Skip to main content

Carbon Dioxide to Energy: Killing Two Birds with One Stone

  • Conference paper
  • First Online:
Energy Engineering

Abstract

Carbon dioxide (CO2) is regarded as one of the arch villains in the long debate on global warming, or what has now been more correctly termed climate change, as it accounts for approximately 85 % of the total greenhouse gases that are emitted annually. The majority of sources are from the combustion of fossil fuels. With a growing global population and consequently a growing demand for energy, there has been extensive research on alternative fuels and energy sources, as well technologies for the combustion of fossil fuels. In order to mitigate the environmental effects of carbon dioxide, numerous strategies have been proposed which focus on limitation of emissions from sources, capture, and degradation. Carbon dioxide in theory could be a potential feedstock for the production of fuel, energy, and value-added chemicals. In effect, carbon dioxide could be turned from a villain to a hero, i.e. producing energy while reducing greenhouse gases. It is therefore important that researchers continue to look for practically feasible, inexpensive, environmentally friendly, and energy efficient technologies that can utilize CO2 by converting it into energy, liquid hydrocarbon fuels, and value-added chemicals. This review presents the current state of the art in this regard, with emphasis on technological improvements to make carbon dioxide a viable feedstock for energy and value-added chemical production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Herzog, E. Drake, E. Adams, CO 2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change, Final Report DE-AF22-96PC01257 (MIT Energy Laboratory, Cambridge, MA, 1997)

    Google Scholar 

  2. U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2007; United States Environmental Protection Agency: Washington, DC, 2009

    Google Scholar 

  3. S. Abanades, A. Le Gal, CO2 splitting by thermo-chemical looping based on ZrxCe1xO2 oxygen carriers for synthetic fuel generation. Fuel 102, 180–186 (2012)

    Article  Google Scholar 

  4. I. Ganesh, Conversion of carbon dioxide into methanol—a potential liquid fuel: Fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 31, 221–257 (2014)

    Article  Google Scholar 

  5. DNV, Carbon Dioxide Utilization: Electrochemical Conversion of CO2—Opportunities and Challenges, Research and Innovation, Position Paper 07, 2011

    Google Scholar 

  6. A. Lebouvier, S.A. Iwarere, P. d’Argenlieu, D. Ramjugernath, L. Fulcheri, Assessment of carbon dioxide dissociation as a new route for syngas production: A comparative review and potential of plasma-based technologies. Energy Fuels 27, 2712–2722 (2013)

    Google Scholar 

  7. E.B. Stechel, J.E. Miller, Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J. CO2 Utilization 1, 28–36 (2013)

    Google Scholar 

  8. M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization. J. CO2 Utilization, 3–4, 65–73 (2013)

    Google Scholar 

  9. J. Kim, C.A. Henao, T.A. Johnson, D.E. Dedrick, J.E. Miller, E.B. Stechel, C.T. Maravelias, Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy Environ. Sci. 4, 3122–3132 (2011)

    Article  Google Scholar 

  10. J. Kim, T.A. Johnson, J.E. Miller, E.B. Stechel, C.T. Maravelias, Fuel production from CO2 using solar-thermal energy: system level analysis. Energy Environ. Sci. 5, 8417–8429 (2012)

    Article  Google Scholar 

  11. G. Ghadimkhani, N.R. de Tacconi, W. Chanmanee, C. Janakyab, K. Rajeshwar, Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem. Commun. 49, 1297–1299 (2013)

    Article  Google Scholar 

  12. M.-A. Courtemanche, M.-A. Legare, L. Maron, F.-G. Fontaine, A highly Active Phosphine-Borane Organocatalyst for the reduction of CO2 to methanol using hydrocarbones. J. Am. Soc. 135, 9326–9329 (2013)

    Article  Google Scholar 

  13. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc. 130, 6342–6344 (2008)

    Article  Google Scholar 

  14. W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, High-flux solar-driven thermochemical dissociation of CO2 and H2O using Nonstoichiometric Ceria. Science 330, 1797–1801 (2010)

    Article  Google Scholar 

  15. B. Hu, C. Guild, S.L. Suib, Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J. CO2 Utilization, 1, 18–27 (2013)

    Google Scholar 

  16. X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. 126, 11662–11666 (2014)

    Article  Google Scholar 

  17. D.R. Kauffman, J. Thakkar, R. Siva, C. Matranga, P.R. Ohodnicki, C. Zeng, R. Jin, Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 7, 15626–15632 (2015)

    Article  Google Scholar 

  18. S.A. Iwarere, V.-J. Rohani, D. Ramjugernath, L. Fulcheri, Dry reforming of methane in a tip-tip arc discharge reactor at very high pressure. Int. J. Hydrogen Energy 40, 3388–3401 (2015)

    Article  Google Scholar 

  19. S. Rayne, Thermal Carbon Dioxide Splitting: a summary of the peer-reviewed scientific literature. Available Nat. Prec. (2008). doi:10.1038/npre.2008.1741.2

    Google Scholar 

  20. C.-J. Liu, G.-H. Xu, T. Wang, Non-thermal plasma approaches in CO utilization. Fuel Process. Technol. 58, 119–134 (1999)

    Article  Google Scholar 

  21. A.V. Eletskii, B.M. Smirnov, Dissociation of molecules in plasma and gas: the energy. Pure Appl. Chem. 57, 1235–1244 (1985)

    Article  Google Scholar 

  22. International Energy Outlook 2010, U.S. Energy Information Administration, DOE/EIA-0484, 2010

    Google Scholar 

  23. D. Chaturvedi, S. Ray, Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh. Chem. 137, 127–145 (2006)

    Article  Google Scholar 

  24. E.I. Lan, D.S. Chuang, C.R. Shen, A.M. Lee, S.Y. Ro, J.C. Liao, Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Metab. Eng. 31, 163–170 (2015)

    Article  Google Scholar 

  25. H. Li, P.H. Opgenorth, D.G. Wernick, S. Rogers, T.-Y. Wu, W. Higashide, P. Malati, Y.-X. Huo, K.M. Cho, J.C. Liao, Integrated Electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596 (2012)

    Article  Google Scholar 

  26. E.B. Cole, A.B. Bocarsly, Photochemical, Electrochemical, and Photoelectrochemical Reduction of Carbon Dioxide. M. Aresta, ed. by Carbon Dioxide as Chemical Feedstock (Wiley-VCH Verlag GmBH& Co. KGaA, 2010), pp. 291–316

    Google Scholar 

  27. C. Agrafiotis, M. Roeb, C. Sattler, A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 42, 254–285 (2015)

    Article  Google Scholar 

  28. K. Ayers, Economical production of hydrogen through development of novel, High-Efficiency Electrocatalysts for alkaline membrane electrolysis, department of energy hydrogen and fuel cells program, Fiscal Year 2014 Annual Progress Report, 2014

    Google Scholar 

  29. Putting a Price on Carbon with a Tax—World Bank. Accessed from www.worldbank.com/content/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deresh Ramjugernath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Iwarere, S.A., Ramjugernath, D. (2017). Carbon Dioxide to Energy: Killing Two Birds with One Stone. In: Raghavan, K., Ghosh, P. (eds) Energy Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3102-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3102-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3101-4

  • Online ISBN: 978-981-10-3102-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics