Skip to main content

Post-stroke Motor Rehabilitation

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Despite great improvement in acute stroke management, a large number of stroke patients remain significantly impaired, which is a leading cause of disability in the world and a serious global health-care problem. Effective neurorehabilitation is critical in reducing disability after stroke. The multidisciplinary approach of incorporating expertise from physical therapy, occupational therapy, and speech therapy and cognitive rehabilitation is a routine application in clinical settings. Several large trials of rehabilitation practice and of novel therapies including virtual reality, stem cell therapy, and drug augmentation are in progress to explore the possibility for the future practice. In addition, there are numerous assistive devices available to stroke patients that can help them adjust to their new poststroke lifestyle. Here, we discussed potentially options of motor rehabilitation, including noninvasive brain stimulation, rehabilitation robotics, and other promising rehabilitation techniques, after stroke in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHA:

American Heart Association

ASA:

American Stroke Association

BDNF:

Brain-derived neurotrophic factor

CST:

Corticospinal tract

CT:

Computerized tomography

DTI:

Diffusion tensor imaging

EEG:

Electroencephalograph

EMG:

Electromyogram

fMRI:

Functional magnetic resonance imaging

MEP:

Motor evoked potentials

MRI:

Magnetic resonance imaging

OT:

Occupational therapy

PT:

Physical therapy

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

UBS:

Ultrasonic brain stimulation

VR:

Virtual reality

References

  1. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke. World Neurosurg. 2011;76(6 Suppl):S85–90.

    Article  PubMed  Google Scholar 

  2. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hinchey JA, Shephard T, Furie K, Smith D, Wang D, Tonn S, et al. Formal dysphagia screening protocols prevent pneumonia. Stroke. 2005;36(9):1972–6.

    Article  PubMed  Google Scholar 

  4. Naritomi H, Krieger DW. Clinical recovery from CNS damage. Preface. Front Neurol Neurosci. 2013;32:VII–VIII.

    PubMed  Google Scholar 

  5. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–e169.

    Article  PubMed  Google Scholar 

  6. Flohr H, Breull W. Effect of etafenone on total and regional myocardial blood flow. Arzneimittelforschung. 1975;25(9):1400–3.

    CAS  PubMed  Google Scholar 

  7. Richards CL, Malouin F, Nadeau S. Stroke rehabilitation: clinical picture, assessment, and therapeutic challenge. Prog Brain Res. 2015;218:253–80.

    Article  PubMed  Google Scholar 

  8. Foley N, McClure JA, Meyer M, Salter K, Bureau Y, Teasell R. Inpatient rehabilitation following stroke: amount of therapy received and associations with functional recovery. Disabil Rehabil. 2012;34(25):2132–8.

    Article  PubMed  Google Scholar 

  9. Langhorne P, Stott D, Knight A, Bernhardt J, Barer D, Watkins C. Very early rehabilitation or intensive telemetry after stroke: a pilot randomised trial. Cerebrovasc Dis. 2010;29(4):352–60.

    Article  PubMed  Google Scholar 

  10. Bernhardt J, Dewey H, Thrift A, Collier J, Donnan G. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke. 2008;39(2):390–6.

    Article  PubMed  Google Scholar 

  11. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702.

    Article  PubMed  Google Scholar 

  12. Kwakkel G, Kollen B, Twisk J. Impact of time on improvement of outcome after stroke. Stroke. 2006;37(9):2348–53.

    Article  PubMed  Google Scholar 

  13. Yekutiel M, Guttman E. A controlled trial of the retraining of the sensory function of the hand in stroke patients. J Neurol Neurosurg Psychiatry. 1993;56(3):241–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–70.

    Article  CAS  PubMed  Google Scholar 

  15. Lyden P, Lu M, Jackson C, Marler J, Kothari R, Brott T, et al. Underlying structure of the National Institutes of Health Stroke Scale: results of a factor analysis. NINDS tPA Stroke Trial Investigators. Stroke. 1999;30(11):2347–54.

    Article  CAS  PubMed  Google Scholar 

  16. Cote R, Battista RN, Wolfson C, Boucher J, Adam J, Hachinski V. The Canadian Neurological Scale: validation and reliability assessment. Neurology. 1989;39(5):638–43.

    Article  CAS  PubMed  Google Scholar 

  17. Cote R, Hachinski VC, Shurvell BL, Norris JW, Wolfson C. The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke. 1986;17(4):731–7.

    Article  CAS  PubMed  Google Scholar 

  18. Weimar C, Konig IR, Kraywinkel K, Ziegler A, Diener HC. German Stroke Study C. Age and National Institutes of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke. 2004;35(1):158–62.

    Article  CAS  PubMed  Google Scholar 

  19. Beebe JA, Lang CE. Active range of motion predicts upper extremity function 3 months after stroke. Stroke. 2009;40(5):1772–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G, Investigators E. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745–50.

    Article  PubMed  Google Scholar 

  21. Vang C, Dunbabin D, Kilpatrick D. Correlation between functional and electrophysiological recovery in acute ischemic stroke. Stroke. 1999;30(10):2126–30.

    Article  CAS  PubMed  Google Scholar 

  22. Bembenek JP, Kurczych K, Karli Nski M, Czlonkowska A. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke – a systematic review of the literature. Funct Neurol. 2012;27(2):79–84.

    PubMed  PubMed Central  Google Scholar 

  23. Pennisi G, Rapisarda G, Bella R, Calabrese V, Maertens De Noordhout A, Delwaide PJ. Absence of response to early transcranial magnetic stimulation in ischemic stroke patients: prognostic value for hand motor recovery. Stroke. 1999;30(12):2666–70.

    Article  CAS  PubMed  Google Scholar 

  24. Woldag H, Gerhold LL, de Groot M, Wohlfart K, Wagner A, Hummelsheim H. Early prediction of functional outcome after stroke. Brain Inj. 2006;20(10):1047–52.

    Article  PubMed  Google Scholar 

  25. Arac N, Sagduyu A, Binai S, Ertekin C. Prognostic value of transcranial magnetic stimulation in acute stroke. Stroke. 1994;25(11):2183–6.

    Article  CAS  PubMed  Google Scholar 

  26. Vogt G, Laage R, Shuaib A, Schneider A, Collaboration V. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the Virtual International Stroke Trials Archive (VISTA) database. Stroke. 2012;43(5):1266–72.

    Article  PubMed  Google Scholar 

  27. Baird AE, Dambrosia J, Janket S, Eichbaum Q, Chaves C, Silver B, et al. A three-item scale for the early prediction of stroke recovery. Lancet. 2001;357(9274):2095–9.

    Article  CAS  PubMed  Google Scholar 

  28. Schiemanck SK, Kwakkel G, Post MW, Prevo AJ. Predictive value of ischemic lesion volume assessed with magnetic resonance imaging for neurological deficits and functional outcome poststroke: a critical review of the literature. Neurorehabil Neural Repair. 2006;20(4):492–502.

    Article  CAS  PubMed  Google Scholar 

  29. Kucinski T, Koch C, Eckert B, Becker V, Kromer H, Heesen C, et al. Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology. 2003;45(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  30. DeVetten G, Coutts SB, Hill MD, Goyal M, Eesa M, O’Brien B, et al. Acute corticospinal tract Wallerian degeneration is associated with stroke outcome. Stroke. 2010;41(4):751–6.

    Article  PubMed  Google Scholar 

  31. Rosso C, Colliot O, Pires C, Delmaire C, Valabregue R, Crozier S, et al. Early ADC changes in motor structures predict outcome of acute stroke better than lesion volume. J Neuroradio J Neuroradiol. 2011;38(2):105–12.

    Article  CAS  Google Scholar 

  32. Puig J, Blasco G, Schlaug G, Stinear CM, Daunis IEP, Biarnes C, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke. Neuroradiology. 2017;59(4):343–51.

    Article  PubMed  Google Scholar 

  33. Groisser BN, Copen WA, Singhal AB, Hirai KK, Schaechter JD. Corticospinal tract diffusion abnormalities early after stroke predict motor outcome. Neurorehabil Neural Repair. 2014;28(8):751–60.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain J Neurol. 2007;130(Pt 1):170–80.

    Google Scholar 

  35. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain J Neurol. 2012;135(Pt 8):2527–35.

    Article  Google Scholar 

  36. Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43(10):2819–28.

    Article  PubMed  Google Scholar 

  37. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.

    Article  PubMed  Google Scholar 

  38. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology. 2005;64(10):1802–4.

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36(12):2681–6.

    Article  PubMed  Google Scholar 

  40. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.

    PubMed  Google Scholar 

  41. Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7(2):76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tufail Y, Matyushov A, Baldwin N, Tauchmann ML, Georges J, Yoshihiro A, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66(5):681–94.

    Article  CAS  PubMed  Google Scholar 

  43. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7(6):900–8.

    Article  PubMed  Google Scholar 

  45. Lee W, Kim HC, Jung Y, Chung YA, Song IU, Lee JH, et al. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6:34026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul. 2013;6(3):409–15.

    Article  PubMed  Google Scholar 

  47. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3(10):e3511.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Scarcelli T, Jordao JF, O’Reilly MA, Ellens N, Hynynen K, Aubert I. Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul. 2014;7(2):304–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lv Y, Zhao P, Chen G, Sha Y, Yang L. Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett. 2013;35(12):2201–12.

    Article  CAS  PubMed  Google Scholar 

  50. Lee IC, Lo TL, Young TH, Li YC, Chen NG, Chen CH, et al. Differentiation of neural stem/progenitor cells using low-intensity ultrasound. Ultrasound Med Biol. 2014;40(9):2195–206.

    Article  PubMed  Google Scholar 

  51. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  52. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng: Publ IEEE Eng Med Biol Soc. 2004;12(2):186–94.

    Article  Google Scholar 

  53. Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43(5):631–42.

    Article  PubMed  Google Scholar 

  54. Tachi S, Tanie K, Komoriya K, Abe M. Electrocutaneous communication in a guide dog robot (MELDOG). IEEE Trans Biomed Eng. 1985;32(7):461–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech, Lang Hear Res: JSLHR. 2008;51(1):S225–39.

    Article  PubMed  Google Scholar 

  56. Hakim RM, Tunis BG, Ross MD. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Disabil Rehabil Assist Technol. 2016:1–7.

    Google Scholar 

  57. Carvalho D, Teixeira S, Lucas M, Yuan TF, Chaves F, Peressutti C, et al. The mirror neuron system in post-stroke rehabilitation. Int Arch Med. 2013;6(1):41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Garrison KA, Winstein CJ, Aziz-Zadeh L. The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil Neural Repair. 2010;24(5):404–12.

    Article  PubMed  Google Scholar 

  59. Franceschini M, Ceravolo MG, Agosti M, Cavallini P, Bonassi S, Dall’Armi V, et al. Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabil Neural Repair. 2012;26(5):456–62.

    Article  PubMed  Google Scholar 

  60. Sugg K, Muller S, Winstein C, Hathorn D, Dempsey A. Does action observation training with immediate physical practice improve hemiparetic upper-limb function in chronic stroke? Neurorehabil Neural Repair. 2015;29(9):807–17.

    Article  PubMed  Google Scholar 

  61. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage. 2007;36(Suppl 2):T164–73.

    Article  PubMed  Google Scholar 

  62. Celnik P, Webster B, Glasser DM, Cohen LG. Effects of action observation on physical training after stroke. Stroke. 2008;39(6):1814–20.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harmsen WJ, Bussmann JB, Selles RW, Hurkmans HL, Ribbers GM. A mirror therapy-based action observation protocol to improve motor learning after stroke. Neurorehabil Neural Repair. 2015;29(6):509–16.

    Article  PubMed  Google Scholar 

  64. Kim JH, Lee BH. Action observation training for functional activities after stroke: a pilot randomized controlled trial. NeuroRehabilitation. 2013;33(4):565–74.

    PubMed  Google Scholar 

  65. Lee HJ, Kim YM, Lee DK. The effects of action observation training and mirror therapy on gait and balance in stroke patients. J Phys Ther Sci. 2017;29(3):523–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sharma N, Baron JC, Rowe JB. Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol. 2009;66(5):604–16.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sharma N, Simmons LH, Jones PS, Day DJ, Carpenter TA, Pomeroy VM, et al. Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke. 2009;40(4):1315–24.

    Article  PubMed  Google Scholar 

  68. Page SJ, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke. 2007;38(4):1293–7.

    Article  PubMed  Google Scholar 

  69. Grabherr L, Jola C, Berra G, Theiler R, Mast FW. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis. NeuroRehabilitation. 2015;36(2):157–66.

    PubMed  Google Scholar 

  70. Page SJ, Szaflarski JP, Eliassen JC, Pan H, Cramer SC. Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair. 2009;23(4):382–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dijkerman HC, Ietswaart M, Johnston M, MacWalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil. 2004;18(5):538–49.

    Article  CAS  PubMed  Google Scholar 

  72. Ietswaart M, Johnston M, Dijkerman HC, Joice S, Scott CL, MacWalter RS, et al. Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain J Neurol. 2011;134(Pt 5):1373–86.

    Article  Google Scholar 

  73. Verma R, Arya KN, Garg RK, Singh T. Task-oriented circuit class training program with motor imagery for gait rehabilitation in poststroke patients: a randomized controlled trial. Top Stroke Rehabil. 2011;18(Suppl 1):620–32.

    Article  PubMed  Google Scholar 

  74. Cho HY, Kim JS, Lee GC. Effects of motor imagery training on balance and gait abilities in post-stroke patients: a randomized controlled trial. Clin Rehabil. 2013;27(8):675–80.

    Article  PubMed  Google Scholar 

  75. Oostra KM, Oomen A, Vanderstraeten G, Vingerhoets G. Influence of motor imagery training on gait rehabilitation in sub-acute stroke: a randomized controlled trial. J Rehabil Med. 2015;47(3):204–9.

    Article  PubMed  Google Scholar 

  76. Eaves DL, Riach M, Holmes PS, Wright DJ. Motor imagery during action observation: a brief review of evidence. Theory Future Re Oppor Front Neurosci. 2016;10:514.

    Google Scholar 

  77. Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery during action observation. Front Hum Neurosci. 2013;7:807.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Grezes J, Armony JL, Rowe J, Passingham RE. Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. NeuroImage. 2003;18(4):928–37.

    Article  CAS  PubMed  Google Scholar 

  79. Small SL, Buccino G, Solodkin A. The mirror neuron system and treatment of stroke. Dev Psychobiol. 2012;54(3):293–310.

    Article  PubMed  Google Scholar 

  80. Ramachandran VS, Rogers-Ramachandran D, Cobb S. Touching the phantom limb. Nature. 1995;377(6549):489–90.

    Article  CAS  PubMed  Google Scholar 

  81. Yavuzer G, Selles R, Sezer N, Sutbeyaz S, Bussmann JB, Koseoglu F, et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2008;89(3):393–8.

    Article  PubMed  Google Scholar 

  82. Samuelkamaleshkumar S, Reethajanetsureka S, Pauljebaraj P, Benshamir B, Padankatti SM, David JA. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2014;95(11):2000–5.

    Article  PubMed  Google Scholar 

  83. Sutbeyaz S, Yavuzer G, Sezer N, Koseoglu BF. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2007;88(5):555–9.

    Article  PubMed  Google Scholar 

  84. Hamzei F, Lappchen CH, Glauche V, Mader I, Rijntjes M, Weiller C. Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere. Neurorehabil Neural Repair. 2012;26(5):484–96.

    Article  PubMed  Google Scholar 

  85. Tominaga W, Matsubayashi J, Deguchi Y, Minami C, Kinai T, Nakamura M, et al. A mirror reflection of a hand modulates stimulus-induced 20-Hz activity. NeuroImage. 2009;46(2):500–4.

    Article  PubMed  Google Scholar 

  86. Garry MI, Loftus A, Summers JJ. Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp Brain Res. 2005;163(1):118–22.

    Article  CAS  PubMed  Google Scholar 

  87. Nojima I, Mima T, Koganemaru S, Thabit MN, Fukuyama H, Kawamata T. Human motor plasticity induced by mirror visual feedback. J Neurosc: Off J Soc Neurosci. 2012;32(4):1293–300.

    Article  CAS  Google Scholar 

  88. Avanzino L, Raffo A, Pelosin E, Ogliastro C, Marchese R, Ruggeri P, et al. Training based on mirror visual feedback influences transcallosal communication. Eur J Neurosci. 2014;40(3):2581–8.

    Article  PubMed  Google Scholar 

  89. Deconinck FJ, Smorenburg AR, Benham A, Ledebt A, Feltham MG, Savelsbergh GJ. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair. 2015;29(4):349–61.

    Article  PubMed  Google Scholar 

  90. Pandian JD, Arora R, Kaur P, Sharma D, Vishwambaran DK, Arima H. Mirror therapy in unilateral neglect after stroke (MUST trial): a randomized controlled trial. Neurology. 2014;83(11):1012–7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ng MJ, Singh P, Pandian JD, Arora R, Kaur P. Mirror therapy in unilateral neglect after stroke (MUST trial): a randomized controlled trial. Neurology. 2015;84(12):1286.

    Article  PubMed  Google Scholar 

  92. Jack D, Boian R, Merians AS, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-enhanced stroke rehabilitation. IEEE Trans Neural Systems Rehabil Eng: Publ IEEE Eng Med Biol Soc. 2001;9(3):308–18.

    Article  CAS  Google Scholar 

  93. Broeren J, Rydmark M, Bjorkdahl A, Sunnerhagen KS. Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabil Neural Repair. 2007;21(2):180–9.

    Article  PubMed  Google Scholar 

  94. Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.

    PubMed  Google Scholar 

  95. Subramanian S, Knaut LA, Beaudoin C, McFadyen BJ, Feldman AG, Levin MF. Virtual reality environments for post-stroke arm rehabilitation. J Neuroeng Rehabil. 2007;4:20.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Colomer C, Llorens R, Noe E, Alcaniz M. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil. 2016;13(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015;2:CD008349.

    Google Scholar 

  98. Fu MJ, Knutson JS, Chae J. Stroke rehabilitation using virtual environments. Phys Med Rehabil Clin N Am. 2015;26(4):747–57.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. 2000;55(4):565–9.

    Article  CAS  PubMed  Google Scholar 

  100. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, et al. Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103(1):38–45.

    Article  PubMed  Google Scholar 

  101. Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S, et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol. 2002;160(4):1201–6.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain J Neurol. 2011;134(Pt 6):1790–807.

    Article  Google Scholar 

  103. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.

    Article  PubMed  Google Scholar 

  104. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43(8):2242–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Jin, K. (2017). Post-stroke Motor Rehabilitation. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_24

Download citation

Publish with us

Policies and ethics