Skip to main content

Ecology and Biology of Culex quinquefasciatus Say, 1823, in Two Physiographically Different Ecosystems with Special Reference to Human Lymphatic Filariasis in West Bengal, India

  • Chapter
  • First Online:
Lymphatic Filariasis

Abstract

Lymphatic filariasis (LF) is a major cause of public health concern worldwide especially in a tropical country like India. About 1254 million people worldwide, inhabiting 83 countries including 554.2 million people in India, are at the threshold of the filarial infection. The nematode Wuchereria bancrofti accounts for an estimated 95 % of these infections worldwide. The other two nematodes Brugia malayi and B. timori are minor agents of filariasis. The periodic (nocturnal) form of W. bancrofti is prevalent in the Indian mainland transmitted by Culex quinquefasciatus, a member of Culex pipiens species complex. Recent studies have indicated that Cx. pipiens and Cx. quinquefasciatus are two distinct species. The complete genome sequencing studies of Culex quinquefasciatus reveal that the number of their protein-coding genes (18,883) is 22 % greater than that of Aedes aegypti and 52% greater than that of Anopheles gambiae. In addition to this, the species exhibit multiple gene family expansion which includes olfactory and gustatory receptors, salivary gland genes and genes associated with xenobiotic detoxification. The mosquito species is a nocturnal biter and has been predominantly recorded from human baits in Calcutta. Culex quinquefasciatus is considered as an opportunistic feeder in rural Bengal as it feeds on 26.45 % humans only, with mostly on ruminants (46.25 %), followed by pigs (14.19 %) and birds (6.45 %). This mosquito species is found in domestic collections of water, places like flooded open cement drains, flooded latrines, overflow water from roof-top tanks, kitchens as well as in ground pools, ditches and shallow wells. This species usually selects organically rich and polluted surface waters and artificial containers for breeding. The post-monsoon season (September, October, November) records the highest per man-hour density of the vector, Cx. quinquefasciatus, followed by the monsoon (June, July, August) and winter (December, January, February). The summer months have the lowest per man-hour density of the vector population in the studied areas. The overall per man-hour density of Cx. quinquefasciatus in the urban area (72.23 %) is markedly higher than that of the rural areas (37.03 %). In West Bengal, urban areas were more endemic for bancroftian filariasis than the rural area. Urban developments such as road, flyover, building, metro rail construction, etc. are the contributing factors in creating a complex mosquitogenic and filariogenic situations in urban areas. Global warming and globalization are likely to reshape the ecology of vector mosquitoes, especially ubiquitous Cx. quinquefasciatus. This will have wide-ranging consequences on the epidemiology of vector-borne diseases like lymphatic filariasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J et al (2010) Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science (Washington) 330(6000):86–88

    Article  CAS  Google Scholar 

  • Badaki JA (2010) Parasitological and social aspects of lymphatic filariasis in Taraba State. Ph.D. thesis. Department of Zoology, University of Jos, Nigeria, p 137

    Google Scholar 

  • Barr AR (1957) The distribution of Culex p. pipiens and Cx. p. quinquefasciatus in North America. Am J Trop Med Hyg 6(1):153–165

    Article  CAS  Google Scholar 

  • Barraud PJ (1934) The Fauna of British India, including Ceylone and Burmah, vol 5. Taylor & Francis, London, p 463

    Google Scholar 

  • Belkin JN (1977) Cx. quinquefasciatus or fatigans for the tropical (southern) house mosquito (Diptera: Culicidae). Proc Entomol Soc Wash 79(1):45–52

    Google Scholar 

  • Bhattacharya S (2009) Mosquito-borne diseases in India with special reference to malaria vectors and their control. J Asia Soc L1(2):15–34

    Google Scholar 

  • Bhattacharya S (2012) Development and disease: interpretation of inter-relationship in the context of mosquito-borne maladies. Sci Cult 78(122):47–53

    Google Scholar 

  • Bhattacharya S, Hati AK (1986) Man-Culex quinquefasciatus contact in relation to transmission dynamics of Bancroftian filariasis. In: Abstract book, 6th International congress of Parasitology held in Brisbane, Australia

    Google Scholar 

  • Bhattacharya S, Misra B (1992) Population dynamics and vector potential of Culex quinquefasciatus in two different bioecological conditions. In: Abstract book, 5th International congress for infectious diseases, Nairobi, Kenya, p 48

    Google Scholar 

  • Bhattacharya S, Santra SC (2005) Mosquito-borne diseases and vector diversity in Kolkata with special reference to malaria. In: Mukhopadhyay A, De AK (eds) Perspectives in environmental health- vector and water-borne diseases. Published by Originals, Delhi, pp 53–70

