Skip to main content

Modelling Exchanges: From the Process Scale to the Regional Scale

  • Chapter
  • First Online:
Agriculture and Air Quality

Abstract

This chapter shows how the knowledge on the processes of surface exchange and atmospheric fate of different pollutants from agriculture or with an impact on agroecosystems is factored into mathematical simulation tools. It also considers the complexity of the interactions involved, the quantities of matter exchanged between agroecosystems and the atmosphere, and the measurement methods used to quantify them. The resulting models, which range from highly local (plant, leaf …) to global scales, ultimately enable to assess the impacts of changes in agricultural practices or climate change on pollutant exchanges between the atmosphere and agroecosystems. We describe different modelling approaches at the process, field, landscape and regional scales with different integrative levels. Model results are useful to understand how different processes interact and to predict how different environmental conditions, future climate or agricultural practices affect air quality. Models can also help identify levers for emission mitigation and estimate their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.lmd.polytechnique.fr/chimere/

  2. 2.

    https://www.emep.int/

  3. 3.

    https://www.rivm.nl/media/ops/OPS-model.pdf

  4. 4.

    http://www.nitroeurope.eu/

  5. 5.

    https://www.n-escapade.fr/ (brochure available in English)

  6. 6.

    https://www.openfluid-project.org/

  7. 7.

    https://www6.inrae.fr/record

  8. 8.

    https://www6.paca.inrae.fr/emmah/Programme-scientifique-et-Equipes/Plateforme-Sol-Virtuel

References

  • Ashworth K, Chung SH, Griffin RJ et al (2015) FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere-atmosphere chemical exchange. Geosci Model Dev 8:3765–3784

    CAS  Google Scholar 

  • Asman WAH, Sutton MS, Schjoerring JK (1998) Ammonia: emission, atmospheric transport, and deposition. New Phytol 139:27–48

    CAS  Google Scholar 

  • Azouz N (2017) Modélisation des flux d’ammoniac aux échelles locale et régionale dans des paysages hétérogènes: application à l’évaluation des dépassements des charges critiques. Thèse de l’université Pierre et Marie Curie, Paris VI

    Google Scholar 

  • Backes AM, Aulinger A, Bieser J et al (2016) Ammonia emissions in Europe part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos Environ 126:153–161

    CAS  Google Scholar 

  • Bash JO, Cooter EJ, Dennis RL et al (2013) Evaluation of a regional air-quality model with bidirectional NH3: exchange coupled to an agroecosystem model. Biogeosciences 10:1635–1645

    CAS  Google Scholar 

  • Bealey WJ, Loubet B, Braban CF et al (2014) Modelling agro-forestry scenarios for ammonia abatement in the landscape. Environ Res Lett 9:125001

    Google Scholar 

  • Beaujouan V, Durand P, Ruiz L et al (2002) A hydrological model dedicated to topography-based simulation of nitrogen transfer and transformation: rationale and application to the geomorphology-denitrification relationship. Hydrol Process 16:493–507

    Google Scholar 

  • Bedos C, Génermont S, Le Cadre E et al (2009) Modelling pesticide volatilization after soil application using the mechanistic model Volt’Air. Atmos Environ 43:3630–3639

    CAS  Google Scholar 

  • Berntsen J, Petersen B, Jacobsen B et al (2003) Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agric Syst 76:817–839

    Google Scholar 

  • Bessagnet B, Beauchamp M, Guerreiro C et al (2014) Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards? Environ Sci Pol 44:149–163

    CAS  Google Scholar 

  • Beuning JD, Pattey E, Edwards G et al (2008) Improved temporal resolution in process-based modelling of agricultural soil ammonia emissions. Atmos Environ 42(14):3253–3265

    CAS  Google Scholar 

  • Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443

    CAS  PubMed  Google Scholar 

  • Bouvet T, Wilson JD (2006) An approximate analytical solution for the deposition of heavy particles released from an elevated line source. Bound-Layer Meteorol 119:1–18

    Google Scholar 

  • Boy M, Sogachev A, Lauros J et al (2011) SOSA. A new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL. Part 1: Model description and initial evaluation. Atmos Chem Phys 11:43–51

    CAS  Google Scholar 

  • Brilli L, Bechini L, Bindi M et al (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci Total Environ 598:445–470

    CAS  PubMed  Google Scholar 

  • Brisson N, Gary C, Justes E et al (2003) An overview of the crop model stics. Eur J Agron 18:309–332

    Google Scholar 

  • Buis S, Piacentini A, Déclat D, the PALM Group (2006) PALM: a computational framework for assembling high-performance computing applications. Concurr Comp-Pract E 18:231–245

    Google Scholar 

  • Burkhardt J, Flechard C, Gresens F et al (2009) Modeling the dynamic chemical interactions of atmospheric ammonia and other trace gases with measured leaf surface wetness in a managed grassland canopy. Biogeosciences 6:67–83

    CAS  Google Scholar 

  • Carter WPL (2010) Development of the SAPRC-07 chemical mechanism. Atmos Environ 44:5324–5335

    CAS  Google Scholar 

  • Charbonnier E, Ronceux A, Carpentier A-S et al (2015) Pesticides. Des impacts aux changements de pratiques. Bilan de quinze années de recherche pour éclairer la décision publique. Éditions Quæ, Versailles, 400 p

    Google Scholar 

  • Couvidat F, Sartelet K (2015) The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach. Geosci Model Dev 8:1111–1138

    Google Scholar 

  • Delon C, Serça D, Boissard C et al (2007) Soil NO emissions modelling using artificial neural network. Tellus B 59:502–513

    Google Scholar 

  • Drouet J-L, Duretz S, Durand P et al (2012) Modelling the contribution of short-range atmospheric and hydrological transfers to nitrogen fluxes budgets and indirect emissions in rural landscapes. Biogeosciences 9:1647–1660

    CAS  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS et al (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Google Scholar 

  • Dupont S, Brunet Y, Jarosz N (2006) Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies. Agric Forest Meteorol 141:82–104

    Google Scholar 

  • Duretz S, Drouet JL, Durand P et al (2011) NitroScape: a model to integrate nitrogen transfers and transformations in rural landscapes. Environ Pollut 159:3162–3170

    CAS  PubMed  Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM et al (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    CAS  PubMed  Google Scholar 

  • Emberson LD, Pleijel H, Ainsworth EA et al (2018) Ozone effects on crops and consideration in crop models. Eur J Agron 100:19–34

    CAS  Google Scholar 

  • Ewert F, Porter JR (2000) Ozone effects on wheat in relation to CO2: modelling short-term and long-term responses of leaf photosynthesis and leaf duration. Glob Chang Biol 6:735–750

    Google Scholar 

  • Flechard CR, Fowler D, Sutton MA et al (1999) A dynamic chemical model of bi-directional ammonia exchange between semi-natural vegetation and the atmosphere. Q J Roy Meteor Soc 125:2611–2641

    Google Scholar 

  • Flechard CR, Nemitz E, Smith RI et al (2011) Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos Chem Phys 11:2703–2728

    CAS  Google Scholar 

  • Flechard CR, Massad R-S, Loubet B et al (2013) Advances in understanding models and parameterizations of biosphere-atmosphere ammonia exchange. In: Raia-Silva M, Loubet B (eds) Review and integration of biosphere-atmosphere modelling of reactive trace gases and volatile aerosols. Springer Netherlands, Dordrecht, pp 11–84

    Google Scholar 

  • Flesch TK, Wilson JD, Harper LA (2005) Deducing ground-to-air emissions from observed trace gas concentrations: a field trial with wind disturbance. J Appl Meteorol 44:475–484

    Google Scholar 

  • Flesch TK, Wilson JD, Harper LA et al (2007) Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique. Agric For Meteorol 144:139–155

    Google Scholar 

  • Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model. J Geophys Res 111:D12302

    Google Scholar 

  • Fortems-Cheiney A, Dufour G, Hamaoui-Laguel L et al (2016) Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode: agricultural NH3 Detected by IASI. Geophys Res Lett 43:5475–5482

    CAS  Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43(33):5193–5267

    CAS  Google Scholar 

  • Gabrielle B, Laville P, Duval O et al (2006) Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the subregional scale. Glob Biogeochem Cycles 20:GB4018

    Google Scholar 

  • Ganzeveld LN, Lelieveld J, Dentener FJ et al (2002) Global soil-biogenic NOx emissions and the role of canopy processes. J Geophys Res 107(DI16):4298

