Skip to main content

Summary

The sensitivity of airplane performance and operating economy to the empty weight is discussed and the value of weight-saving is demonstrated.

An accurate weight prediction in the preliminary design stage is a most effective way to control the weight; it begins with a consistent scheme for weight subdivision and limitations. Considerations are presented for making a sound choice of the operational weight limitations.

Some general remarks on weight prediction methods are followed by a comprehensive collection of available and consistent methods, useful for most categories of modern civil air-craft. Attention is paid both to simple approximate methods and to more detailed procedures, for which detailed design information must be available.

The load and balance diagram is introduced to illustrate the flexibility of loading an airplane. The effect of the general arrangement and layout of the aircraft on the problem of obtaining adequate balance in all likely flight conditions is discussed and a procedure suggested for establishing a suitable longitudinal wing location and center of gravity range.

Many references to literature are given, as well as a large collection of data on weights and center of gravity ranges of airplane types in present service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AC:

alternating current

Ai :

capture area of inlet

APS:

Aircraft Prepared for Service

APU:

Auxiliary Power Unit

AUW:

All-Up Weight

a:

constant factor in statistical weight equation

BOW:

Basic Operating Wight

Bp :

number of propeller blades per propeller

b:

span (no indes: wing span); factor of proportionality in statistical correlation

bref :

reference span

bs :

structural span (bs=b/cos Λ1/2)

\(\overline c \) :

length of mean aerodynamic chord

c.g.:

center of gravity

D:

selling price of payload

DC:

Direct Current

Dp :

propeller diameter

ESHP:

Equivalent Shaft Horse Power (takeoff, standard atmosphere)

h:

height; depth

hh :

height of horizontal tailplane above fin root

k:

factor of proportionality

kw :

factor of proportionality for the weight of a group of items

l:

length; monent arm; distance between end faces of a prismoid

lh :

horizontal tail length (cf. Chapter 9)

lt :

distance between 1/4-chord points of wing and horizontal tailplane root (see Fig. D-2)

MAC:

Mean Aerodynamic Chord

MLW (MRLW):

Maximum (Regular) Landing Weight

MTOW (MRTOW):

Maximum (Regular) Takeoff Weight

MZFW:

Maximum Zero Fuel Weight

mi :

ratio of actual to estimated weight for a sample point

N:

number of an item present in the airplane

n1,n2,...,nm :

exponent of a weight parameter

nult :

ultimate load factor

OEW:

Operational Empty Weight

Pel :

total electrical generator power (kVA)

Pto :

takeoff horsepower per engine (sea level, static)

RB :

maximum range with maximum payload (Fig. 8-3)

RD :

maximum range with maximum fuel (Fig. 8-3)

Rref :

reference range

S:

(projected) area of a surface (no index: wing area); standard error of prediction

S1,S2 :

areas of parallel end faces of a prismoid

SG :

gross schell area of the fuselage

She :

exposed horizontal tailplane area

SIV:

Standard Item Variations

SMC:

Standard Mean Chord

Swet :

wetted area

Tto :

takeoff thrust per engine (sea level, static)

tr :

(absolute) maximum thickness of root chord

U:

annual airplane utilisation

u.c.:

undercarriage

V:

speed; volume

Vb :

blockspeed

VD :

Design Dive speed

Vmax :

maximum horizontal flight speed

W:

weight

\({\dot W_{ba}}\) :

rated bleed airflow of APU

\({\dot W_{{f_{to}}}}\) :

fuel flow per engine, corresponding to Pto or Tto

WDE :

Delivery Empty Weight

WOE :

Operating Empty Weight

WG :

Gross Weight

WZF :

Maximum Zero Fuel Weight

X:

X-axis; parameter for wing weight estimation example

XLEMAC :

coordinate fo MAC leading edge

x:

coordinate of weight contribution; sample value of X

Δx:

range of x-coordinates for the c.g.

xOE :

airplane c.g. position for the OEW

Y:

weight of an airplane part

Yi :

actual (measured) value of Y for a sample

δ:

maximum deflection angle; incidence variation

Λ1/2:

sweepbace angle at 50% chord (no index: wing)

ø:

average load factor

ø12,...,øm :

parameters for general weight estimation formula

APU:

Auxiliary Power Unit

APUG:

APU Group

ba:

(APU) bleed airflow

cc:

cabin crew

cf:

cabin floor

cg:

center of gravity

ch:

cargo hold

d:

intake duct

e:

engine (s)

el:

electrical system

er:

bending moment relief due to engine (s)

f:

fuselage; flaps; fuel

fc:

flight crew

fg:

fuselage group

ft:

fuel tank

geo:

geometric shape

h:

horizontal tailplane

hc:

horizontal tail controls

i:

inlet; installation; sample

ieg:

instruments and electronics group

ld:

lift dumper

LEMAC:

Leading Edge of MAC

n:

nacelle (group)

p:

propeller

pax:

passengers

pc:

passenger cabin

pg:

propulsion group

s:

structure; slat

sb:

speed brake

sc:

surface controls group

tail:

horizontal plus vertical tail

thr:

thrust reverser

to:

takeoff

uc:

undercarriage

v:

vertical tailplane

w:

wing; weight

wc:

toilet/watercloset compartment

wg:

wing group

wt:

water tank for injection fluid

References

Weight subdivision and limitations

  1. United States Department of Defence: “Weight and balance data reporting forms for aircraft”. Military Standard, MIL-ST[D-254] (ASG), Aug. 26, 1954.

    Google Scholar 

  2. Direction Technique et Industrielle de l’Aéronautique: “Devis de poids (avions)”. AIR-2]001/C, Edition No. 4, Dec. 15, 1959.

    Google Scholar 

  3. Society of British Aircraft Constructors: “Standard method for the estimation of Direct Operating Costs of aircraft”. Dec. 1959.

    Google Scholar 

  4. Bundesminister far Verteidigung: “Normstelle der Luftfahrt”. No. LN 9020, Nov. 1962.

    Google Scholar 

  5. J.R. McCarthy: “Definition and equipment list and standard form for presentation of weight and balance data”. SAWE Technical Paper No. 354, 1962.

    Google Scholar 

  6. British) Ministry of Aviation: “Weight, geometric and design data”. AVMIN Form 2492, 1964.

    Google Scholar 

  7. ] “Glossary of standard weight terminology for commercial aircraft”. Society of Aeronautical Weight Engineers, Revision 1964.

    Google Scholar 

  8. ] “Proposed Glossary of Standard Weights Terminology”. International Air Traffic Association, Specification No. 100.

    Google Scholar 

  9. ] C. Payton Autry, P.J. Baumgaertner: “The design importance of airplane mile costs versus seat mile costs”. SAE Paper No. 660277.

    Google Scholar 

  10. ] “Standard method of estimating comparative Direct Operating Costs of turbin[E-powered transport airplanes”. Air Transport Association of America, Dec. 1967.

    Google Scholar 

  11. ] “Recommended standard data format of transport airplane characteristics for aircraft planning”. National Aerospace Standard HAS 3601“, 1968/1970.

    Google Scholar 

General weight considerations and prediction methods

  1. N.S. Currey: “Structure weight”. Interavia, Vol. 4, pp. 89–92, Feb. 1949.

    Google Scholar 

  2. F. Grinsted: “Aircraft structural weight and design efficiency”. Aircraft Eng., July 1949, pp. 214217.

    Google Scholar 

  3. L.W. Rosenthal: “The weight aspect in aircraft design”. Journal of the Royal Aeron. Soc., Vol. 54, March 1950, pp. 187–210.

    Google Scholar 

  4. E. Weining: “Design factors in the development of light aircraft”. Aeron. Eng. Review, July 1950, pp. 1[8–1]9.

    Google Scholar 

  5. A. Schritt, W. Buckley: “A realistic approach to structural weight estimation”. SAWE Paper No. 73, May 1952.

    Google Scholar 

  6. J. Taylor: “Structure weight”. J. of the Royal Aero. Soc., Vol. 57, pp. 646–652, Oct. 1953.

    Google Scholar 

  7. K. Thalau: “Geschwindigkeit, Konstruktionsgewicht und Nutzlast moderner Verkehrsflugzeuge”. Jahrbuch der WGLR, 1953, pp. 110–123.

    Google Scholar 

  8. F.C. Hopton-Jones: “A practical approach to the problem of structural weight estimation for preliminary design”. SAWE Paper No. 127, May 1955.