    Google Scholar 

  • Bhattacharya S, Chakraborty S, Mitra AK, Ghosh KK, Das S, Chakraborty MS, Chatterjee A, Hati AK (1982) Blood meal analysis of certain species of mosquitoes of rural West Bengal. Bull Cal Sch Trop Med 30(2):43–45

    Google Scholar 

  • Bhattacharya S, Chaudhuri P, Mandal AK, Majumdar S, Basu P (2014) Reappearance of Anopheles sundaicus at Sundarban coastal areas West Bengal. India J Appl Biosci 40(1):58–59

    Google Scholar 

  • Chakraborty S, Choudhuri DK, Bhattacharya S, Hati AK (1986) Bait preference pattern of Culex vishnui mosquito in rural West Bengal. Bull Cal Sch Trop Med 34(1–4):15–17

    Google Scholar 

  • Chandra G (1995) Short report: peak period of filarial transmission. Am J Trop Med Hyg 53(4):378–379

    Article  CAS  Google Scholar 

  • Chandra G, Rudra SK (2006) Comparative studies on man-biting population of filarial vector Cx. quinquefasciatus (Diptera: Culicidae) between tribal and non-tribal areas of Bankura district West Bengal India. Bul Pen Kesh 34:1–7

    Google Scholar 

  • Chandra G, Banerjee A, Hati AK (1993) Seasonal prevalence of Culex quinquefasciatus in an urban and a rural area of West Bengal. Bull Cal Sch Trop Med 41:10–11

    Google Scholar 

  • Chandra G, Majumdar G, Hati AK (1995) An alternative approach for assessing filarial endemicity. In: Hati AK(ed) Studies on some vectors of public health importance, Published by the Department of Medical Entomology, Calcutta School of Tropical Medicine, Govt. of West Bengal, pp 146–148

    Google Scholar 

  • Chandra G, Seal B, Hati AK (1996) Age composition of the filarial vector Culex quinquefasciatus (Diptera: Culicidae) in Calcutta, India. Bull Entomol Res 86(3):223–226

    Article  Google Scholar 

  • Chandra G, Chatterjee SN, Banerjee BD, Majumdar G (1997) Effect of seasonal variations on the development of Wuchereria larvae in Culex quinquefasciatus. Basic Appl Biomed 5:21–24

    Google Scholar 

  • Chandra G, Chatterjee SN, Das S, Sarkar N (2007) Lymphatic filariasis in the coastal areas of Digha, West Bengal, India. Trop Doct 37(3):136–139

    Article  CAS  Google Scholar 

  • Chandra G, Pramanik M, Mondal SK, Ghosh AK (2013) Comparative studies of different indices related to filarial vector of a rural and an urban area of West Bengal. India Trop Med Surg 1:104

    Google Scholar 

  • Chatterjee KK, Biswas D, Chandra G, Bhattacharyya A, Ghosh A, Hati AK (1988) A longitudinal survey on mosquito larvae in relation to metro rail construction in Calcutta. Indian Med Gaz CXXII(2):56–59

    Google Scholar 

  • Christophers SR (1933) The Fauna of British India including Ceylone and Burma, vol 4. Taylor and Francis, London, p 371

    Google Scholar 

  • Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M (2003) Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40(1):36–51

    Article  CAS  Google Scholar 

  • Das M (1976) Vectors of filariasis with special reference to India. J Com Dis 8:101–109

    Google Scholar 

  • Das BP, Kaul SM (1998) Pictorial key to the common Indian species of Aedes (stegomyia) mosquitoes. J Com Dis 30:123–127

    CAS  Google Scholar 

  • Das PK, Pani SP, Krishnamoorthy K (2002) Prospects of elimination of lymphatic filariasis in India. ICMR Bull 32(5&6):1–14

    Google Scholar 

  • Das SK, Ghosh A, Behera MK, Chandra G (2003) Studies on vector of Bancroftian filariasis at Katwa. West Bengal J Parasitol Appl Anim Biol 12(1&2):1–7

    Google Scholar 

  • Data Sheet of The Invasive Species Compendium (ISC) (Website: http://www.cabi.org/isc/datasheet/86848) Accessed on 30 Jan 2015

  • David DR, Ribeiro GS, Freitas RM (2012) Bionomics of Culex quinquefasciatus within urban areas of Rio de janeiro, south eastern Brazil. Rev Saude Publica 6(5):858–865

    Article  Google Scholar 

  • De SK, Chandra G (1994) Studies on the filariasis vector-Culex quinquefasciatus atKanchrapara, West Bengal, India. Indian J Med Res 99:255–258

    CAS  PubMed  Google Scholar 

  • Derraik JGB (2005) Mosquitoes breeding in phytotelmata in native forest in the wellington region, New Zealand. N Z J Ecol 29(2):185–191

    Google Scholar 

  • Dreyer G, Addiss D, Noroes J (2005) Does longevity of adult Wuchereria bancrofti increase with decreasing intensity of parasitic transmission? insights from clinical observations. Trans R Soc Trop Med Hyg 99:883–892

    Article  Google Scholar 

  • Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM (2011) “Bird biting” mosquitoes and human disease: a review of the role of Culexpipiens complex mosquitoes in epidemiology. Infect Genet Evol 11(7):1577–1585

    Article  Google Scholar 

  • Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC (2006) Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74(2):284–289

    Article  Google Scholar 

  • Goddard LB, Roth AE, Reisen WK, Scott TW (2002) Vector competence of California mosquitoes for West Nile Virus. Emerg Infect Dis 8(12):1385–1391

    Article  Google Scholar 

  • Gokhale MD, Paingankar MS, Dhangude SD (2013) Comparison of biological attributes of Culex quinquefasciatus (Diptera: Culicidae) populations from India. ISRN Entemol 2013. Article ID 451592, 9 p

    Google Scholar 

  • Hati AK (2010) Medical entomology. Allied Book Agency, Calcutta, pp 1–238

    Google Scholar 

  • Hati AK, Chandra G, Bhattacharyya A, Biswas D, Chetterjee KK, Dwivedi HN (1989) Annual transmission potential of bancroftian filariasis in an urban and a rural area of West Bengal, India. Am J Trop Med Hyg 40(4):365–367

    Article  CAS  Google Scholar 

  • Holder P, Browne G, Bullians M (1999) The mosquitoes of New Zealand and their animal disease significance. Surveillance 26(4):12–15

    Google Scholar 

  • Hurd H, Webb TJ (1997) The role of endocrinologically active substances in mediating changes in insect hosts and insect vectors. In: Beckage NE (ed) parasites: effects on host hormones and behavior. Chapman and Hall, London, pp 179–201

    Google Scholar 

  • Laird M (1995) Background and findings of the 1993–94 New Zealand mosquito survey. N Z Entomol 18:77–90

    Article  Google Scholar 

  • Laurence BR, Pickett JA (1985) An oviposition attractant pheromone in Culex quinquefasciatus say (Diptera: Culicidae). Bull Entomol Res 75(2):283–290

    Article  CAS  Google Scholar 

  • Lee DJ, Hicks MM, Debenham ML, Griffiths M, Marks EN, Bryan JH, Russell RC (1989) The Culicidae of the Australasian region, vol 7. Australian Government Publishing Service, Canberra, p 281

    Google Scholar 

  • Lima CA, Almeida WR, Hurd H, Albuquerque CMR (2003) Reproductive aspects of the mosquito Culex quinquefasciatus (Diptera: Culicidae) infected with Wuchereria bancrofti (Spirurida: Onchocercidae). Mem Inst Oswaldo Cruz, Rio de Janeiro 98(2):217–222

    Article  Google Scholar 

  • Manyi MM, Imandeh GN, Azua ET (2014) Vector potential of Anopheles and Culex species in the transmission of Bancroftian Filariasis in the localities of Markurdi, North Central Nigeria. JEZS 2(5):171–177

    Google Scholar 

  • Matthys B, N’Goran EK, Koné M, Koudou BG, Vounatsou P, Cisse G et al (2006) Urban agricultural land use and characterization of mosquito larval habitats in a medium-sized town of Côte d’Ivoire. J Vector Ecol 31(2):319–333

    Article  Google Scholar 

  • McAbee RD, Christiansen JA, Cornel AJ (2007) A detailed larval salivary gland polytene chromosome photomap for Culex quinquefasciatus (Diptera: Culicidae) from Johannesburg, South Africa. J Med Entomol 44(2):229–237

    Article  Google Scholar 

  • Mukhopadhyay AK, Hati AK (1978) Man-biting activity of Anopheles stephensi in Calcutta. Bull Cal Sch Trop Med 26:5–7

    Google Scholar 

  • Nelson CG (1964) Factors influencing the development and behavior of filarial nematodes in their arthropodan hosts. In: Angela ER (ed) Second symposium of the British Society for parasitology. Host-parasite relationships in invertebrate hosts, Taylor. Black-Well Scientific Publications, Oxford, pp 74–119

    Google Scholar 

  • NVBDCP (2015.) http://nvbdcp.gov.in/fil-rate.html. Accessed 05 April 2015

  • Opoku AA, Ansa-Asare OD, Amoako J (2007) The occurrences and habitat characteristics of mosquitoes in Accra, Ghana. West Afr J Appl Ecol 11:81–86

    Google Scholar 

  • Pramanik M, Chandra G (2010) Studies on seasonal fluctuation of different indices related to filarial vector, Culex quinquefasciatus around foothills of Susunia of West Bengal, India. Asian Pac J Trop Med 3(9):727–730

    Article  Google Scholar 

  • Reuben R, Thenmozhi V, Samuel P, Gajanana A, Mani T (1992) Mosquito blood feeding patterns as a factor in the epidemiology of Japanese encephalitis in southern India. Am J Trop Med Hyg 46(6):654–663

    Article  CAS  Google Scholar 

  • Rozeboom LE, Bhattacharya NC, Gillotra SK (1968) Observations of the transmission of filariasis in urban Calcutta. Am J Epidemiol 87(3):616–632

    Article  CAS  Google Scholar 

  • Rudra SK, Chandra G (1998) Bancroftian Filariasis in tribal population of Bankura District, West Bengal, India. Jpn J Trop Med Hyg 26(2):109–112

    Article  Google Scholar 

  • Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27(5):892–898

    Article  CAS  Google Scholar 

  • Sabesan S, Pradeepkumar N, Krishnamoorthy K, Panicker KN (1992) Seasonal abundance and biting behavior of Mansonia annulifera, Mansonia uniformis and Mansonia indiana and their relative role in the transmission of Malayan filariasis in Shertallai (Kerala State). Indian J Med Res 93:253

    Google Scholar 

  • Say T (1823) Descriptions of dipterous insects of the United States. J Acad Nat Sci Phila 3:9–54

    Google Scholar 

  • Service MW (2012) Medical entemology for students, 5th edn. Cambridge University Press, New York, p 303

    Book  Google Scholar 

  • Sirivanakarn S (1976) Medical entomology studies-III. A revision of the subgenus Culex in the oriental region (Diptera: Culicidae). Contrib Am Entomol Inst (Ann Arbor) 12(2):l–272

    Google Scholar 

  • Smith JL, Fonseca DM (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70(4):339–345

    Article  CAS  Google Scholar 

  • Stone A (1956) Corrections in the taxonomy and nomenclature of mosquitoes (Diptera: Culicidae). Proc Entomol Soc Wash 56(6):333–343

    Google Scholar 

  • Subra R (1981) Biology and control of Culex pipiens quinquefasciatus say, 1823 (Diptera, Culicidae) with special reference to Africa. Insect Sci Appl 1(4):319–338

    CAS  Google Scholar 

  • Thenmozhi V, Mariappan T, Krishnamoorthy R, Baskarn G, Krishnamoorthi R, Balaji T, Tyagi BK (2014) A first note on Japanese encephalitis virus isolation from Culex quinquefasciatus say in Northern West Bengal. Int J Mosq Res 1(1):1

    Google Scholar 

  • Thete KD, Shinde LV (2013) Survey of container breeding mosquito larvae in Jalna city (M.S)India. Biological Forum An Int J 5(1):124–128

    Google Scholar 

  • Tiwari SC, Hiriyan J, Reuben R (1995) Epidemiology of subperiodic Wuchereria bancrofti infection in Nicobar islands, India. Trans R Soc Trop Med Hyg 89:163

    Article  Google Scholar 

  • Wattal BL, Kalra NL (1961) Regionwise pictorial keys to the female Indian Anopheles. Bull Nath Soc Ind Malar Mosq Dis 9:85–138

    Google Scholar 

  • Weinstein P, Laird M, Browne G (1997) Exotic and endemic mosquitos in New Zealand as potential arbovirus vectors. Occasional paper. Ministry of Health, Wellington

    Google Scholar 

  • WHO (2007) Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 42(82):361–380

    Google Scholar 

  • Wiedemann CRW (1828) AussereuropaischezweiflugeligeInsekten. Hamm 1:608 (Cited in http://entnemdept.ufl.edu/creatures/aquatic/southern_house_mosquito.htm. visited on 10.04.2015)

    Google Scholar 

  • World Health Organization (1992) Lymphatic filariasis. Fifth report of the WHO expert committee onfilariasis, Geneva

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. D. K. Kar, principal of Asutosh College, and Prof. A. K. Hati, former director of Calcutta School of Tropical Medicine, for their kind suggestions and encouragement for this work. Thanks are due to Sandip Pal, faculty member, students of the Department of Zoology, Asutosh College and Ms. Swaha Bhattacharya, Department of Biotechnology, St. Xavier’s College, Kolkata for their various assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, S., Basu, P. (2018). Ecology and Biology of Culex quinquefasciatus Say, 1823, in Two Physiographically Different Ecosystems with Special Reference to Human Lymphatic Filariasis in West Bengal, India. In: Tyagi, B. (eds) Lymphatic Filariasis. Springer, Singapore. https://doi.org/10.1007/978-981-13-1391-2_17

Download citation

Publish with us

Policies and ethics