Skip to main content

Impact of Heavy Metals on Physiological Processes of Plants: With Special Reference to Photosynthetic System

  • Chapter
  • First Online:
Plant Responses to Xenobiotics

Abstract

Heavy metal pollution is one of the major environmental problems which is caused by unchecked and uncontrolled discharge of hazardous chemicals consisting of heavy metals. Heavy metals affect agricultural land and plant’s productivity by affecting its most vital process, i.e., photosynthesis. Exposure of plants to heavy metals leads to generation of ROS, and few heavy metals are directly involved in electron transport. It also leads to lipid peroxidation destroying plant’s cell membrane and its associated organelles. Chlorophyll biosynthesis is affected by heavy metals as it substitutes Mg ion from chlorophyll. Few heavy metals also affect enzyme involved in chlorophyll biosynthesis as well as disturb electron transport in light reactions and affect various enzymes in dark reactions. This detailed information helps us to understand the mechanism linked with the impact of heavy metals on physiological responses affecting plant biomass and productivity which is of concern for agriculture. Therefore, the present chapter consists of whole information regarding the impact of heavy metals on photosynthetic pigments, photosynthetic apparatus, and light and dark reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Tajmir-Riahi HA (1993) Interaction of toxic metal ions Cd2+, Hg2+ and Pb2+ with light- harvesting proteins of chloroplast thylakoid membranes. An FITR spectroscopic study. J Inorg Biochem 50:235–243

    Article  CAS  Google Scholar 

  • Alia P, Saradhi P, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol B: Biol 38:253–257

    Article  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosynthesis II. Inactivation, protein damage and turn-over. Biochim Biophys Acta 11443:113–134

    Article  Google Scholar 

  • Atafar Z, Mesdaqhinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoqhaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal. Environ Monit Assess 160:83–89

    Article  CAS  PubMed  Google Scholar 

  • Augustsson AL, Uddh-Söderberg TE, Hogmalm KJ, Filipsson ME (2015) Metal uptake by home grown vegetables – the relative importance in human health risk assessment sat contaminated sites. Environ Res 138:181–190

    Article  CAS  PubMed  Google Scholar 

  • Barghiani C, Gloffre D, Bargali R (1987) Mercury content in Pinus Sp of the Mt. Etna volcanic area. In: Lindberg JE, Hutchinson TC (eds) Heavy metals in the environment, vol 2, New Orleans.51

    Google Scholar 

  • Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot 2012:1–22

    Article  Google Scholar 

  • Burzynski M, Zurek A (2007) Effects of copper and cadmium on photosynthesis in cucumber cotyledons. Photosynthetica 45:239–244

    Article  CAS  Google Scholar 

  • Canon HL, Connally GG, Epstein JB, Parker JG, Thornton I, Wixson G (1998) Rocks: geological sources of most trace elements. In: Report to the workshop at south scas plantation Captiva Island, FL, US. Geochem Environ 3:17–31

    Google Scholar 

  • Capsi V, Droppa M, Horváth G, Malkin S, Marder JB, Raskin VI (1999) The effect of copper on chlorophyll organization during greening of barley leaves. Photosynth Res 62:165–174

    Article  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    Article  CAS  PubMed  Google Scholar 

  • Csatorday K, Gombos Z, Szalontai C (1984) Mn2+ and Co2+ toxicity in chlorophyll biosynthesis. Proc Natl Acad Sci U S A 81:476–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta J, Ananyev GM, Dismukes DC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252:347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vos CHR, Ten Bookum W, Vooijs R, Schat H, De Kok IJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defense system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Google Scholar 

  • Dziubanek G, Piekut A, Rusin M, Baranowska R, Hajok I (2015) Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol Environ Safe 118:183–189

    Article  CAS  Google Scholar 

  • Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the Environment Part I. Wiley, New York, pp 639–653

    Google Scholar 

  • Eleftheriou EP, Karataglis S (1989) Ultrastructural and morphological characteristics of cultivated wheat growing on copper polluted fields. Bot Acta 102:134–140

    Article  CAS  Google Scholar 

  • Emamuerdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress ad some mechanisms of plant response. Sci World, 756120

    Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophy Acta Bioenerg 1706:158–164

    Article  CAS  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-Mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Fodor F (2013) Physiological responses of vascular plants to heavy metals. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants, Springer- Verlag

    Google Scholar 

  • Fraustro da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon, Oxford, p 114

    Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars An evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YC, Liu YY, Wang RY, Wang S, Lu XP, Wang B (2015) Effect of mercury stress on photosynthetic characteristics of two kinds of warm season turf grass. Int J Environ Monit Anal 3:293–297

    Article  Google Scholar 

  • Hattab S, Dridi B, Chouba L, Kheder MB, Bousetta H (2009) Photosynthesis and growth responses of pea Pisum sativum L. under heavy metals stress. J Environ Sci 21:1552–1556

    Article  CAS  Google Scholar 

  • Januškaitienė I (2010) Impact of low concentration of cadmium on photosynthesis and growth of pea and barley. Environ Res Eng Manag 3:24–29

    Google Scholar 

  • Kalyanaram B (1996) Thiol radicals in biological systems: significant or trivial? Biochem Soc Symp 61:55–63

    Article  Google Scholar 

  • Kampfenkel K, Montagu MV, Inze D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants (Implications to oxidative stress). Plant Physiol 107:725–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karuppanapandian T, Moon J, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupa Z, Skorzynska E, Maksymiec W, Baszynski T (1988) Effect of cadmium treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. Photosynthetica 21:156–164

    Google Scholar 

  • Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Kurdziel BM, Strazalka K (1999) Influence of metals on biosynthesis of photosynthetic pigments In: Prasad MNV, Strazalka M (eds) Physiology and biochemistry of metal toxicity and tolerance in plants, Springer, pp 201–228

    Google Scholar 

  • Lacerda LD (1997) Global mercury emissions from gold and silver mining. Water Air Soil Pollut 97:209–221

    CAS  Google Scholar 

  • Lin YF, Mark GMA (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W, Bednara J, Baszynski T (1995) Responses of runner bean plants to excess copper as a function of plant growth stages: lffects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica 31:427–435

    CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16:17975–17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myśliwa-Kurdziel B, Prasad MNV, Strzalke K (2013) Photosynthesis in heavy metals stressed plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin

    Google Scholar 

  • Ouzounidou G (1997) Sites of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Aust J Plant Physiol 24:81–90

    Article  CAS  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos Pollut Res 5:79–86

    Article  Google Scholar 

  • Pandey N, Pathak GC, PAndey DK, Pandey R (2009) Heavy metals Co, Ni, Cu, Zn and Cd produce oxidative damage and evoke differential antioxidant responses in spinach. Bra J Plant Physiol 21:103–111

    Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson CI (eds) Toxic metals in the atmosphere, Chap 2. Wiley, New York

    Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399–405

    CAS  Google Scholar 

  • Prasad DDK, Prasad ARK (1987) Altered delta-aminolevulinic acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). J Plant Physiol 127:241–249

    Article  CAS  Google Scholar 

  • Prasad MNV, Strzalka K (1999) Impact of heavy metals on photosynthesis. In: Prasad MNV J, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 117–138

    Chapter  Google Scholar 

  • Rashid A, Camin EL, Ekramoddoulah AKM (1994) Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350:296–298

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 5:85–89

    Article  Google Scholar 

  • Shahid M, Powrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy metals induced reactive oxygen species: phytotoxicity and physicochemical changes in plant. Rev Environ Contam Toxicol 232:1–44

    CAS  PubMed  Google Scholar 

  • Siedlecka A, Baszynski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87:199–202

    Article  CAS  Google Scholar 

  • Šeršeň F, Kráľová K, Blahová M (1996) Photosynthesis of chlorella vulgaris as affected by 4-chloro-2- methylphenoxyacetato)copper(II) complex. Biol Plant 38(1):71–75

    Article  Google Scholar 

  • Šeršeň F, Kráľová K (2013) Photosynthesis EPR spectroscopy — a valuable tool to study photosynthesizing organisms exposed to abiotic stresses. In: Dubinsky Z (ed) Photosynthesis, Intech, pp 247–283

    Google Scholar 

  • Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of photosynthetic carbon reduction cycle in pigeon pea. Photosynth Res 23:345–351

    Article  CAS  PubMed  Google Scholar 

  • Sigfridsson KGV, Bernát G, Mamedov F, Styring S (2004) Molecular interference of Cd2+ with photosystem II. Biochim Biophys Acta 1659:19–31

    Article  CAS  PubMed  Google Scholar 

  • Skórzńska -Polit E, Tukendorf A, Selstam E, Baszynski T (1998) Calcium modifies Cd effect on runner bean plants. Environ Exp Bot 40:275–286

    Article  Google Scholar 

  • Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS ONE 9(11):e113782

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasulu P, Murthy SDS (2015) Action of selected heavy metals on photosynthetic electron transport activities of maize thylakoid membranes. Int J Plant Anim Environ Sci 5:90–93

    CAS  Google Scholar 

  • Stirborova M, Doubravorva M, Leblova S (1986) A comparative study of the effect of heavy metal ions on ribulose 1-5- bisphosphate carboxylase and phosphenol pyruvate carboxylase. Biochem Physiol Pflanz 181:373–379

    Article  Google Scholar 

  • Van-Assche F, Clijsters H (1983) Multiple effects of heavy metal toxicity on photosynthesis. In: Marcelle R, Clijsters H, Van Pouckem (eds) Effects of stress on photosynthesis, Martinus-Nijhoff, The Hague, pp 371–382

    Google Scholar 

  • Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Phytol 3:58–62

    CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhao SC, Liu RL, Zhou W, Jin JY (2009) Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica 47:72–78

    Google Scholar 

  • Weckx JEJ, Clijsters H (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    CAS  Google Scholar 

  • Wong D, Govindjee (1976) Effects of lead ions on photosystem I in isolated chloroplasts: studies on the reaction centre P700. Photosynthetica 10:241–254

    Google Scholar 

  • Xie Y, Hu L, Du Z, Sun X, Amombo E (2014) Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers.]. PLoS ONE 9 e115279. doi:10.1371/journal.pone.0115279

    Google Scholar 

  • Źróbek AS, Asard H, Górska KK, Górecki RJ (2009) Cadmium and zinc mediated oxidative burst in tobacco BY-2 cell suspension cultures. Acta Physiol Plant 31:43–49

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head of the Department of Botany for all the laboratory facilities and to the Department of Science and Technology, New Delhi, and Council of Scientific and Industrial Research, New Delhi, for providing financial support to the work. Richa Rai is grateful to the Department of Science and Technology, New Delhi, for awarding Fast Track Young Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rai, R., Agrawal, M., Agrawal, S.B. (2016). Impact of Heavy Metals on Physiological Processes of Plants: With Special Reference to Photosynthetic System. In: Singh, A., Prasad, S., Singh, R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-2860-1_6

Download citation

Publish with us

Policies and ethics