Skip to main content

Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux

  • Chapter
Earth Gravity Field from Space — From Sensors to Earth Sciences

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 17))

Abstract

Rapid ice mass variations wiihin the large polar ice sheets lead to distinct and highly nonuniform sea-level changes that have come to be known as ‘sea-level fingerprints’. We explore in detail the physics of these fingerprints by decomposing the total sea-level change into contributions from radial perturbations in the two bounding surfaces: the gcoid (or sea surface) and the solid surface. In the case of a melting event, the sea-level fingerprint is characterized by a sea-level fall in the near-field of the ice complex and a gradually increasing sea-level rise (from 0.0 to 1,3 times the eustalic value) as one considers sites at progressively greater distances (up to ∼ 90° or so) from the ice sheet. The far-field redistribution is largely driven by the relaxation of I he sea-surface as the gravitational pull of the ablating ice sheet weakens. The near-field sea-level fall is a consequence of both this relaxation and ocean-plus-ice unloading of the solid surface. We argue that the fingerprints provide a natural explanation for geographic variations in sea-level (e.g., tide gauge, satellite) observations. Therefore, they furnish a methodology for extending traditional analyses of these observations to estimate not only the globally averaged sea-level rate but also the individual contributions to this rate (i.e., the sources).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ca ban es. C.. A. Cazenave. and C. Le Provost: 2001. ‘Sea level rise during past 40 years determined from satellite and in situ observations’. Science, 294. 840–842.

    Google Scholar 

  • Clark, J. A. and J. A, Primus: 1987, ‘Sea-level changes resulting from future retreat of ice sheets: an effect of CCb warming of the climate’. In: M. J. Tooley and I, Shennan (eds.): Sea-Level Changes. Institute of British Geographers. London. United Kingdom, pp. 356–370.

    Google Scholar 

  • Conrad, C.. and B. H. Hager: 1997, ‘Spatial variations in the rate of sea level rise caused by present-day melting of glaciers and ice sheets’, Geophys. Res. Let!., 24. 1503–1506.

    Article  Google Scholar 

  • Davis, J. L., and J. X. Mitrovica: 1996, ‘Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America’. Nature, 379, 331–333.

    Article  Google Scholar 

  • Douglas. B, C.: 1991, ‘Global sea level rise’. J. Geophys. Res.. 96. 6981–6992.

    Google Scholar 

  • Douglas. B, C.: 1992, ‘Global sea level acceleration“, J. Geophys. Res.. 97. 12699–12706.

    Google Scholar 

  • Douglas. B, C.: 1997. ‘Global sea level rise: A redetermination’. Sun-. Geophys.. 18. 279–292.

    Google Scholar 

  • D/iewonski, A.M.. and D. L. Anderson: 1981, ‘Preliminary reference Earth model (PREM)’, phys. Earth Planet. Inter.. 25. 297–356.

    Google Scholar 

  • Farrel 1, W. E., and J. T. Clark: 1976. ‘On postglacial sea level’. Geophys../. R. astr. Soc.. 46.647–667.

    Google Scholar 

  • Gornitz, V.: 1995, ‘Sea level rise: A review of recent past and near-future trends*. Earth Surface Processes and Landforms. 20. 7–20.

    Google Scholar 

  • Gregory, J. M.. and J. A. Lowe: 2000, ‘Predictions of global and regional sea-level rise using AOGCMs with and without flux adjustment’. Geophys. Res. Lett., 27. 3069–3072.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change: 2001, Climate Change 2001: The Scientific Basis, The Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press. Cambridge, UK.

    Google Scholar 

  • Lambeck. K. C. Smither, and P. Johnston: 1998, ‘Sea-level change, glacial rebound and mantle viscosity for northern Europe’. Geophys. J. Int.. 134. 102–144.

    Google Scholar 

  • Lev it us, S., J. L. Anlonov.T. P. Boyer. and C. Stephen: 2000. ‘Warming of the global ocean’. Science. 287, 2225–2229.

    Article  Google Scholar 

  • Meier. M. F.: 1984, ‘Contribution of small glaciers to global sea level’. Science, 226, 1418–1421.

    Google Scholar 

  • Milne, G. A.: 1998, ‘Refining models of the glacial isosialic adjustment process“. Ph, D, thesis. University of Toronto. Toronto.

