Skip to main content

Atomistic Simulations of CO2 During “Trapdoor” Adsorption onto Na-Rho Zeolite

  • Chapter
  • First Online:
Foundations of Molecular Modeling and Simulation

Part of the book series: Molecular Modeling and Simulation ((MMAS))

Abstract

Behavior of CO2 within Na-Rho was studied using atomistic simulations. This zeolite is known to experience a phenomenon called “cation gating” which allows carbon dioxide but not other sorbents to permeate the zeolite, giving rise to very high adsorption selectivities for CO2. Our goal is to provide further insight into the reasons behind this intriguing phenomenon. We show that CO2’s favorable electrostatic interactions with the zeolite framework result in preferential binding in the opening of the channels between cages. This leads us to suggest a novel mechanism to explain carbon dioxide’s unique “gate opening behavior” in which this preference for binding inside the “gate” allows CO2 to “squeeze” by the gatekeeping cation as it moves around slightly due to thermal fluctuations. This proposed mechanism is distinct from a previously proposed mechanism in which carbon dioxide mediates the displacement of gatekeeping cations via electrostatic interactions and may be in better agreement with experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  2. Keskin, S., Sholl, D.S.: Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. Langmuir 25, 11786–11795 (2009)

    Article  CAS  Google Scholar 

  3. Yazaydin, A.O., Snurr, R.Q., Park, T.H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)

    Article  CAS  Google Scholar 

  4. Di Biase, E., Sarkisov, L.: Systematic development of predictive molecular models of high surface area activated carbons for adsorption applications. Carbon 64, 262–280 (2013)

    Article  Google Scholar 

  5. D’alessandro, D.M., Smit, B., Long, J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Edit. 49, 6058–82 (2010)

    Google Scholar 

  6. Pera-Titus, M.: Porous inorganic membranes for CO2 capture: present and prospects. Chem. Rev. 114, 1413–1492 (2014)

    Article  CAS  Google Scholar 

  7. Grajciar, L., Cejka, J., Zukal, A., Arean, C.O., Palomino, G.T., Nachtigall, P.: Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition. Chemsuschem 5, 2011–2022 (2012)

    Article  CAS  Google Scholar 

  8. Palomino, M., Corma, A., Jorda, J.L., Rey, F., Valencia, S.: Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chem. Commun. 48, 215–217 (2012)

    Google Scholar 

  9. Lozinska, M.M., Mangano, E., Mowat, J.P.S., Shepherd, A.M., Howe, R.F., Thompson, S.P., Parker, J.E., Brandani, S., Wright, P.A.: Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite rho at conditions relevant to carbon capture from flue gases. J. Am. Chem. Soc. 134, 17628–17642 (2012)

    Article  CAS  Google Scholar 

  10. Lozinska, M.M., Mowat, J.P.S., Wright, P.A., Thompson, S.P., Jorda, J.L., Palomino, M., Valencia, S., Rey, F.: Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite rho. Chem. Mater. 26, 2052–2061 (2014)

    Article  CAS  Google Scholar 

  11. Cheung, O., Hedin, N.: Zeolites and related sorbents with narrow pores for CO2 separation from flue gas. RSC Adv. 4, 14480–14494 (2014)

    Article  CAS  Google Scholar 

  12. De Baerdemaeker, T., De Vos, D.: Gas separation trapdoors in zeolites. Nat. Chem. 5, 89–90 (2013)

    Article  Google Scholar 

  13. Shang, J., Li, G., Singh, R., Gu, Q.F., Nairn, K.M., Bastow, T.J., Medhekar, N., Doherty, C.M., Hill, A.J., Liu, J.Z., Webley, P.A.: Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012)

    Article  CAS  Google Scholar 

  14. Shang, J., Li, G., Singh, R., Xiao, P., Liu, J.Z., Webley, P.A.: Determination of composition range for “molecular trapdoor” effect in chabazite zeolite. J. Phys. Chem. C 117, 12841–12847 (2013)

    Article  CAS  Google Scholar 

  15. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. (2015)

    Google Scholar 

  16. Allen, M.P., Tildesley, D.J.: Computer Simulations of Liquids. Oxford Science Publications (1994)

    Google Scholar 

  17. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, London (1996)

    Google Scholar 

  18. Fang, H.J., Kamakoti, P., Ravikovitch, P.I., Aronson, M., Paur, C., Sholl, D.S.: First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites. Phys. Chem. Chem. Phys. 15, 12882–12894 (2013)

    Article  CAS  Google Scholar 

  19. Harris, J.G., Yung, K.H.: Carbon dioxides liquid-vapor coexistence curve and critical properties as predicted by a simple molecular-model. J. Phys. Chem.-Us. 99, 12021–4 (1995)

    Google Scholar 

  20. Robson, H.E., Shoemake, D.P., Ogilvie, R.A., Manor, P.C.: Synthesis and crystal-structure of zeolite rho—new zeolite related to linde type-A. Adv. Chem. Ser. 106–15 (1973)

    Google Scholar 

  21. Calero, S., Dubbeldam, D., Krishna, R., Smit, B., Vlugt, T.J.H., Denayer, J.F.M., Martens, J.A., Maesen, T.L.M.: Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. J. Am. Chem. Soc. 126, 11377–11386 (2004)

    Article  CAS  Google Scholar 

  22. Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J.H., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113, 8814–8820 (2009)

    Article  CAS  Google Scholar 

  23. Garcia-Sanchez, A., Dubbeldam, D., Calero, S.: Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility. J. Phys. Chem. C 114, 15068–15074 (2010)

    Article  CAS  Google Scholar 

  24. Loewenstein, W.: The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 39, 92–96 (1954)

    CAS  Google Scholar 

  25. Madison, L., Heitzer, H., Russell, C., Kohen, D.: Atomistic simulations of CO2 and N2 within cage-type silica zeolites. Langmuir 27, 1954–1963 (2011)

    Article  CAS  Google Scholar 

  26. Selassie, D., Davis, D., Dahlin, J., Feise, E., Haman, G., Sholl, D.S., Kohen, D.: Atomistic simulations of CO2 and N2 diffusion in silica zeolites: the impact of pore size and shape. J. Phy. Chem. C 112, 16521–16531 (2008)

    Article  CAS  Google Scholar 

  27. Goj, A., Sholl, D.S., Akten, E.D., Kohen, D.: Atomistic simulations of CO2 and N2 adsorption in silica zeolites. The impact of pore size and shape. J. Phys. Chem. B 106, 8367–8375 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.B. and D.K. gratefully acknowledge the Petroleum Research Fund (PRF# 51765-UR5) and National Science Foundation (CHE-1039925) for computing resources and stipend support to carryout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Kohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bamberger, N., Kohen, D. (2016). Atomistic Simulations of CO2 During “Trapdoor” Adsorption onto Na-Rho Zeolite. In: Snurr, R., Adjiman, C., Kofke, D. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1128-3_10

Download citation

Publish with us

Policies and ethics