    Google Scholar 

  • Garcia L, Bedos C, Génermont S et al (2011) Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt’Air model. Sci Total Environ 409:3980–3992

    CAS  PubMed  Google Scholar 

  • Garcia L, Génermont S, Bedos C et al (2012) Accounting for surface cattle slurry in ammonia volatilization models: the case of Volt’Air. Soil Sci Soc Am J 76:2184–2194

    CAS  Google Scholar 

  • Garcia L, Bedos C, Génermont S et al (2014) Modeling pesticide volatilization: testing the additional effect of gaseous adsorption on soil solid surfaces. Environ Sci Technol 48:4991–4998

    CAS  PubMed  Google Scholar 

  • Génermont S, Cellier P (1997) A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil. Agric For Meteorol 88:145–167

    Google Scholar 

  • Genty A, Pot V (2013) Numerical simulation of 3D liquid–gas distribution in porous media by a two-phase TRT Lattice Boltzmann method. Transp Porous Media 96:271–294

    CAS  Google Scholar 

  • Goss K-U, Buschmann J, Schwarzenbach RP (2004) Adsorption of organic vapors to air-dry soils: model predictions and experimental validation. Environ Sci Technol 38:3667–3673

    CAS  PubMed  Google Scholar 

  • Grote R, Mayrhofer S, Fischbach RJ et al (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex (L.). Atmos Environ 40:152–165

    Google Scholar 

  • Grote R, Morfopoulos C, Niinemets Ü et al (2014) A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics: a fully integrated isoprenoid emissions model. Plant Cell Environ 37:1965–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grünhage L, Haenel H-D (1997) PLATIN (Plant-ATmosphere INteraction) I: a model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants. Environ Pollut 98:37–50

    PubMed  Google Scholar 

  • Guenther AB, Jiang X, Heald CL et al (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Google Scholar 

  • Gut A, Scheibe M, Rottenberger S et al (2002) Exchange fluxes of NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res 107(D20):8060

    Google Scholar 

  • Hafner SD, Pacholski A, Bittman S et al (2019) A flexible semi-empirical model for estimating ammonia volatilization from field-applied slurry. Atmos Environ 199:474–484

    CAS  Google Scholar 

  • Hamaoui-Laguel L, Meleux F, Beekmann M et al (2014) Improving ammonia emissions in air quality modelling for France. Atmos Environ 92:584–595

    CAS  Google Scholar 

  • Hauglustaine DA, Hourdin F, Jourdain L et al (2004) Interactive chemistry in the Laboratoire de météorologie dynamique general circulation model: description and background tropospheric chemistry evaluation. J Geophys Res 109:DO4314

    Google Scholar 

  • Hénault C, Bizouard F, Laville P et al (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database. Glob Chang Biol 1:115–127

    Google Scholar 

  • Hutchings N, Webb J, Amon B (2009) EMEP/EEA emission inventory guidebook: Crop production and agricultural soils Animal. Technical report No 9/2009

    Google Scholar 

  • Itier B, Perrier A (1976) Présentation d’une étude analytique de l’advection. I. Advection liée aux variations horizontales de concentration et de température, vol 27. Ann Agron, pp 111–140

    Google Scholar 

  • Jarvis N (2016) Extended sorption partitioning models for pesticide leaching risk assessments: can we improve upon the koc concept? Sci Total Environ 539:294–303

    CAS  PubMed  Google Scholar 

  • Jenkin ME, Saunders SM, Wagner V et al (2003) Protocol for the development of the Master Chemical Mechanism MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos Chem Phys 3:181–193

    CAS  Google Scholar 

  • Jöckel P, Tost H, Pozzer A et al (2006) The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmos Chem Phys 6:5067–5104

    Google Scholar 

  • Jones MR, Leith ID, Raven JA et al (2007) Concentration-dependent NH3 deposition processes for moorland plant species with and without stomata. Atmos Environ 41:8980–8994

    CAS  Google Scholar 

  • Jury WA, Spencer WF, Farmer WJ (1983) Behavior assessment model for trace organics in soil: I. Model Description1. J Environ Qual 12:558–564

    CAS  Google Scholar 

  • Krinner G, Viovy N, De Noblet-Ducoudré N et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles 19:GB1015

    Google Scholar 

  • Kuenen JH, Denier van der Gon A, Visschedijk H et al (2011) High resolution European emission inventory for the years 2003-2007. TNO report TNO-060-UT-2011-00588, Utrecht

    Google Scholar 

  • Kuenen JJP, Visschedijk AJH, Jozwicka M, Denier van der Gon HAC (2014) TNO-MACC_II emission inventory; a multi-year (2003-2009) consistent high-resolution European emission inventory for air quality modelling. Atmos Chem Phys 14:10963–10976

    Google Scholar 

  • Lafore JP, Stein J, Asencio N et al (1997) The Meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Ann Geophys 16(1):90–109

    Google Scholar 

  • Le Cadre E (2004) Modélisation de la volatilisation d’ammoniac en interaction avec les processus chimiques et biologiques du sol. Le modèle Volt’Air. Thèse de doctorat de l’Institut national agronomique Paris-Grignon, Sciences du sol et du bioclimat, Inra EGC Grignon, 211 p

    Google Scholar 

  • Leelőssy Á, Molnár F, Izsák F et al (2014) Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosci 6

    Google Scholar 

  • Leistra M (2005) Estimating input data for computations on the volatilisation of pesticides from plant canopies and competing processes. Alterra-rapport, Wageningen, 79 p

    Google Scholar 

  • Leistra M, Wolters A (2004) Computations on the volatilisation of the fungicide fenpropimorph from plants in a wind tunnel. Water Air Soil Pollut 157:133–148

    CAS  Google Scholar 

  • Lelieveld J, Evans JS, Fnais M et al (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371

    CAS  PubMed  Google Scholar 

  • Leriche M, Pinty J-P, Mari C et al (2013) A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases. Geosci Model Dev 6:1275–1298

    Google Scholar 

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276

    CAS  Google Scholar 

  • Lichiheb N, Personne E, Bedos C et al (2016) Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Sci Total Environ 550:1022–1031

    CAS  PubMed  Google Scholar 

  • Loubet B, Cellier P (2001) Experimental assessment of atmospheric ammonia dispersion and short range dry deposition in a maize canopy. Water Air Soil Poll Focus 1(5):157–166

    CAS  Google Scholar 

  • Loubet B, Milford C, Sutton MA et al (2001) Investigation of the interaction between sources and sinks of atmospheric ammonia in an upland landscape using a simplified dispersion-exchange model. J Geophys Res 106(24):183–195

    Google Scholar 

  • Loubet B, Jarosz N, Saint-Jean S, Huber L (2007) A method for measuring the settling velocity distribution of large biotic particles. Aerobiologia 23(3):159–169

    Google Scholar 

  • Loubet B, Asman WAH, Theobald MR et al (2009) Ammonia deposition near hot spots: processes models and monitoring methods. In: Sutton MA, Reis S, Baker SMH (eds) Atmospheric ammonia. Springer, Dordrecht, pp 205–267

    Google Scholar 

  • Loubet B, Carozzi M, Voylokov P et al (2018) Evaluation of a new inference method for estimating ammonia volatilisation from multiple agronomic plots. Biogeosciences 15:3439–3460

    CAS  Google Scholar 

  • Mailler S, Menut L, Khvorostyanov D et al (2017) CHIMERE-2017: from urban to hemispheric chemistry-transport modeling. Geosci Model Dev 10:2397–2423

    CAS  Google Scholar 

  • Mallet V, Quélo D, Sportisse B et al (2007) Technical note: the air quality modeling system Polyphemus. Atmos Chem Phys 7:5479–5487

    CAS  Google Scholar 

  • Manders AMM, Builtjes PJH, Curier L et al (2017) Curriculum vitae of the LOTOS-EUROS (v2.0) chemistry transport model. Geosci Model Dev 10:4145–4173

    Google Scholar 

  • Massad R-S, Nemitz E, Sutton MA (2010a) Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere. Atmos Chem Phys 10:10359–10386

    CAS  Google Scholar 

  • Massad R-S, Tuzet A, Loubet B et al (2010b) Model of stomatal ammonia compensation point (STAMP) in relation to the plant nitrogen and carbon metabolisms and environmental conditions. Ecol Model 22(1):479–494

    Google Scholar 

  • Masson V, Le Moigne P, Martin E et al (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6:929–960

    Google Scholar 

  • Menut L, Bessagnet B, Khvorostyanov D et al (2013) CHIMERE 2013: a model for regional atmospheric composition modelling. Geosci Model Dev 6:981–1028

    Google Scholar 

  • Menzi H, Katz PE, Fahrni M et al (1998) A simple empirical model based on regression analysis to estimate ammonia emissions after manure application. Atmos Environ 32(3):301–307

    CAS  Google Scholar 

  • Misselbrook TH, Scholefield D, Sutton MA (2004) A simple process based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20:365–372

    Google Scholar 

  • Moeng C-H, (1984). A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41:2052–2062.

    Google Scholar 

  • Monga O, Bousso M, Garnier P et al (2008) 3D geometric structures and biological activity: application to microbial soil organic matter decomposition in pore space. Ecol Model 216:291–302

    Google Scholar 

  • Monga O, Garnier P, Pot V et al (2014) Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC. Biogeosciences 11:2201–2209

    CAS  Google Scholar 

  • Montes F, Rotz CA, Chaoui H (2009) Process modelling of ammonia volatilization from ammonium solution and manure surfaces: a review with recommended models. Trans ASABE 52:1707–1719

    CAS  Google Scholar 

  • Móring A, Vieno M, Doherty RM et al (2016) A process-based model for ammonia emission from urine patches GAG (Generation of Ammonia from Grazing): description and sensitivity analysis. Biogeosciences 13:1837–1861

    Google Scholar 

  • Neirynck J, Ceulemans R (2008) Bidirectional ammonia exchange above a mixed coniferous forest. Environ Pollut 154:424–438

    CAS  PubMed  Google Scholar 

  • Nemitz E, Sutton MA, Schjoerring JK et al (2000) Resistance modelling of ammonia exchange over oilseed rape. Agric For Meteorol 105:405–425

    Google Scholar 

  • Nemitz E, Milford C, Sutton MA (2001) A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Quart J Royal Met Soc 127:815–833

    Google Scholar 

  • Nenes A, Pandis SN, Pilinis C (1998) ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat Geochem 4:123–152

    CAS  Google Scholar 

  • Nho-Kim E-Y, Michou M, Peuch VH (2002) Parameterization of size dependent particle dry deposition velocities in a global chemistry and transport model. Presented at the EGS XXVII General Assembly, Nice, p. abstract no 2502

    Google Scholar 

  • Niinemets Ü, Loreto F, Reichstein M (2004) Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci 9:180–186

    CAS  PubMed  Google Scholar 

  • Palmer PI, Abbot DS, Fu T-M et al (2006) Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res 111

    Google Scholar 

  • Parton WJ, Hartman M, Ojima D et al (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19:35–48

    Google Scholar 

  • Paulot F, Jacob DJ, Pinder RW et al (2014) Ammonia emissions in the United States European Union and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J Geophys Res Atmos 119:4343–4364

    CAS  Google Scholar 

  • Personne E, Loubet B, Herrmann B et al (2009) SURFATM-NH3: a model combining the surface energy balance and bi-directional exchanges of ammonia applied at the field scale. Biogeosciences 6:1371–1388

    CAS  Google Scholar 

  • Petetin H, Sciare J, Bressi M et al (2016) Assessing the ammonium nitrate formation regime in the Paris megacity and its representation in the CHIMERE model. Atmos Chem Phys 16:10419–10440

    CAS  Google Scholar 

  • Pot V, Peth S, Monga O et al (2015) Three-dimensional distribution of water and air in soil pores: comparison of two-phase two-relaxation-times lattice-Boltzmann and morphological model outputs with synchrotron X-ray computed tomography data. Adv Water Resour 84:87–102

    Google Scholar 

  • Potier E, Ogée J, Jouanguy J et al (2015) Multilayer modelling of ozone fluxes on winter wheat reveals large deposition on wet senescing leaves. Agric For Meteorol 211-212):58–71

    Google Scholar 

  • Pozzer A, Tsimpidi AP, Karydis VA et al (2017) Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos Chem Phys 17:12813–12826

    CAS  Google Scholar 

  • Quinn A, Wilson M, Reynolds A et al (2001) Modelling the dispersion of aerial pollutants from agricultural buildings. An evaluation of computational fluid dynamics (CFD). Comput Electron Agric 30:219–235

    Google Scholar 

  • Raivonen M, Vesala T, Pirjola L et al (2009) Compensation point of NOx exchange: net result of NOx consumption and production. Agric For Meteorol 149:1073–1081

    Google Scholar 

  • Reynolds WC, Kassinos SC (1995) One-point modelling of rapidly deformed homogeneous turbulence. Proc Math Phys Sci 451:87–104

    Google Scholar 

  • Riedo M, Grub A, Rosset M, Fuhrer J (1998) A pasture simulation model for dry matter production and fluxes of carbon nitrogen water and energy. Ecol Model 105:141–183

    CAS  Google Scholar 

  • Riedo M, Milford C, Schmid M et al (2002) Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecol Model 158:83–110

    CAS  Google Scholar 

  • Rodean HC (1996) Stochastic Lagrangian models of turbulent diffusion. American Meteorological Society, Boston

    Google Scholar 

  • Rolland M-N, Gabrielle B, Laville P et al (2010) High-resolution inventory of NO emissions from agricultural soils over the Île-de-France region. Environ Pollut 158:711–722

    CAS  PubMed  Google Scholar 

  • Satchivi NM, Stoller EW, Wax LM et al (2001) A nonlinear dynamic simulation model for xenobiotic transport and whole plant allocation following foliar application. III. Influence of chemical properties plant characteristics and environmental parameters on xenobiotic absorption and translocation. Pestic Biochem Physiol 71:77–87

    CAS  Google Scholar 

  • Scholtz MT, Voldner E, McMillan et al (2002) A pesticide emission model (PEM). Part I: model development. Atmos Environ 36:5005–5013

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Seinfeld J.H., Pandis S.N., Noone K.,(1998). Atmospheric chemistry and physics: from air pollution to climate change. Physics Today 51:88.

    Google Scholar 

  • Shephard MW, Worden HM, Cady-Pereira et al (2008) Tropospheric Emission Spectrometer nadir spectral radiance comparisons. J Geophys Res 113:D15S05

    Google Scholar 

  • Simpson D, Tuovinen J-P (2014) ECLAIRE Ecosystem Surface Exchange model (ESX). In: Transboundary particulate matter photo-oxidants acidifying and eutrophying components. EMEP Status Report 1/2014, Norwegian Meteorological Institute

    Google Scholar 

  • Simpson D, Benedictow A, Berge H et al (2012) The EMEP MSC-W chemical transport model technical description. Atmos Chem Phys 12:7825–7865

    CAS  Google Scholar 

  • Søgaard H, Sommer S, Hutchings N et al (2002) Ammonia volatilization from field-applied animal slurry: the ALFAM model. Atmos Environ 36:3309–3319

    Google Scholar 

  • Sommer SG, Génermont S, Cellier P et al (2003) Processes controlling ammonia emission from livestock slurry in the field. Eur J Agron 19:465–486

    CAS  Google Scholar 

  • Stella P, Loubet B, Lamaud E et al (2011a) Ozone deposition onto bare soil: a new parameterisation. Agric For Meteorol 151(6):669–681

    Google Scholar 

  • Stella P, Personne E, Loubet B et al (2011b) Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatm-O-3 model. Biogeosciences 8:2869–2886

    CAS  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sutton MA, Burkhardt JK, Guerin D et al (1995) Measurement and modelling of ammonia exchange over arable croplands. Stud Environ Sci, Acid Rain Research: Do We Have Enough Answers? 64:71–80

    CAS  Google Scholar 

  • Sutton MA, Burkhardt JK, Guerin D et al (1998) Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmos Environ 32:473–480

    CAS  Google Scholar 

  • Tao F, Feng Z, Tang H et al (2017) Effects of climate change CO2 and O3 on wheat productivity in Eastern China singly and in combination. Atmos Environ 153:182–193

    CAS  Google Scholar 

  • Theobald MR, Crittenden PD, Tang YS et al (2013) The application of inverse-dispersion and gradient methods to estimate ammonia emissions from a penguin colony. Atmos Environ 81:320–329

    CAS  Google Scholar 

  • Tiktak A, Nie DD, Van Der Linden T, Kruijne R (2002) Modelling the leaching and drainage of pesticides in the Netherlands: the GeoPEARL model. Agronomie 22:373–387

    Google Scholar 

  • Tørseth K, Aas W, Breivik K et al (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481

    Google Scholar 

  • Trapp S, Matthies M (1997) Modeling volatilization of PCDD/F from soil and uptake into vegetation. Environ Sci Technol 31:71–74

    CAS  Google Scholar 

  • Trapp S, Matthies M, McFarlane C (1994) Model for uptake of xenobiotics into plants: validation with bromacil experiments. Environ Toxicol Chem 13:413–422

    CAS  Google Scholar 

  • Tuzet A, Perrier A, Loubet B et al (2011) Modelling ozone deposition fluxes: the relative roles of deposition and detoxification processes. Agric For Meteorol 151:480–492

    Google Scholar 

  • Van Damme M, Whitburn S, Clarisse L et al (2017) Version 2 of the IASI \chemNH_3 neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmos Meas Tech 10:4905–4914

    Google Scholar 

  • Van den Berg F, van den Tiktak A, Boesten JJTI et al (2016) PEARL model for pesticide behaviour and emissions in soil-plant systems. Rapport Statutory Research Tasks Unit for Nature and the Environment, Wageningen

    Google Scholar 

  • van der Molen J, Beljaars ACM, Chardon WJ et al (1990) Ammonia volatilization from arable land after application of cattle slurry. 2. Derivation of a transfer model. Neth J Agric Sci 38:239–254

    Google Scholar 

  • van Jaarsveld JA, de Leeuw FAAM (1993) OPS: an operational atmospheric transport model for priority substances. Environ Softw 8:91–100

    Google Scholar 

  • Veldkamp E, Keller M (1997) Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr Cycl Agroecosyst 48:69–77

    CAS  Google Scholar 

  • Wichink Kruit RJ, van Pul WAJ, Sauter FJ et al (2010) Modeling the surface-atmosphere exchange of ammonia. Atmos Environ 44(7):945–957

    Google Scholar 

  • Wichink Kruit RJ, Schaap M, Sauter FJ et al (2012) Modeling the distribution of ammonia across Europe including bi-directional surface-atmosphere exchange. Biogeosciences 9:5261–5277

    Google Scholar 

  • Williams EJ, Guenther A, Fehsenfeldi FC (1992) An inventory of nitric oxide emissions from soils in the United States. J Geophys Res Atmos 97:7511–7519

    CAS  Google Scholar 

  • Wilson JD, Sawford BL (1996) Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound-Layer Meteorol 78:191–210

    Google Scholar 

  • Wolfe G, Thornton J (2011) The Chemistry of Atmosphere-Forest Exchange (CAFE) Model. Part 1: Model description and characterization. Atmos Chem Phys 11:77–101

    CAS  Google Scholar 

  • Wu Y (2003) A multilayer biochemical dry deposition model. 1. Model formulation. J Geophys Res 108

    Google Scholar 

  • Wu YH, Walker J, Schwede D et al (2009) A new model of bi-directional ammonia exchange between the atmosphere and biosphere: Ammonia stomatal compensation point. Agric For Meteorol 149:263–280

    Google Scholar 

  • Yee E, Flesch TK (2010) Inference of emission rates from multiple sources using Bayesian probability theory. J Environ Monit 12:622–634

    CAS  PubMed  Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NOχ emissions. J Geophys Res Atmos 100:11447–11464

    CAS  Google Scholar 

  • Zhu L, Henze DK, Cady-Pereira KE et al (2013) Constraining US ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model: inverse modeling of NH 3 emissions. J Geophys Res Atmos 118:3355–3368

    Google Scholar 

  • Zhu L, Henze DK, Bash JO et al (2015) Sources and impacts of atmospheric NH3: current understanding and frontiers for modeling measurements and remote sensing in North America. Curr Pollution Rep 1:95–116

    CAS  Google Scholar 

  • Zimmer W, Bruggemann N, Emeis S et al (2000) Process-based modelling of isoprene emission by oak leaves. Plant Cell Environ 23:585–595

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raia Silvia Massad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massad, R.S. et al. (2020). Modelling Exchanges: From the Process Scale to the Regional Scale. In: Bedos, C., Génermont, S., Castell, JF., Cellier, P. (eds) Agriculture and Air Quality. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2058-6_7

Download citation

Publish with us

Policies and ethics