    Google Scholar 

  9. R.M. Simonds: “A generalized graphical method of minimum gross weight estimation”. SAWE Paper No. 135, May 1956.

    Google Scholar 

  10. M.G. Heal: “Problems in estimating structure weight”. Aeron. Eng. Review, March 1957, pp. 52–56.

    Google Scholar 

  11. W.E. Caddell: “The development of generalized weight estimating methods”. SAWE Paper No. 219, May 1959.

    Google Scholar 

  12. Anon.: “An introduction into aeronautical weight engineering”. SAWE, 1959.

    Google Scholar 

  13. C.R. Liebermann: “The unity equation and growth factor”. SAWE Paper No. 267, May 1960.

    Google Scholar 

  14. M.E. Burt: “Effects of design speed and normal acceleration on aircraft structure weight”, ARC CP 490, 1960.

    Google Scholar 

  15. H. Hertel: “Grundlagenforschung für Entwurf und Konstruktion von Flugzeugen”. Arbeitsgemeinschaft für Forschung, Nordrhein-Westfalen, Vol. 102, 1961.

    Google Scholar 

  16. M,E. Burt: “Structural weight estimation for novel configurations”. J. of the Royal Aeron. Soc., Vol. 66, Jan. 1962, pp. 1[5–30].

    Google Scholar 

  17. E.E. Sechler and L.G. Dunn: “Airplane structural analysis and design”. Dover Publications New York, 1963.

    Google Scholar 

  18. J.J. Pugliese: “Gross weight estimation of an attack airplane by generalized graphical solution”. SAWE Paper No. 364, 1963.

    Google Scholar 

  19. R.J. Atkinson: “Structural design”. J. of the Royal Aero. Soc., Vol. 67, pp. 69[2–695], Nov. 1963 (also: RAE TN No. Structures 333 ).

    Google Scholar 

  20. A.C. Kermode: “The aeroplane structure”. Second Edition, Pitman and Sons, London, 1964.

    Google Scholar 

  21. W.J. Strickler: “Application of regression and correlation techniques in mass properties engineering”. SAWE Paper No. 422, May 1964.

    Google Scholar 

  22. A.C. Kermode: “The aeroplane structure”, Chapter 6:“Weight”. Pitman and Sons Ltd., London, Second Edition, 1964.

    Google Scholar 

  23. R. Riccius: “Untersuchungen über die Gewichte vertikalstartender Flugzeuge’. ILTUB Jahrbuch 1965/ 1966.

    Google Scholar 

  24. J.A. Neilson: “Value of a pound”. SAWE Paper No. 586, May 1966.

    Google Scholar 

  25. M.A. Kochegura: “Determination of the weight of an empty aircraft by methods of mathematical statistics”. USAF Foreign Technology Division FT[D–MT–24–224–68, Aug. 1968.

    Google Scholar 

  26. H.L. Roland: “General approach to preliminary design weight analysis and structural weight prediction”. Short Course in modern theory and practice of weight optimization and control for advanced aeronautical systems, University of Tennessee, Nov. 1968.

    Google Scholar 

  27. W.H. Ahl: “Rational weight estimation based on statistical data”. SAWE Paper No. 791, May 1969.

    Google Scholar 

  28. W.E. Caddell: “On the use of aircraft density in preliminary design”. SAWE Paper No. 813, May 1969.

    Google Scholar 

  29. R.S. St. John: “The derivation of analytical-statistical weight prediction techniques”. SAWE Paper No. 810, May 1969.

    Google Scholar 

  30. R.N. Staton: “Constrained regression analysis - A new approach to statistical equation development”. SAWE Paper No. 762, May 1969.

    Google Scholar 

  31. C. Vivier and P. Cormier: “Masse d’un avion”. AGARD Lecture Series No. 56 on “Aircraft performance prediction and optimization”. April 1972.

    Google Scholar 

  32. D.P. Marsh: “Post-design analysis for structural weight estimation”. SAWE Paper No. 936, May 1972.

    Google Scholar 

  33. W. Schneider: “Die Entwicklung und Bewertung von Gewichtsabschätzungsformeln für Flugzeugentwürfe unter Zuhilfnahme von Methoden der Mathematischen Statistik und Warscheinlichkeitsrechnung”. Dissertation, Technical University of Berlin, Feb. 1973.

    Google Scholar 

  34. A.A. Blythe: The hub of the wheel - A project designer’s view of weight“. SAWE Paper No. 996, June 1973

    Google Scholar 

  35. W. Schneider: “Project weight prediction based on advanced statistical methods”. Paper presented at the 43rd AGARD Flight Mechanics Panel Meeting, Symposium on “Aircraft design integration and optimization”. Florence, Oct. 1–4, 1973.

    Google Scholar 

Complete weight prediction methods

  1. I.H. Driggs: “Aircraft design analysis”. J of the Royal Aero. Soc., Vol. 54, Feb. 1950, pp. 6[5–116].

    Google Scholar 

  2. M. Vautier and M. Dieudonné: “Le probleme des poids dans l’aviation” ( 2 Parts ), Service de Documentation et d’Information Technique de l’Aéronautique, 1950.

    Google Scholar 

  3. Köhler: “Gewichtsunterlagen für den Flugzeugentwurf”. Luftfahrttechnik, Dec. 1955, pp. 134–139 and Jan. 1956, pp. 1[5–1]8.

    Google Scholar 

  4. D. Howe: “Initial aircraft weight prediction”. College of Aeronautics Note 77, 1957.

    Google Scholar 

  5. F.K. Teichman: “Airplane design manual”. Chapter 8: “Preliminary weight estimate”. Pitman Publishing Co., New York, fourth edition, 1958.

    Google Scholar 

  6. H.G. Sheridan: “Aircraft preliminary design methods used in the weapon systems a.alysis division”. US Navy BUWEPS Report No. R–5–62–13, June 1962.

    Google Scholar 

  7. E. Sechler and L.G. Dunn: “Airplane structural analysis and design”, Chapter 1: “The airplane layout: Dover Publications Inc., New York, Jan. 1963.

    Google Scholar 

  8. W.H. Marr: “Basic weight trends for bomber and transport aircraft”. SAWE Paper No. 434, May 1964.

    Google Scholar 

  9. K.D. Wood: “Aircraft Design”. Vol. 1 of “Aerospace vehicle design”, second edition, 1966, Johnson Publishing Cy.

    Google Scholar 

  10. H.L. Roland: “Parametric weight-sizing methods - structure, propulsion, fixed equipment - fighters (USAF and USN)”. June 30, 1965, General Dynamics Fort Worth Division, MR-S[5–040, Revision, Sept. 30, 1966.

    Google Scholar 

  11. G. Corning: “Subsonic and supersonic aircraft design”. Pp. 2:27 to 2:35: “Weight estimation”. College Park, Maryland, second edition, 1966.

    Google Scholar 

  12. W. Richter et al: “Luftfahrzeuge”. Das Fachwissen des Ingenieurs. Carl Hanser Verlag, München, 1970.

    Google Scholar 

  13. D. Howe: “Structural weight prediction”. Cranfield Institute of Technology DES903, 1971 (unpublished).

    Google Scholar 

  14. D. Howe: “Empty weight and cruise performance of very large subsonic jet transports”. Cranfield Institute of Technology, Report Aero No. 3, 1972.

    Google Scholar 

  15. R.N. Staton: “Weight estimation methods”. SAWE Journal, April-May 1972, pp. 7–11.

    Google Scholar 

  16. H.F. Kooy and H. Rekersdrees: “Weight estimation method for subsonic transport aircraft”. Fokker Report [H-0–15, June 1972 (unpublished).

    Google Scholar 

  17. L.M. Nicolai: “Design of airlift vehicles”. USAF Academy, Dept. of Aeronautics, Aero 464, 1972.

    Google Scholar 

General wing structure weight considerations

  1. R.J. Lutz: “Applications of optimum design principles to structural weight estimation”. SAWE Paper No. 205, April 1951.

    Google Scholar 

  2. D.J. Farrar: The design of compression structures for minimum weight“. J. of the Royal Aero. Soc., Nov. 1949, pp. 1041–1052.

    Google Scholar 

  3. F. Shanley: “Weight-strength analysis of aircraft structures”, McGraw-Hill Book Cy. Inc., New York, 1952.

    Google Scholar 

  4. O. Ljungstróm: “Wing structures of future aircraft”. Aircraft Eng., May 1953, pp. 128–132.

    Google Scholar 

  5. A.L. Kolom: “Optimum design considerations for aircraft wing structures”. Aero. Eng. Review, Oct. 1953, pp. 31–41.

    Google Scholar 

  6. ] C.R. McWorther: “Considerations of bending and torsional stiffness in the design of wings for minimum weight”.

    Google Scholar 

  7. L.D. Green and J. Mudar: “Estimating structural box weight”, Aeron. Eng. Review, Feb, 1958, pp. 4851.

    Google Scholar 

  8. S. Sichveland, F.M. de Graan and R.H. Trelease: “The weiaht engineer’s approach to the problem of fatigue in aircraft structures”. SAWE Paper No. 172, 1958.

    Google Scholar 

  9. N.N. Fadeev: “A theoretical formula for the weight of a tapered wing”. In: “Methods of selection and approximate calculation of aircraft design parameters”. Trudy Institute No. 138, Moscow 1961, pp. 28–52.

    Google Scholar 

  10. R.J. Taylor: “Weight prediction techniques and trends for composite material structure”. SAWE Paper No. 887.

    Google Scholar 

  11. B. Sealman: “Multitapered wings”. J. of Aircraft, July-Aug. 1965, pp. 34[8–349].

    Google Scholar 

  12. B. Sealman: “Effect of wing geometry on volume and weight”. J. of Aircraft, Vol. 1 No. 5, Sept.-Oct. 1964, p. 305.

    Google Scholar 

  13. D.H. Emero and L. Spunt: “Wing box optimization under combined shear and bending”. J. of Aircraft, Vol. 3, No. 2, Marc[H-April 1966, pp. 130–141.

    Google Scholar 

  14. C.A. Garrocq and J.T. Jackson: “Estimation of wing box weights required to preclude aeroelastic instabilities”. SAWE Paper No. 500, May 1966.

    Google Scholar 

  15. K.L. Sanders: “A review and summary of wing torsional stiffness criteria for predesign and weight estimations”. SAWE Paper No. 632, May 1967.

    Google Scholar 

  16. D.J. Lamorte: “Non-optimum factor and preliminary weight estimation of a boron composite wing structure”. SAWE Paper No. 891, May 1971.

    Google Scholar 

Weight prediction of wing and tailplane structure

  1. W. Tye and P.E. Montangnon: “The estimation of wing structure weight”. ARC R and M 2080, 1941.

    Google Scholar 

  2. F. Grinsted: “Simple formulae for predicting the weights of wing, fuselage and tail unit structures”. RAE Report Structures No. 24, 1948.

    Google Scholar 

  3. F. Grinsted: “Prediction of wing structure weight”. RAE Report Structures No. 15, 1948.

    Google Scholar 

  4. G.K. Gates: “Weight estimation of metal wings”. Aircraft Eng., April 1949, p. 116.

    Google Scholar 

  5. J.F. Carreyette: “Aircraft wing weight estimation”. Aircraft Eng., Jan$11950, pp. 8–11 and April 1950, p. 119.

    Google Scholar 

  6. E.L. Ripley: “A simple method of tail unit structure weight estimation”. RAE Report Structures No. 94, Nov. 1950.

    Google Scholar 

  7. J. Kelley Jr.: “Wing weight estimation”. AAI Technical Report 5161.

    Google Scholar 

  8. I.H. Driggs: “Aircraft design analysis”. J. of the Royal Aero. Soc., Vol. 54, Feb. 1950.

    Google Scholar 

  9. J. Solvey: “The estimation of wing weight”. Aircraft Eng., May 1951, pp. 143–144.

    Google Scholar 

  10. E.L. Ripley: “A method of wing weight prediction”. RAE Report Structures No. 109, May 1951.

    Google Scholar 

  11. M.E. Burt: “Weight prediction of ailerons and landing flaps”. RAE Report Structures No. 116, Sept. 1951.

    Google Scholar 

  12. A. Hyatt: “A method for estimating wing weight’s. J. of the Aero. Sciences, Vol. 21 No. 6, June. 1954, pp. 36[3–372].

    Google Scholar 

  13. M.E. Burt: “Weight prediction for wings of box construction”. RAE Report Structures No. 186, 1955.

    Google Scholar 

  14. W. v. Nes and O. Kóhler: “Das Gewichtsanteil der tragenden Teile am Flügelgewicht”. Luftfahrttechnik, Nov. 1056, pp. 20[6–2]10.

    Google Scholar 

  15. K.L. Sanders: “Abschâtzung des FlOgelgewichtes”. Luftfahrttechnik, Oct. 1957, p. 224.

    Google Scholar 

  16. D. Howe: “Initial aircraft weight prediction”. College of Aeronautics Note No. 77, 1957.

    Google Scholar 

  17. M. Schwartzberg: “Blown flap system for STOL performance–weight considerations”. Aerospace Eng, March 1959, pp. 48–52.

    Google Scholar 

  18. C.R. Ritter: “Rib weight estimation by structural analysis”. SAWE Paper No. 259, 1960.

    Google Scholar 

  19. K.L. Sanders: “Hig[H-lift devices; a weight and performance trad[E-off technology”. SAWE Paper No. 761, May 1969.

    Google Scholar 

  20. W.W. Williams: “An advanced extensible wing flap system for modern aeroplanes”. AIAA Paper No. 70911, July 1970.

    Google Scholar 

  21. R.L. Gielow: “Performance prediction and evaluation of propulsion-augmented high lift systems”. AIAA Paper No. 71–990, Oct. 1971.

    Google Scholar 

  22. E. Torenbeek: “Prediction of wing group weight for preliminary design”. Aircraft Eng., July 1971, pp. 16–21. Summary in Aircraft Eng., Feb. 1972, pp. 18–9.

    Google Scholar 

  23. F.O. Smetana: “A design study for a simple to fly, constant attitude light aircraft. NASA CR-2208, March 1973.

    Google Scholar 

Wings for high-speed aircraft

  1. R.E. Lowry: “Problems and solutions of delta wings”. SAWE Paper No. 77, 1952.

    Google Scholar 

  2. W.J. Conway: “Factors affecting the design of thin wings”. SAE Preprint No. 357, Oct. 1954.

    Google Scholar 

  3. R.L. Hammitt: “Structural weight estimation by the weight penalty concept for preliminary design”. SAWE Paper No. 141, 1956.

    Google Scholar 

  4. M.G. Heal: “Structural weights on supersonic aircraft with low aspect ratio unswept wings”. SAWE Paper No. 193, 1956.

    Google Scholar 

  5. A.C. Robinson: “Problems associated with weight estimation and optimization of supersonic aircraft”. SAWE Paper No. 234, 1959.

    Google Scholar 

  6. R.A. Anderson: “Weight-efficiency analysis of thin-wing construction”. Transactions of the ASWE, Vol. 79, July 1957 (II), pp. 974–979.

    Google Scholar 

  7. D.J. Johns: “Optimum design of a multicell box to a given bending moment and temperature distribution”. College of Aeronautics Note No. 82, April 1958.

    Google Scholar 

  8. ]M.E. Burt: “Structural weight estimation for novel configurations”. J. of the Royal Aero. Soc., Vol. 66, Jan. 4962, pp. 1[5–30].

    Google Scholar 

Fuselage structure

  1. L.W. Rosenthal: “The influence of aircraft gross weight upon the size and weight of hulls and fuselages”. J. of the Royal Aero. Soc., Vol. 51, Nov. 1947, pp. 874–883.

    Google Scholar 

  2. F. Grinsted: “Simple formulae for predicting the weights of wing, fuselage and tail unit structures”. RAE Report Structures No. 24, May 1948.

    Google Scholar 

  3. E.L. Ripley: “A method of fuselage structure weight prediction”. RAE Report Structures No. 93, 1950.

    Google Scholar 

  4. W.R. Micks: “Structural weight analysis. Fuselage and shell structures”. The Rand Corporation, Report No. R-172. 1950.

    Google Scholar 

  5. M.E. Burt and J. Philips: “Prediction of fuselage and hull structure weight”. RAE Report Structures No. 122, April 1952.

    Google Scholar 

  6. L.D. Green: “Fuselage weight prediction”. SAWE Paper No. 126, May 1955.

    Google Scholar 

  7. R.L. Hammitt: “Structural weight estimation by the weight penalty concept for preliminary design”. SAWS Paper No. 141, May 1956.

    Google Scholar 

  8. E.W. Tobin Jr.: “A method for estimating optimum fuselage structural weight”. SAWE Paper No. 152, May 1957.

    Google Scholar 

  9. ] A.A. Badiagin: “Concerning an efficient slenderness ratio for the fuselage of civilian aircraft”. In: “Methods of selection and approximate calculation of àir design parameters”. Trudy Institute No. 138, Moscow, 1961, pp. 1[9–27].

    Google Scholar 

  10. J. Morris and D.M. Ashford: “Fuselage configuration studies”. SAE Paper No. 670–370], April 1967.

    Google Scholar 

  11. A.R. Di Pierro: “Minimum weight analysis of fuselage frames”. SAWE Paper No. 826, May 1970.

    Google Scholar 

  12. D.E. Poggio, “Theoretical and real weight of shell fuselages”. Ingegneria, Jan. 1971, pp. 1–12.

    Google Scholar 

  13. D.M. Simpson: “Fuselage structure weight prediction”. SAWE Paper No. 981, June 1973.

    Google Scholar 

Alighting gear

  1. J. Philips: “A method of undercarriage weight estimation”. RAE Report Structures No. 198, March 1956.

    Google Scholar 

  2. C.R. Liebermann: “Rolling type alighting gear weight estimation”. SAWE Paper No. 210, May. 1959.

    Google Scholar 

  3. M. E. Burt and E.L. Ripley: “Prediction of undercarriage weights”. RAE Report Structures No. 80, June 1950.

    Google Scholar 

  4. P.R. Kraus: “An analytical approach to landing gear weight estimation”. SAWE Paper No. 829, May 1970. The powerplant

    Google Scholar 

The powerplant

  1. G.R. Holzmeier: “A rational method for estimating fuel system weight in preliminary design”. SAWE Paper No. 147, 1957.

    Google Scholar 

  2. W.C. Crooker: “Aircraft fuel system weight estimation for the tri-sonic era”. SAWE Paper No. 232, May 1959.

    Google Scholar 

  3. G. Rosen: “New problem areas in aircraft propeller design”. Canadian Aero. Journal, Vol. 6, June 1960, p. 219.

    Google Scholar 

  4. Anon.: “Hamilton Standard propeller and gear box weight generalization”. Figs. 1, 2 and 3 of Publication PDB 6101, 1963.

    Google Scholar 

  5. R.C. Engle: “Jet engine weight and thrust trends including future development promises by the engine manufacturers”. SAWE Paper No. 682, May 1968.

    Google Scholar 

  6. I.H. Driggs and O.E. Lancaster: “Engine weights”. In: “Gasturbines for aircraft”. Section 8.9, 1955, Ronald Press, New York.

    Google Scholar 

  7. M.L. Yaf fee: “Propeller research gains emphasis”. Aviation Week and Space Technology, Nov. 1969, pp. 56–65.

    Google Scholar 

  8. ] R.P. Gerend and J.P. Roundhill: “Correlation of gasturbine engine weights and dimensions”. AIAA Paper No. 70–669].

    Google Scholar 

  9. ] J.F. Dugan Jr.: “Engine selection for transport and combat aircraft”. NASA TMX-680]09, April 1972. (Also in AGARD Lecture Series 49).

    Google Scholar 

Airframe services and equipment, operational items, payload

  1. C.K. McBaine: “Weight estimation of aircraft hydraulic systems”. SAWE Paper No. 128, 1955.

    Google Scholar 

  2. J.R. McCarty: “A review and revised approach to the average passenger weight”. SAWE Paper No. 223, May 1959.

    Google Scholar 

  3. C.A. Hangoe: “Comparison of passenger service equipment”. SAWE Paper No. 220, May 1959.

    Google Scholar 

  4. G.R. Williams: “Optimization of fluid lines”. SAWE Paper No. 291, May 1961.

    Google Scholar 

  5. Anon.: “The use of standard baggage weights”. European Civil Aviation Conference, Strassbourg, July 1961, Vol. II, Section 2, Doc. 8185, ECAC/4–2, pp. 355–356.

    Google Scholar 

  6. R.G. Mitchell: “Evaluation of economics of passenger comfort standards”. SAWE Paper No. 338, May 1962.

    Google Scholar 

  7. C.A. Hangoe: “Worl[D-wide survey of cargo densities”. SAWE Paper No. 339, May 1962.

    Google Scholar 

  8. J.R. McCarty: “Airline new aircraft evaluations”. SAWE Paper No. 619, May 1967.

    Google Scholar 

  9. J. Morris and D.M. Ashford: “The use of standard baggage weights”. SAWE Preprint.

    Google Scholar 

  10. R.J. Taylor and K. Smith: “Advanced aircraft parametric weight analysis”. SAWE Paper No. 637, May 1967

    Google Scholar 

  11. B.H. Nicholls and A.D. Meshew: “Auxiliary power systems for 1975 fighter aircraft”. SAE Paper No. 680311, April-May 1968.

    Google Scholar 

  12. T.P. Clemmons: “Systems design for weight optimization”. SAWE Paper No. 757, May 1969.

    Google Scholar 

  13. H.L. Roland: “Advanced design weight analysis and systems and equipment weight prediction”. SAWE Paper No. 790, May 1969.

    Google Scholar 

  14. D.M. Cate: “A parametric approach to estimate weights of surface control systems of combat and transport aircraft”. SAWE Paper No. 812, May 1969.

    Google Scholar 

  15. P.A. Ward and W.G. Lydiard: “Aircraft auxiliary power system and their influence on power plant design”. Lecture presented at Symposium of the Royal Aero. Soc., London, 1969.

    Google Scholar 

  16. R.S. Kaneshiro: “Weight estimation of hydraulic secondary power system”. SAWE Paper No. 935, May 1972.

    Google Scholar 

Some recent publications on weight prediction

  1. J. Banks: “Preliminary weight estimation of canard configured aircraft”. SAWE Paper No. 1015, May 1974.

    Google Scholar 

  2. A. Krzyzanowski: “A method for weight/cost trad[E-offs in preliminary vehicle design”. SAWE Paper No. 1017, May 1974.

    Google Scholar 

  3. R.N. Staton: “Fuselage basic shell weight prediction”. SAWE Paper No. 1019, May 1974.

    Google Scholar 

  4. W. Schneider: “A procedure for calculating the weight of wing structures with increased service life”. SAWE Paper No. 1021, May 1974 (summary in SAWE Journal), Vol. 34 No. 1, Jan. 1975, pp. 1–12 and 40–41.

    Google Scholar 

  5. J.L. Anderson: “A parametric analysis of transport aircraft system weights and costs”. SAWE Paper No. 1024, May 1974.

    Google Scholar 

  6. C.R. Glatt: “WAATS - a computer program for weights analysis of advanced transportation systems” NASA CR-2420, Sept. 1974.

    Google Scholar 

  7. B. Saelman: “Methods for better prediction of gross weight”. SAWE Paper No. 1041, May 1975.

    Google Scholar 

  8. R. St. John: “Weight effects of structural material variation”. SAWE Paper No. 1044, May 1975.

    Google Scholar 

Balance and loadability

  1. K.L. Sanders: “Simpler wing location for a specified longitudinal. stability”. Space/Aeronautics, March 1960, page 67–70.

    Google Scholar 

  2. J.R. McCarty: “Passenger seating pattern. A statistically based cabin load or passenger seating assumption applicable to airline operation”. SAWE Paper No. 250, May 1960.

    Google Scholar 

  3. G.H. Hopper: “The influence of balance and loadability on the design of commercial passenger transports”. SAWE Paper No. 269, May 1960.

    Google Scholar 

  4. D.J. Lambert: “Design of jet transport with rear-mounted engines”. Aerospace Engineering, Oct. 1960, page 30–35], 72, 74.

    Google Scholar 

  5. G.W. Benedict: “Methods of evaluating aircraft loadability”. SAWE Paper No. 334, May 1962.

    Google Scholar 

  6. K.L. Sanders and D.O. Nevinger: “Balancing options in aircraft configuration design”. SAWE Paper No. 840, May 1970.

    Google Scholar 

  7. H. Waldon: “Theoretical vs. actual seating patterns variations in wide body aircraft”. SAWE Paper No. 1080, May 1975.

    Google Scholar 

  8. R. Maswell: “A loadability comparison: L1011/DC-10/0”. SAWE Paper No. 1094, May 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Torenbeek, E. (1982). Airplane weight and balance. In: Synthesis of Subsonic Airplane Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3202-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3202-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8273-2

  • Online ISBN: 978-94-017-3202-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics