JC, Spampinato G, Pinto Gomes CJ (2017) Morphometric analysis and bioclimatic distribution of Glebionis coronaria s.l. (Asteraceae) in the Mediterranean area. Phytokeys 81:103–126

    Article  Google Scholar 

  • Cano-Ortiz A (2007) Bioindicadores ecológicos y manejo de cubiertas vegetales como herramienta para la implantación de una agricultura sostenible. Tesis Doctoral. Universidad de Jaén, España, p 709

    Google Scholar 

  • Cano-Ortiz A (2016) Bioindicadores y cubiertas vegetales en el olivar in Nuevas Tendencias en Olivicultura. Serv. Publ. Univ. Jaen, p 69–115

    Google Scholar 

  • Cano-Ortiz A, Pinto Gomes CJ, Esteban F, Cano E (2009) Determination of the nutritional state of soils by means of the phytosociological method and different statistical techniques (Bayesian statistics and decision trees), (Spain). Acta Bot Gallica 156(4):607–624

    Article  CAS  Google Scholar 

  • Cano-Ortiz A, Del Río González S, Pinto Gomes CJ (2013) Impact of soil texture on plant communities of Raphanus raphanistrum L. Plant Sociol 50(2):39–46

    Google Scholar 

  • Cano-Ortiz A, Ighareyeh JMH, Cano E (2014) Bioclimatic applications and soil indicators for olive cultivation (South of the Iberian Peninsula). Glob Adv Res J Agric Sci 3(12):433–438

    Google Scholar 

  • Cao WJ, Hu JX, Yu XM (2009) A study on temperature interpolation. Methods based on GIS 17th International Conference on Geoinformatics George Mason Univ, Fairfax, p 1–5

    Google Scholar 

  • Capel JJ (1998) Ritmo anual de las temperaturas en España. Nimbus: Revista de meteorología, climatología y paisaje 1/2:17–36

    Google Scholar 

  • Capel JJ (2000) El clima de la Península Ibérica, p 281. Ed. Ariel, Barcelona

    Google Scholar 

  • Castro-Diez Y, Esteban-Parra MJ, Staudt M, Gámiz Fortis S (2007) Temperature and precipitation changes in Andalusia in the Iberian Peninsula and Northern Hemisphere context. In: Sousa A, García-Barrón L, Jurado V (eds) Climate change in Andalusia: trends and environmental consequences. Consejería de Medio Ambiente, Junta de Andalucía, pp 55–77

    Google Scholar 

  • Collins FC, Bolstad PV (1996) A comparison of spatial interpolation techniques in temperature estimation. Proceedings of the Third International Environmental Modeling, National Center for Geographic Information Analysis (NCGIA) Santa Fe, New Mexico, 21–25 January

    Google Scholar 

  • Cruz R, Lage A (2006) Análisis de la evolución de la temperatura y precipitación en el periodo 1973–2004 en Galicia. In: Cuadrat JM, Saz MA, Vicente Serrano SM, Lanjeri S, de Luis M, González-Hidalgo JC (eds) Clima, Sociedad y Medio Ambiente, Asociación Española de Cimatología serie A, n 5. AEC, Zaragoza, pp 113–124

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9(7):1163. https://doi.org/10.3390/su9071163, 1–18

    Article  CAS  Google Scholar 

  • Del Rio S, Herrero L, Penas A (2009) Recent climatic trends in Castilla and León (Spain) and its possible influence on the potential natural vegetation. Acta Bot Gallica 156(4):625–636

    Article  Google Scholar 

  • Del Rio S, Herrero L, Pinto Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob Planet Chang 78(1–2):65–75

    Google Scholar 

  • Del Rio S, Cano-Ortiz A, Herrerom L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109(3–4):605–626. https://doi.org/10.1007/s00704-012-0593-2

    Article  Google Scholar 

  • Del Rio S, Álvarez-Esteban R, Cano E, Pinto Gomes CJ, Penas A (2018) Potential impacts of climate change on habitat suitability of Fagus sylvatica L. forests in Spain. Plant Biosyst – Int J Dealing Asp Plant Biol 152(6):1205–1213. https://doi.org/10.1080/11263504.2018.1435572

    Article  Google Scholar 

  • Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (1997) Estudio de las variaciones climáticas en Almería. In: Navarro A, García-Rosell L (coord.) Recursos naturales y medio ambiente del Sureste peninsular. Instituto de Estudios Almerienses, Almería, p 489–501

    Google Scholar 

  • Font Tullot I (2000) Climatología de España y Portugal. Universidad de Salamanca, Salamanca, pp 1–428

    Google Scholar 

  • García-Barrón L, Aguilar-Alba A, Morales J, Sousa A (2018) Intra-annual rainfall variability in the Spanish hydrographic basins. Int J Climatol 38(5):2215–2229

    Article  Google Scholar 

  • Géhu JM, Rivas-Martínez S (1982) Notions fondamentales de Phytosociologie. In Dierschcke H (ed) Berichte der Internationalen Symposium del IVV. Syntaxonomie: 5–33, Rinteln

    Google Scholar 

  • Gilbert RO (1987) 6.5 Sen’s Nonparametric Estimator of Slope. In: Statistical methods for environmental pollution monitoring. Wiley, Hoboken, pp 217–219

    Google Scholar 

  • Guerrero García A (1991) Nueva Olivicultura. Ed. Mundi-Prensa, p 1–271

    Google Scholar 

  • Ileana B, Castro-Diez Y (2010) Tendencias atmosféricas en la Península Ibérica durante el periodo instrumental en el contexto de la variabilidad natural. In: Pérez Fiz F, Boscolo R (eds) Clima es España: Pasado, presente y futuro: Informe de Evaluación del cambio climático regional. Red Temática CLIVAR, España, pp 25–42

    Google Scholar 

  • IPCC (2001) In: Watson RT, The Core Writing Team (eds) Climate Change 2001. Synthesis Report. A contribution of Working Groups I, II, and III to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p. 398

    Google Scholar 

  • IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri, R.K. y Reisinger, A. (directores de la publicación)]. IPCC, Ginebra, Suiza, p. 104

    Google Scholar 

  • Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGis geostatistical analyst. ESRI, New York, pp 1–300

    Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Lopez-Moreno JL, Vicente-Serrano SM, Moran-Tejeda E, Lorenzo Lacruz J, Kenaway A, Beniston M (2011) Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: observed relationships and projections for the 21st century. Glob Planet Chang 77(1–2):62–76

    Article  Google Scholar 

  • Luna MY, Morata A, Almarza C, Martín ML (2006) The use of GIS to evaluate and map extreme maximum and minimum temperatures in Spain. Meteorol Appl 13(4):385–392

    Article  Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Article  Google Scholar 

  • Martin-Vide J, Calbó J, Sánchez-Lorenzo A (2006) Tendencias recientes de la insolación en la España peninsular y baleares (1971–2000). Recent trends of sunshine duration in the peninsular Spain and Balearic islands (1971–2000). 5ª asamblea hispano-portuguesa de geodesia y geofísica

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. American J Exp Agric 8(3):159–166

    Article  CAS  Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Montero Burgos JL, González Rebollar JL (1983) Diagramas Bioclimáticos. Minsterio de Agricultura, Pesca y Alimentación. ICONA, p 1–379

    Google Scholar 

  • Morales CG, Ortega MT, Labajo JL, Piorno A (2005) Recent trends and temporal behavior of thermal variables in the region of Castilla – León (Spain). Atmosfera 18(2):71–90

    Google Scholar 

  • Moran Tejeda E (2011) Impactos recientes de los cambios ambientales en los recursos hídricos superficiales de la cuenca del Duero. Pirineos Revista de Ecología de Montaña 167:107–142

    Article  Google Scholar 

  • Munoz-Diaz D, Rodrigo FS (2004) Spatio-temporal patterns of seasonal rainfall in Spain (1912–2000) using cluster and principal component analysis: comparison. Ann Geophys 22:1435–1448

    Article  Google Scholar 

  • Ordoñez P (2008) Análisis del estado del clima en Andalucía mediante índices climáticos atmosféricos. Congreso Nacional de Medio Ambiente, Cumbre del Desarrollo Sostenible, 1–5 Diciembre, Madrid. Assessment of potential effects and adaptations for climate change in Europe. In: Parry, M.L. (Ed.), Summary and conclusions. Jackson Environment Institute, University of East Aglia, Norwich, p. 320

    Google Scholar 

  • Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Chang 63(3):337–350

    Article  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rivas-Martínez S (1978) La vegetación de Hordeion leporini en España. Doc Phytosoc 9:377–392

    Google Scholar 

  • Rivas Martínez S (1987) Mapa de series de vegetación de España a escala 1:400.000. Ministerio de Agricultura. Pesca y Alimentación. ICONA, p 1–208

    Google Scholar 

  • Rivas Martínez S (1996) Clasificación Bioclimática de la Tierra. Folia Botánica Matritensis 16:1–32

    Google Scholar 

  • Rivas-Martínez S, Loidi Arregui J (1999) Bioclimatoloy of the Iberian Peninsula. Itinera Geobot 13:41–47

    Google Scholar 

  • Rivas-Martínez S, Fernández González F, Loidi J, Lousa M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341

    Google Scholar 

  • Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobot 15(1–2):5–922

    Google Scholar 

  • Robert MH, James RS (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20(6):727–732

    Article  Google Scholar 

  • Rodrigo FS, Trigo RM (2007) Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int J Climatol 27(4):513–529

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Rodríguez-Puebla C (2010) Teleconexiones climáticas en el entorno de la Península Ibérica. Predictabilidad y cambios esperados. In: Pérez FF, Boscolo R (eds) Clima en España: pasado, presente y futuro: Informe de evaluación del cambio climático regional. CLIVAR-España, España, pp 1–85

    Google Scholar 

  • Rodríguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18(3):299–316

    Article  Google Scholar 

  • Sáenz J, Zubillaga J, Rodríguez-Puebla C (2001) Interannual winter temperature variability in the north of the Iberian Peninsula. Clim Res 16(3):169–179

    Article  Google Scholar 

  • Salat J, Pascual J (2006) Principales tendencias climatológicas en el Mediterráneo noroccidental, a partir de más de 30 años de observaciones oceanográficas y meteorológicas en la costa catalana. In: Cuadrat JM, Saz MA, Vicente Serrano SM, Lanjeri S, de Luis M, González-Hidalgo JC (eds) Clima, Sociedad y Medio Ambiente, Asociación Española de Cimatología serie A, n 5. AEC, Zaragoza, pp 283–290

    Google Scholar 

  • Salmi T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and sen’s solpe stimates — the excel template application MAKESENS. Helsinki, Finnish Meteorological Institute Report No. 31. Helsinki, p 35

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality complete samples. Biometrika 52:591–611

    Article  Google Scholar 

  • Sigro FJ (2004) Variabilidad espacio temporal de la temperatura del aire en Cataluña. Ph.D. Thesis, Universidad Rovira i Virgili, Barcelona

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. The Ecoscan 9(1–2):517–519

    Google Scholar 

  • Skarbit N, Ács F, Breuer H (2018) The climate of the European region during the 20th and 21st centuries according to Feddema. Int J Climatol 38(5):2435–2448

    Article  Google Scholar 

  • Sneyers R (1992) On the use of statistical analysis for the objective determination on climatic change. Meteorol Z 1:247–256

    Article  Google Scholar 

  • Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A (2018) Will drought events become more frequent and severe in Europe? Int J Climatol 38(4):1718–1736

    Article  Google Scholar 

  • Suppiah R, Hennessy KJ (1996) Trends in the intensity and frequency of heavy rainfall in tropical Australia and links with the Southern Oscillation. Aust Meteorol J 45(1):1–17

    Google Scholar 

  • Valle F (1984) Degradación del suelo. Alteración de la cubierta vegetal. Excma. Dip. Granada, p 139–144

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms Pru Brooke Turner (MA Cantab./University of Cambridge) for the English translation of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cano, E. et al. (2019). Mitigating Climate Change Through Bioclimatic Applications and Cultivation Techniques in Agriculture (Andalusia, Spain). In: Jhariya, M., Banerjee, A., Meena, R., Yadav, D. (eds) Sustainable Agriculture, Forest and Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_2

Download citation

Publish with us

Policies and ethics