Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Graphene–sulfur (G–S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G–S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways and easily tunable sulfur content, which can be cut and pressed to pellets to be directly used as lithium–sulfur battery cathodes without using metal current-collector, binder and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li+ diffuse distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides preventing their dissolution into electrolyte based on first-principles calculations. As a result, the G–S hybrids show a high capacity, an excellent high-rate performance and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high performance lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46(5):1125–1134

    Article  Google Scholar 

  2. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  CAS  Google Scholar 

  3. Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467

    Article  CAS  Google Scholar 

  4. Segal M (2009) Selling graphene by the ton. Nat Nanotech 4(10):611–613

    Article  Google Scholar 

  5. Yang XW, Zhu JW, Qiu L, Li D (2011) Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater 23(25):2833–2838

    Article  CAS  Google Scholar 

  6. Li C, Shi GQ (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563

    Article  CAS  Google Scholar 

  7. Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241

    Article  Google Scholar 

  8. Choi BG, Yang M, Hong WH, Choi JW, Huh YS (2012) 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6(5):4020–4028

    Article  CAS  Google Scholar 

  9. Chen WF, Li SR, Chen CH, Yan LF (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23(47):5679–5683

    Article  CAS  Google Scholar 

  10. Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330

    Article  CAS  Google Scholar 

  11. Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6(9):7867–7878

    Article  CAS  Google Scholar 

  12. Zhao J, Pei S, Ren W, Gao L, Cheng H-M (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9):5245–5252

    Article  CAS  Google Scholar 

  13. Zhou GM et al (2014) A graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv Mater 26(4):625–631

    Article  CAS  Google Scholar 

  14. Wu ZS et al (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499

    Article  CAS  Google Scholar 

  15. Zhou GM et al (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223

    Article  CAS  Google Scholar 

  16. Wu ZS et al (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595–3602

    Article  CAS  Google Scholar 

  17. Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  18. Lv W et al (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3(11):3730–3736

    Article  CAS  Google Scholar 

  19. Zhang GX, Sun SH, Yang DQ, Dodelet JP, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46(2):196–205

    Article  CAS  Google Scholar 

  20. Zhang L et al (2012) Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells. Phys Chem Chem Phys 14(39):13670–13675

    Article  CAS  Google Scholar 

  21. Demir-Cakan R et al (2011) Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J Am Chem Soc 133(40):16154–16160

    Article  CAS  Google Scholar 

  22. Schaufuß AG et al (1998) Incipient oxidation of fractured pyrite surfaces in air. J Electron Spectrosc Relat Phenom 96(1–3):69–82

    Article  Google Scholar 

  23. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  25. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  CAS  Google Scholar 

  26. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079

    Article  CAS  Google Scholar 

  27. Makov G, Payne MC (1995) Periodic boundary-conditions in ab-initio calculations. Phys Rev B 51(7):4014–4022

    Article  CAS  Google Scholar 

  28. Hunsicker S, Jones RO, Gantefor G (1995) Rings and chains in sulfur cluster anions S- to S-9(-)—theory (simulated annealing) and experiment (photoelectron detachment). J Chem Phys 102(15):5917–5936

    Article  CAS  Google Scholar 

  29. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  30. Bagri A et al (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  CAS  Google Scholar 

  31. Berghof V, Sommerfeld T, Cederbaum LS (1998) Sulfur cluster dianions. J Phys Chem A 102(26):5100–5105

    Article  CAS  Google Scholar 

  32. Xin S et al (2012) Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc 134(45):18510–18513

    Article  CAS  Google Scholar 

  33. Xiao LF et al (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24(9):1176–1181

    Article  CAS  Google Scholar 

  34. Ji LW et al (2011) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133(46):18522–18525

    Article  CAS  Google Scholar 

  35. Zhou GM et al (2012) A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li–S batteries. Energy Environ Sci 5(10):8901–8906

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, G. (2017). Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries. In: Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3406-0_4

Download citation

Publish with us

Policies and ethics