    Google Scholar 

  • Milne. G, A., J. X, Milrovica. and J. L. Davis: 1999. ‘Near-field hydro-isostasy: The implementation of a revised sea-level equation7. Geophys. J. Int., 139, 464–482.

    Google Scholar 

  • Mitrovica, J. X., and J. L. Davis: 1995, ‘Present-day post-glacial sea level change far from the Late Pleistocene ice sheets: Implications for recent analyses of tide gauge records’. Geophys. Res. Lett, 22. 2529–2532.

    Article  Google Scholar 

  • Mitrovica, J. X,, and W. R. Peltier: 1991, ‘On postglacial geoid subsidence over the equatorial oceans’. J. Geophys. Res.. 96, 20053–20071.

    Google Scholar 

  • Mitrovica, J. X.. M. Tamisiea, J. L. Davis, and G. A. Milne: 2001, ‘Polar ice mass variations and the geometry of global sea level change’. Nature. 409, 1026–1029.

    Article  Google Scholar 

  • Munk, W.: 2002, ‘Twentieth century sea level: An enigma’. Pmc. Nat. Acad. Sci.. 99, 6550–6555.

    Google Scholar 

  • Nakiboglu, S. M.. and K. Lambeck: 1991, ‘Secular sea-level change’. !n: R. Sabadini, K. Lam-beck and E, Boschi (eds.): Glacial Isostasy, Sea-Level and Mantle Rheology, Kluwer Academic Publishers. Dordrecht. The Netherlands, pp. 237–258.

    Google Scholar 

  • Nerem, R. S: 1995, ‘Global mean sea level variations from TOPEX/POSEIDON altimeter data’. Science, 268. 708–710.

    Article  Google Scholar 

  • Peltier, W. R,. and A. M. Tushingham: 1989. “Global sea level rise and the greenhouse effect: Might they be connected?’. Science, 244, 806–810:

    Google Scholar 

  • Peltier, W. R., and A.M. Tushingham: 1991, ‘Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change*. J. Geophys. Res.. 96. 6779–6796.

    Google Scholar 

  • Plag. H.-P,. and H.-U. Jiittner: 2001. ‘Inversion of global tide gauge data for present-day ice load changes“. In: Proceedings of the Second International Symposium on Environmental Research in the Arctic and Fifth Ny-Alesund Scientific Seminar, Mem. Nat. Inst. Polar Res. Vol. 54. pp. 301–318.

    Google Scholar 

  • Shennan, I., and P. L. Woodworth: 1992, ‘A comparison of late Holocene and twentieth-century sea level trends from the UK and North Sea region’. Geophys, J. Int., 109. 96–105.

    Google Scholar 

  • Tamisiea. M., J. X. Mitrovica, G. A. Milne, and J. L. Davis: 2001, ‘Global geoid and sea level changes due to present-day ice mass fluctuations*. J. Geophys. Res.. 106. 30849–30863.

    Google Scholar 

  • Trupin, A. S.. and J. M. Wahr: 1990, ‘Spectroscopic analysis of global tide gauge sea level data’. Geophys. J. Int.. 100,441^53.

    Google Scholar 

  • Woodward, R. S.; 1888. ‘On the form and position of mean sea level’. United States Geo!. Survey Bull.. 48, 87–170.

    Google Scholar 

  • Woodworth, P. L.: 1990. ‘A search for accelerations in records of European mean sea level’. Int. J. Climatology. 10, 129–143.

    Article  Google Scholar 

  • Woodworth, P. L., M. N. Tsimplis, R. A. Flather and I. Shennan: 1999, ‘A review of the trends observed in British Isles mean sea level data measured by tide gauges’. Geophys. J. Int.. 136, 651–670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tamisiea, M.E., Mitrovica, J.X., Davis, J.L., Milne, G.A. (2003). Long Wavelength Sea Level and Solid Surface Perturbations Driven by Polar Ice Mass Variations: Fingerprinting Greenland and Antarctic Ice Sheet Flux. In: Beutler, G., Drinkwater, M.R., Rummel, R., Von Steiger, R. (eds) Earth Gravity Field from Space — From Sensors to Earth Sciences. Space Sciences Series of ISSI, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1333-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1333-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6334-2

  • Online ISBN: 978-94-017-1333-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics