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PREFACE 
IN this monograph I have attempted to set out, in as elemen­
tary a form as possible, the basic mathematics of the theories of 
elasticity, plasticity, viscosity, and rheology, together with a 
discussion of the properties of the materials involved and the 
way in which they are idealized to form a basis for the mathe­
matical theory. There are many mathematical text-books on 
these subjects, but they are largely devoted to methods for 
the solution of special problems, and, while the present book 
may be regarded as an introduction to these, it is also in­
tended for the large class of readers such as engineers and 
geologists who are more interested in the detailed analysis of 
stress and strain, the properties of some of the materials they 
use, criteria for flow and fracture, and so on, and whose 
interest in the theory is rather in the assumptions involved in 
it and the way in which they affect the solutions than in the 
study of special problems. 

The first chapter develops the analysis of stress and strain 
rather fully, giving, in particular, an account of Mohr's repre­
sentations of stress and of finite homogeneous strain in three 
dimensions. In the second chapter, on the behaviour of 
materials, the stress-strain relations for elasticity (both for 
isotropic and simple anisotropic substances), viscosity, plas­
ticity and some of the simpler rheological models are 
described. Criteria for fracture and yield, including Mohr's, 
Tresca's and von Mises's, are discussed in detail with some 
applications. In the third chapter the equations of motion and 
equilibrium are derived, and a number of special problems 
are solved. These have been chosen partly because of their 
practical importance and partly to illustrate the differences in 
behaviour between the various types of material discussed. 

In the second edition of this monograph a new chapter was 
added to cover briefly the mathematical and experimental 
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vi PREFACE 

foundations of structural geology and the rapidly developing 
engineering subject of rock. mechanics. In this, the discus­
sion of the various criteria for fracture was greatly amplified 
and extended to porous media. A fuller treatment of stresses 
in the Earth's crust, faulting, and related matters was given. 
Also, because of their importance in rock mechanics and in 
the measurement of stress, a number of problems on the 
stresses and displacements around underground openings 
was solved and a brief introduction to the use of the complex 
variable in the treatment of such problems was given. 

In this third edition, the treatment of rock mechanics in 
the fourth chapter has been extended in the light of modern 
developments. The main addition has been a fifth chapter 
dealing with the fundamentals of structural geology, most of 
the mathematical prologomena for which have been set out 
in the earlier chapters. This deals largely with the applications 
of the theory of finite homogeneous strain, the elementary 
theory of folding, and the orientation of particles in a 
deforming medium. This chapter has been written in colla­
boration with Dr N. Gay of the University of the Witwaters­
rand who has supplied the geological knowledge: my part 
has merely been that of stating it in a manner which con­
forms with the theory developed in the earlier parts of the 
book. 

J. C. JAEGER 
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CHAPTER I 

STRESS AND STRAIN 

I. INTRODUCTORY 

THE mathematical theories of elasticity, viscosity, and plasticity 
all follow the same course.1 Firstly, the notions of stress and strain 
are developed; secondly, a stress-strain relationship between these 
quantities or their derivatives is assumed which idealizes the be­
haviour of actual materials; and finally, using this relationship, 
equations of motion or equilibrium are set up which enable the 
state of stress or strain to be calculated when a body is subjected 
to prescribed forces. 

In this chapter the analysis of stress and strain will be developed 
in detail. The analysis of stress is essentially a branch of statics 
which is concerned with the detailed description of the way in 
which the stress at a point of a body varies. In two dimensions this 
involves only elementary trigonometry, and the two-dimensional 
theory not only gives a useful insight into the general behaviour 
but also is applicable to many important problems: it is therefore 
given in detail in § 3. The three-dimensional theory is given in § 4. 
leading to Mohr's representation in § 5 which provides a simple 
geometrical construction for the stress across any plane. 

The analysis of strain is essentially a branch of geometry which 
deals with the deforn13tion of an assemblage of particles. For the 
development of the theory of elasticity only the case of infinitesi­
mal strain is needed, and a conventional treatment of this is given 
in §§ 10, II. This theory is formally very similar to that ofstress 
and, as before, the two- and three-dimensional cases have been 
worked out independently. 

1 On elasticity, reference may be made to Timoshenko, Theory of 
Elasticity (McGraw-Hill, 1934); Southwell, Theory of Elasticity (Oxford, 
Ed. 2, 1941); Love, Mathematical Theory of Elasticity (Cambridge, Ed. 4, 
1927): on viscosity, Lamb, Hydrodynamics (Cambridge, Ed. 4, 1916); 
Milne-Thomson, Theoretical Hydrodynamics (Macmillan, Ed. 2, 1949): 
on plasticity, Nadai, Theory of Flow and Fracture of Solids (McGraw­
Hill, Ed. 2, 1950); Prager and Hodge, Theory of Perfectly Plastic Solids 
(Wiley, 1951); Hill, Plasticity (Oxford, 1950). 

I 
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The assumptions involved in the theory of infinitesimal strain 
are so restrictive that many important details of the geometrical 
changes which take place during straining are obscured; also, some 
knowledge of finite strain is needed when, as in geology, large 
strains occur. For these reasons the theory of finite homogeneous 
strain is developed by the methods of coordinate geometry in two 
dimensions in § 7, and by Mohr's method in three dimensions 
in § 9. 

2. STRESS. DEFINITIONS AND NOTATION 

In order to specify the forces acting within a body we proceed as 
follows: at the point 0 in which we are interested we take a defin­
ite direction OP and a small flat surface of area ~A perpendicular 
to OP and containing 0, Fig. I (a). OP is called the normal to the 
surface ~A, and the side of the surface in the direction OP will be 
called the 'positive side' and that in the opposite direction the 
'negative side'. 

SA 

(a) 

FIG. I 
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• • 
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At each point of the surface ~A the material on one side of the 
surface exerts a definite force upon the material on the other side, 
so that conditions in the solid as a whole would be unaltered if a 
cut were made across the surface ~A and these forces inserted. 
The resultant of all the forces exerted by the material on the posi­
tive side of ~A upon the material on the other side will be a force 
~F (strictly, there will be a couple also, but, as the area ~A is sup­
posed to be infinitesimally small, this is negligible-). 

The limit of the ratio ~F /~A as ~A tends to zero is called the 



STRESS AND STRAIN 3 
stress at the point 0 across the plane whose normal is in the direction 
OP, so that, writing POP for this, 

1. 6F 
Pop:> 1m .lA· 

"A~U 
(I) 

POP is a vector whose magnitude has the dimensions of force 
per unit area,l so that the situation is that, for every point 0 of 
the body and every direction through it, a vector POP exists such 
that if we take a small surface of area 6A through 0 and normal 
to OP, the material on the positive side of the surface exerts a force 
Pop 6A upon the material on the negative side, and, action and 
reaction being equal and opposite, the material on the negative 
side exerts a force - Po~A upon that on the positive side. 

It is usual in developing the mathematical theory of a subject 
to begin by setting up a rectangular coordinate system, so at the 
point 0 we take mutually perpendicular right-handed axes Ox, 
Oy, Oz. Suppose, now, that OP is taken in the direction Ox as in 
Fig. I (b) so that the area 6A is in the yz-plane. The vector po. 
can be resolved into components 

in the directions Ox, Oy, Oz, respectively. The component (1. , 

which is in the direction Ox and normal to the area 6A, is called 
the direct or normal component of stress, while the components 
T~, Tn' which are in the plane of the area t3A, are called trans­
fJerse, or shear stresses. This notation of (1 for a normal stress and 
T for a shear stress wiIl always be used: in the latter the first suffix 
denotes the direction of the normal to the small area 6A and the 
second suffix the direction in which the component acts; for normal 
stresses, only one suffix is needed since the direction of the com­
ponent is the same as that of the normal to the surface. If the 
normal component of the stress across a surface is positive II it is 
called a tensile stress (it tends to puIl the material on the positive 

1 Occasionally in geological and engineering literature the tenn stress 
is used in a general way and 'unit stress' for the force per unit area in the 
present sense. Pop is sometimes called a stress vector or a traction. 

I In many cases a conventional sign opposite to the one chosen here is 
used: that is, a is reckoned positive when compressive. This is, perhaps, 
more convenient if the stresses considered are most frequently com­
pressive as in geological work, but the present convention is the most 
natural in mathematics and the one more widely used. 
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side of the surface away from that on the negative side), and if it is 
negative it is called a compressive stress. 

In the same way the stress at 0 across a plane whose normal is 
in the direction Oy will have components 

1'1/11 , (11/ , 1'1/.' • (3) 
and that across a plane whose normal is in the direction Oz will 
have components 

T. , T~ , (1. • • (4) 

The nine quantities (2) to (4), which are collected in (5), are 
called the stress-components or components of stress at the point 0: 

(III 1'111/ Ta} 
1'1/11 (11/ TI/e • 

Tq To (I. 

(5) 

It will be found in §§ 3, 4 that the stress across any plane 
through 0 can be expressed in terms of them so that they give 
a complete specification of the stress at the point (in fact, it will 
appear also that 1'1/.-1'0' Tp-T., 1'111/""1'1/11' so that only six 
quantities are needed to specify the stress at a point). 

For the complete specification of the stress in a body it is neces­
sary to know the stress-components at each point of it. 

It is unfortunate that several different notations are in use in the 
Theory of Elasticity: the one given above is that commonly used 
by Continental and American writers, in particular in the works of 
Timoshenko, Nadai, and Prager and Hodge referred to above. 
The most common English notation, that of Love and Southwell, 
uses XII' Y"" Z", in place of (2) for the components of the vector 
po", , and so on. Other commonly used symbols for these quanti­
ties are Pm , PIII/ , Pa' and XX, £Y, ft, etc., where the latter set 
consists of the suffixes of the former set with a distinguishing 
mark above. 

The stress-components in (5) are in fact the components of a 
mathematical entity called a tensor, and tensor analysis is much 
used in developing the higher parts of the theory. The main 
change, from the present point of view, is that the notation x, y, z 
for the coordinates is replaced by Xl' X., Xa , so that they are 
specified by the numbers I, 2, 3. The stress-components across a 
plane whose normal is in the direction of Ox are -then written 
Pll , PlI , PIa, and the stress tensor is described, and used in the 
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analysis, as Pr., where values of rand s running from I to 3 give 
the various components. 

3. STRESSES IN TWO DIMENSIONS 

Many of the difficulties of the theory of elasticity are caused by 
the rather complicated three-dimensional geometry involved. Fre­
quently, a clear understanding of the fundamental ideas can be 
obtained comparatively simply by studying the corresponding 
two-dimensional problem. Accordingly, we shall first develop the 
theory of stress in two dimensions, taking Ox, Oy of Fig. z in the 
plane of the paper and Oz perpendicular to it, and assuming that 

y 
y cry I 
I 

~TyX B 
I 

I 

~: 
y c I 

Y I 

crx:J I I 
I I 

t __ crYL~~ '-xy O"x 

01 ---~ --0: 0 x A. x 0 A. X 

<T" 1'yx 
I tf'y 
I 
I (al (b) (e) (d) 

FIG. 2 

all quantities are independent of z, so that it need never be con­
sidered at al1.1 

Then, as in Fig. z (a), the force per unit area at 0 exerted across 
the plane x=o by the material on its right upon that on its left has 
components (1f1J, TfIJII. Similarly, as in Fig. z (b), the force per unit 
area at 0 across the plane y=o, has components T. fIJ , (1 •• 

Next we have to consider the relations between these com­
ponents. In doing this we assume that the solid is at rest and that 
all quantities vary slowly from point to point, so that the stress­
components at a point a small distance a from 0 will be very 
nearly equal to those at 0 (in fact, they will differ from' them by 
quantities of the order of magnitude of a, which we are assuming 
to be small). 

1 The theory of this section is applicable to several important situations 
in three dimensions; these will be discussed in § 14. 
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Now consider the forces on a very small square of material 
OABCO whose side length OA-OC-a is very small. The forces 
on the face AB (per unit length perpendicular to the plane of the 
paper) are atI. and trr .. , as shown in Fig. 2 (e). Those on the face 
CO, remembering that they are those exerted by the material to 
the left on the material to the right, are -atl. and -trr fIJ7I , and so on. 
Considering the equilibrium of the square as a whole, it appears 
that the forces are in equilibrium, but that there is a couple 

al!(rflJ7l-T".) 
tending to rotate the square to the left. Since the system is in 
equilibrium this couple must vanish so we must have 

TI/!JIf=T".. (I) 
Thus, of the four stress-components with which we started, 

only three are independent. It is convenient to continue to use 
both Tf1J71 and T". as they arise in different ways, remembering that 
they are equal. 

Next we show that the stress across any plane through 0 whose 
normal OP is inclined at 0 to Ox can be expressed in tenns of 
(1., (111 and TI/!JII. To do this we calculate the normal and shear 
stresses (1 and T across a plane AB near to 0: these will differ very 
little from those across a parallel plane through O. As shown by 
the arrow in Fig. 2 (d), T is reckoned positive when it is directed 
towards the left of OP. Considering the equilibrium of the triangle 
OAB (or rather a prism of unit height on this as base), resolving in 
the direction of OP, writing a for the length AB, and remember­
ing that to get the force across any face the stresses must be multi­
plied by the area of the face, we get 

atI-a sin O(T". cos 0+(1" sin O)+a cos 0«(1. cos O+TI/!JII sin 0), • (2) 
and, resolving in the direction AB, 

trr-a sin O( -T". sin 0+(1" cos O)+a cos O( -(1. sin O+Tf1J71 cos 0). (3) 
Thus, remembering that TfIJ7I=Tp , (2) and (3) become 

(1"'(1. cosl! 0+2TI/!JII sin 0 cos 0+(1" sinl! 0, (4) 
T=«(1I1-(1.) sin 0 COSO+T.JCOS2 0-sin2 0). (5) 

The calculation above is for the angle 0 acute, but it is easy to 
show with a similar figure that it holds for all values of 0 with the 
convention mentioned above, namely, that T is measured posi­
tively in the direction to the left of the outward normal. 
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(4) and (5) may be used to give the stress-components (/s' , (/11 , 

7:s'1l relative to axes Ox', Oy' rotated through () from Ox and Oy. 
7:# is given by (5); and using (4) for angles () and 13t+(), respec­
tively, gives 

(/"'=(/,, cos2 ()+27:"", sin () cos ()+(/1I sin2 (), (6) 

(/11=(/" sin! ()-27:zv sin () cos ()+(/lICOS 2 (). (7) 
Adding (6) and (7) gives 

(/,,'+(/11=(/"+(/11 , (8) 

that is, if the axes are rotated, this quantity (/"+(/11 remains un­
changed or invariant though both (/" and (/11 themselves change. 
Such invariants are of great importance in the development of the 
theory. 

Equations (4) and (5) give a complete description of the way in 
which the stress at a point varies with direction: we now discuss 
this behaviour in detail and obtain some simple geometrical repre­
sentations for it. Differentiating (4) gives 

d~=2«(/1I-(/") sin () cos ()+27:zv( cos2 ()-sin! () (9) 

=27:. (10) 

It follows from (9) that the normal stress is a maximum or 
minimum (and also from (5) that the shear stress is zero) when () 
is given by 

. (II) 

Equation (I I) defines two directions at right angles such that 
the normal stresses over them are the greatest and least at the 
point and the shear stresses over them are zero. These are called 
the principal axes of stress and the stresses over them are called the 
principal stresses. The notation (/1 and (/2 will always be used for the 
principal stresses, (/1 being assumed to be the greatest (algebraic­
ally), and, as always, tensile stresses being reckoned positive. The 
effect of (II) is that, if the state of stress at a point is known, the 
directions of the principal axes and the values of the principal 
stresses can be found immediately. When these are known, it is 
much simpler to take the principal axes as axes of reference: thus, 
if we take these as new x and y axes, we have (/"=(/1 , (/11=(/2 , 7: ... -0 
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in (4) and (5), and the normal and shear stresses across a plane 
whose normal is inclined at 0 to the x-axis become 

CT-CT1 cos2 0+CT2 sin2 0, (12) 
-!(CT1+CT2)+!(CTCCT2) cos 20, (13) 

1'--!(CTCCT2) sin 20. (14) 
The way in which CT and l' vary with 0 is shown graphically in 

Fig. 3: it appears that l' has its greatest magnitude !(CTCCT2) when 
o is 45° or 135°. 

CT 

. 
o 900 

e 

FIG. 3 

Another representation which is of great theoretical importance 
is obtained by taking a line from the origin in the direction 0 of the 
normal and choosing a point P on it whose distance r from the 
origin is 

r=/w-l, so that CT=k2/r2, • (IS) 
where CT is the normal stress across the plane and k is a constant. 
Putting (IS) in (12) gives 

CTlr2 coss 0+CTzr2 sinS 0=k2, 
so tha~, since x=r cos 0, y=r sin 0 are the coordinates of the point 
P, it lies on the conic 

CTIXS+CTzY2=k2. • (16) 
This is called the stress conic: it is an ellipse if CT1 and CT2 have the 
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same sign, and an hyperbola if they have opposite signs. The same 
conic, rotated through an angle given by (I I), would have been 
found if we had discussed (4) in the same way, and the principal 
axes and principal stresses could have been found from it: this is, 
in fact, a common approach and one which can be used in three 
dimensions, cf. § 4. If a becomes negative it must be replaced 
by I a I in (IS) to get a real representation. 

In the same way, using T ... k 2/r2 in (14), the shear stress can be 
represented by a point on the hyperbola 

(a.-al)xy=ks. . . (17) 
Yet another representation, Mohr's circle diagram, is the 

simplest and most useful of all. 

o p o o. l' 

.~. 

(a) 

FIG. 4 

Suppose that, as in Fig. 4 (a), we mark off lengths OP=al and 
OQ~a2 on a line and draw a circle on PQ as diameter with centre 
C. Then, if A is a point on the circle such that the angle PCA 
measured clockwise is z(J and AB is perpendicular to PQ, it 
follows from (13) and (14) that OB=aand AB=T. That is, A repre­
sents the direct and shear stresses across the plane (J plotted on 
a (a, T) plane, and the circle of centre C is their locus as 0 changes. 
This representation holds for all signs of at and as provided, as 
always, that al>a.: it also holds for all values of (J, in particular, 
A' gives the values of a and T for a plane perpendicular to that 
corresponding to A. It follows immediately from Fig. 4 (a) that 
the shear stress has its greatest magnitude when (J-4So and 135°. 

This diagram may be used to give a simple construction for the 
principal stresses and axes if the quantities a~, all , T~ are known. 
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The x- and y-axes, being at right angles, will correspond to two 
points such as A and A' in Fig. 4 (a), and a circle on AA' as 
diameter will give the circle of Fig. 4 (a). Thus, as in Fig. 4 (b), we 
plot the points E, (C1z , Ta:v) and 1 F(C1" , -Ta:v) and draw a circle on 
EF as diameter. Then in Fig. 4 (b) OH and OG are the principal 
stresses and the angle EKH is twice the angle between the princi­
pal axes and the old x- and y-axes. Also the maximum value of the 
shear stress is seen to be 

![(C1z-C1,,)2+4T:w2]l, (18) 
and the principal stresses are 

!(C1z+C1,,)±t[{C1z-C1,,)2+4T:w 2]l, (19) 
these could have been found by differentiating (5). 

4. STRESSES IN THREE DIMENSIONS 

Suppose that C1ffJ , G", C1., T"., Toz, T:w are the stress-com­
ponents as defined in § 2. We prove first that 

Z I 
I 
I 

(a) 

T:w=T"ffJ' TfII=T", , T.z=TffJI· 

'z 
C l -

, 
I 

--'-'-,:-

FIG. 5 

To do this we consider the equilibrium of the small rectangular 
parallelepiped of Fig. 5 (a). 

1 The reason for the negative sign in -T,.. is that our convention is 
that in (s) shear stress is measured positively in the direction to the left 
of the nonnal. For the y-axis, this is the negative x-direction, while Tp is 
measured in the positive x-direction. 
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Just as in § 3, the fact that the resultant couple about the z-axis 
must vanish gives T",,,=T,,,,, , and, similarly, the other two directions 
give the other two of equations (I). As in two dimensions, it is con­
venient to use both T",,, (for the y-component of stress across the 
plane x=o) and T"", (in the sense of the x-component of stress 
across the plane y=o), remembering always that they are equal. 

Next, we have to calculate the stress across a plane through 0 
whose normal has direction cosines 1 (l, m, n) relative to the axes 
Ox, Oy, Oz. To do this we consider the equilibrium of the small 
tetrahedron OABC whose face ABC is normal to the direction 
(I, m, n) and has area w so that the areas of the faces OAB, OBC 
and OCA are wn, wi, wm, respectively. Suppose that p", , p" , P. 
are the components of the stress across the face ABC in the direc­
tions of the axes Ox, Oy, Oz. Then, resolving in the direction Ox 
we get 

And, similarly, 

wp",=ww",+wmT"",+wnT,,,, , 

p",=w",+mT"",+nT.", • (2) 

p"=iT",,,+mO',,+m'I/' (3) 
p.=iT ... +mTl/z+na. • (4) 

(2), (3) and (4) specify the stress across the plane whose normal 
has direction cosines (I, m, n), but they are not very directly re­
lated to this plane since they refer to the coordinate directions 
Ox, Oy, Oz. The most interesting quantities are the normal stress 
0' and the shear stress T across the plane. 

The normal stress follows immediately by resolving in the direc­
tion of the normal and using (2) to (4). This gives 

O'=lp",+mpl/+npz . (5) 
-l(lO'",+mTI/",+nTz:l:)+m(iT"",+mO'l/+ nTzll) +n(iT",z+mTI/.+nO'.) 
=I20'",+m20'1/+n20'.+2mnTl/z+2nlT.",+2ImT",I/. (6) 

In the same way, the shear stress across the plane could be 
resolved into its components T' in the direction (1', m', n') and Til 

1 The direction cosines 1, m, n of a line are the cosines of the angles it 
makes with the mutually perpendicular lines Ox, 0", Oz. They are con­
nected by the relation P+m2+n"= I. The angle tp between lines of direction 
cosines (1, m, n) and (1', m', n') is given by cos tp=ll'+mm'+nn'. Cf. Bell, 
Coordinate Geometry of Three Dimensions (Macmillan, Ed. 2, 1912). 



12 ELASTICITY, FRACTURE AND FLOW 

in the direction (I", m", n"), where (Z', m', n') and (I", m", n") are 
two perpendicular directions in the plane. Thus, resolving in the 
direction (I', m', n') gives 

-r' =1'pfIJ+m'p,,+n'p • 
.. U'ufIJ+mm'(1,,+nn'(1.+(mn' +m'n)-r".+(nl' +n'I)-r,fIJ 

+(/m'+I'm)-rflJ'l/' (7) 
with a similar formula for -r". This, however, is not the simplest 
method of calculating the shear stress. 

(6) and (7) may also be regarded as formulae for change of axes 
which give the stress-components for the new system of rectangu­
lar axes (1, m, n), (I', m', n'), (I", m", n") in terms of those for the 
system Oxyz. 

Returning to the normal stress (6) we proceed to find its maxi­
mum and minimum values. The analysis is similar to that of § 3, 
but is a little more complicated since two of I, m, n may vary 
independently, the third being related to them by 

12+m2+n2"'1. • (8) 
Thus the conditions for (1 to be stationary are 

U(1 0(1 
01 =-0, Om =0, (9) 

together with, by (8), 
On on 

l+noZ-o, m+nom =0 • (IO) 

Using (6) and the values (2) to (4) of PfIJ' P" , P., (9) become 
on on 

PfIJ+P.ol=o, P,,+P. om =0. . (II) 

Combining (10) and (II) gives 

. (12) 

Now pfIJ ,p" ,P. are the components of the stress across the plane 
(Z, m, n), so (12) states that when the direction (I, m, n) is such that 
the normal stress is stationary, the components of the stress across 
this plane are in the direction (I, m, n), that is, that the stress across 
the plane is purely normal and so the shear stress in it is zero. If 
(1 is the value of this normal stress, (I2) may be written 

PfIJ=/q, p,=m(1, P.""M. . (13) 
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Using (2) to (4) in (13) gives 

l(az-a)+m:lIz+nTzz:o,} 
l'l'zlI+m(ali a)+nT.II-O, 
l'l'.,.+mTllz+n(az-a)=o. 

13 

The equations (14) are a set of three homogeneous linear equa­
tions for /, m, n. It is known from algebraical theory that they have 
a non-zero solution only if a is a root of the equation 

laz-a T liZ Tzz I 
TZII all-a TZII =0. • 

Tzz Til: az-a 
(IS) 

This is a cubic in a, it has three (real) roots a1 , a2 , a a , and 
corresponding to each of these (14) give~ a set of direction cosines 
(/1' m1 , n1), (/2' m2, n2), (la, ma , na), respectively. These direc­
tions are, in fact, mutually perpendicular; this may be proved by 
multiplying equations (14) containing aI' II , ~ , n1, by 12, m2, 
n2 , in order, adding, and then subtracting from the sum the ex­
pression formed by interchanging the suffixes I and 2 in it; this 
gives 

(al-a2)(/1/2+mlm2+nln2)="0, 
and so, if a1+a2 , the directions (11' m1, n1) and (/2' m2, n2) are 
perpendicular. 

The final conclusion is that there are three mutually perpendicu­
lar directions called the principal axes of stress in which the stress is 
purely normal and has values aI' a2, aa which are called the 
principal stresses. We shall always use the convention a1>a2>aa , 
and, since the normal stress has been proved above to be station­
ary in the direction of the principal axes, it follows that al is 
(algebraically) the greatest, and aa the least, normal stress at the 
point. If the six stress-components at the point are given numeri­
cally, it is possible by the above analysis to determine the principal 
axes and stresses; needless to say, it is rarely necessary to do this, 
and the importance of the present discussion is that it gives a com­
plete picture of the way in which the normal stress varies. 

The geometrical representation of § 3 may also be used. If we 
plot a point distant kiva from the origin in the direction (/, m, n), 
its coordinates will be 

x=lklva, y=mklva, z=nklva, 



I4 ELASTICITY, FRACTURE AND FLOW 

and putting these values in (6) it follows that the point lies on the 
quadric surface 1 

xlo'.,+ylo'l/+ZIo'.+2yzrf/ll+ZZ.n-.. +2xyr".-kS• • (16) 
This surface is called the stress quadric. It is known from pure 

geometry that it has a set of three mutually perpendicular axes 
referred to which the terms_ of type yz, zx, xy in (16) disappear. 
These are the principal axes found above. 

It should be mentioned that the determination of principal axes 
is unique only if none of (11' (1., (1a are equal. If they are all 
equal (hydrostatic pressure or tension), the stress quadric is a 
sphere and any set of mutually perpendicular axes may be taken as 
principal axes. If two of them are equal, there is rotational sym­
metry about the third axis. 

If the determinant in (IS) is expanded the equation may be 
written 

where 
I 1-(1I1J+(1I/+(1" (IS) 

I s--«1p.+(1PI1J+(1.,<1I/)+Tf/IIB+T .. 1+T".", (19) 
I a-(1.,<1,p.+2TI/,T .. T".-(1.,TI/S"-(1I/T .. "-(1.T".". (20) 

These quantities 11 , II , Ia apparendy depend upon the initial 
choice of the X-, y- and z-axes, but the roots of (17) which are the 
principal stresses are independent of this choice and so the co­
efficients 11 , I. , Ia must also be independent of it. Put in another 
way, the quantities 11 , 12 , Ia must remain unchanged or infJariant 
if the axes are changed. Thus, for example, since 11 is unchanged 
by the change from the original axes to principal axes, we must 
have 

(1.,+(1I/+(1.-(11+(1.+(1a. • (21) 

Invariants always play an important part in the mathematical 
development of a theory: a quantity similar to I" will be found in 
§ 27 to be fundamental in the theory of plasticity. 

1 The general surface of the second degree (i.e., that which is cut by 
any line in two points) is called a quadric surface. It may be an ellipsoid, 
a hyperboloid (of one or two sheets), a paraboloid, a cone, or a pair of 
planes according to the sign and nature of the coefficients. The process 
of reduction to principal axes is effectively that given above, d. Bell, 
loco cit. If a in (6) becomes negative it is necessary to replace it by lal to 
get a complete geometrical representation of its variation in this way. 
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In the same way, it follows from (18) and (19) that 

a,p.+ar!1e+arP,,-T,,;CT.S-Tell"=a'J!1a+aaalHhaz, . (22) 

af/e2+a""+a."+2T,,.2+2T.S+2TfJefI"=alS+a,:'+as". • (23) 

The whole of the preceding discussion has been based on the 
normal stress for the excellent reasons that this is the easiest to dis­
cuss and that it leads directly to the principal axes. Having found 

, 

t.m,n 
, , 

z 

'jf-----""-- y 

Ca) )( 

FIG. 6 

these we may begin the subsequent discussion by taking the axes 
of reference to be principal axes. 

Suppose, now, that O:JC, Oy, 0% are the principal axes and al , 
as, a8 the associated principal stresses with, as usual, al>a2>a8. 
Then by (2) to (4) the components (in the directions of the axes) of 
the stress across a plane whose normal is in the direction (I, m, n) 
are 

Pe-WI, pl:=ma2 , P.-na8· 

It follows, by (8), that 

Pl'+P,,\P;'.1 . (25) 
a12 as"- a82 ' 

so that the components of the stress across any plane lie on an 
ellipsoid sometimes called the ellipsoid of stress. 

The normal stress a across the plane is by (6) 

. (26) 
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Also the magnitude R of the stress across the plane follows 
immediately from (24): it is 

R=(p", lI+p,,"'+pz 2)~ 
=(120'111+m20'all+n20'all)l. . (27) 

The shear stress across the plane could be found from (7), but 
since we are chiefly interested in its magnitude 'i it is a little 
simpler to calculate it by resolving the stress R across the plane 
into its components 'i and 0' in, and perpendicular to, the plane, 
Fig. 6 (a), so that, using (27), (26) and (8) 

(28) 
=11l0'12+m20'1l 2+n20'a C(120'1 + m20'1I+n20'a) II 
=(O'cO'II)212ms+(O's-O'a)2m2n Il+(O'a-0'1)2n2l2• (29) 

For the case in which 0'1=O'S=0'3=-P, we have by (29) and (26) 
'i=o, O'=-P for all directions. This is the case of hydrostatic 
pressure p. 

To get a geometrical representation of (29) we may (as in the 
case of normal stress) plot a point distant k / V'i from the origin in 
the direction (l, m, n), that is, put 

x=kl/V'i, y=km/v'i, z=kn/V'i 
in (29), which gives the surface 

(O'CO'J2x2y2+( all-a a)2y2z 2+( O'a-0'1)lIz llxll=k4• . (30) 
This is a fourth degree surface in place of the simple second­

degree surface (16) for the normal stress. Its intersections with the 
planes x=o, y=o, z=o are rectangular hyperbolae as in Fig. 6 (b). 
It may be remarked that the coefficients in (30) are always positive 
so that the type of the surface does not vary with the signs of 0'1 , 
all' O'a in the way that (16) does. 

Because of the importance of shear in the failure of materials, it 
is obviously necessary to discuss the variation of'i with l, m, n in 
great detail. The first problem is to find when 'i is a maximum. To 
do this we put n2=I_[2_m2 in (29), which gives 
'i2=12(0'111-O'all)+m2(0'1I2-O'a2)+O'a2- {12(O'cO'a)+mll(O's-O'a)+O'a}2. (31) 

In this 1 and m may be varied independently, and the condition 
for 'i to be stationary is 

ih O'i atO, om =0 •• • (32) 



STRESS AND STRAIN 

Now, from (31) 

en 
T oz=1(O'c0'3){(0'1+0'3)-2[12(O'c0'3)+m2(O'c0'3)+O'al}, (33) 

T ;: =m(O'C0'3) {(O'z+0'3)-2[12(O'cO'a)+m2(O'z-0'3)+O's]}· (34) 

To make both (33) and (34) vanish as required by (32), we may 
take 1=0 so that (33) is satisfied, and, using this value in (34) we 
must have 

I-2m2-0 

to make the second bracket in (34) vanish. Thus if 
1=0, m=2-1, n=2-1, • • (35) 

7: is stationary, and by (29) its value is t(O'z-O'a). 
Similarly, (33) and (34) can be satisfied by taking m=o in (34), 

which leads to 
1=2-1, m=o, n=2-1, . • (36) 

with the value t(O'cO'a) of T. 
Finally, by an independent calculation, 7: has a stationary value 

of !(O'cO'.) in the direction 

1=2-1, m-2-t , n-o. . . (37) 
These stationary values of the shear stress are called the princi­

pal shear stresses and are denoted by 7:1,7:2 , 7:a , so that 

Tl=!(O'a-0'3)' 7:z=!(O'CO'a), 7:a-1(0'1-0'2)· . (38) 
Since, by our convention, 0'1>0'2>O'a , the greatest of (38) is 7:2 • 

Using (35), (36) and (37) in (26), it appears that the normal stresses 
corresponding to Tl , 7:2, 7:a , are 

!(0'2+O'a), '(O'a+0'1), 1(0'1+0'2)· • (39) 
Finally, it follows from (35), (36) and (37) that the directions 

for which the shear stress is stationary bisect the angles between 
the principal axes, so that stationary values of the shear correspond 
to the points P, Q, R of Fig. 6 (b). 

The most important result is that the greatest shear stress is 
!(O'cO'a) and is across a plane whose normal bisects the angle between 
the directions of greatest and least principal stress. 

In § 5 the variation of both normal and shear stress will be dis­
cussed by an extension of the method of Mohr described in § 3. 
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The discussion above and that of § 5 only consider the magnitude of the 

shear stress; this is sufficient for many purposes. If, in addition, the direc­
tion of the shear stress is needed, it can be found from the fact that it lies 
in the plane of (I, m, n) and the resultant stress whose components are lal , 
mas, naB by (24). The direction cosines of the normal to this plane are 
proportional to 

mn(a.-al), nl(al-a.), Im(al-al). (40) 
The direction of the shear is the intersection of this plane with the plane 

(I, m, n), and thus its direction cosines are proportional to 
l{(al-aa)n2-(a.-al)ml }, m{(as-al)/I-(a.-as)nl},} 

n{(aa-al)ml-(al-aa)[I}. 

s. MOHR'S REPRESENTATION OF STRESS 
IN THREE DIMENSIONS 

In two dimensions Mohr's representation provided the most elegant 
representation of the variation of normal and shear stress with direction, 
and in three dimensions it proves to do so also. 

We start with the equations § 4 (26) and § 4 (28) for the normal and 
shear stress across the plane whose normal has direction cosines I, m, n, 
namely 

TI=llall+mla.l+n8aal-al, 

where II+ml+nl=l. 

Solving (I) to (3) for 12, ml, nl, gives 
II (a.-a)(a.-a)+TI 

= (a.-aJ(a.-al) , 

I (a.-a)(al-a)+T2 
m = -(a.-a.)(al-a.) , 

I (al-a)(a.-a)+T1 
n (aca.)(a.-aa). 

(I) 

(2) 

(3) 

(5) 

(6) 

Now suppose that one direction cosine, say n, is fixed; this implies that 
the normal to the plane considered makes a fixed angle cos- l n with the .-axis. Then by (6), a and T for such a plane are related by 

(al-a)(a.-a)+T1 ... nl(al-a.)(al-a.), 
or TI+ {a-l(al+a.) }1 ... i(al-a.)l+nl(al-a.)(a.-a.). (7) 

That is, plotted on the (a, T) plane, a and T lie on a circle whose centre 
is at (l(al+a.), 0) and whose radius is 

{i(al-a.)l+nl(al-a.)(al-a.) }I. • (8) 

Plotting the points P, (al' 0); Q, (ai' 0); R, (a" 0) in Fig. 7 (a), the 
centre is at A, and the radius varies from AQ=i(aca.) for n-o to 
AR=i(al+a.)-a. for n=I, a typical circle of this family being DEF. 
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In the same way taking 1 constant in (4) gives the family of circles 
.,.2+ {0'-!(0'2+O'a) }2=1(0'2-O'a)'+12(0'2-0'1)(O'a-0'1) (9) 

with centres at the point B, (i(O'a+O'a), 0) and radii varying from BQ for 
1=0 to BP for 1=1, a typical circle being GEH. 

Finally, taking m constant in (5) gives the family 
.,.2+ {O'-i(O'I+O'a) P= l(O'CO'a) 2+m'(O'a-0'.)(O'c 0'2) • (10) 

with centres at the point C, (!(O'I+O'a), 0) and radii decreasing from CR 
for m=o to CQ for m= I. 

The way in which a point is fixed by its direction cosines may be seen 
from Fig. 7 (b) in which the points in which a line of direction cosines 
I, m, n meets an octant of a unit sphere are shown. The circle GEH on 

z 

l' 

o 'I 

(a) 

FIG. 7 

the unit sphere (the intersection of a cone whose axis is Ox and the sphere) 
corresponds to the points l=const.; if l=cos 8 the point H in which it 
meets the xy-plane for which n=o is such that the angle HOx is 8, l=cos 8, 
m=sin 8. Similarly the circle FED corresponds to n=const., and if the 
angle DOz is.p, OD is [=0, n=cos .p, m=sin.p. 

Now the circles of centres B and A, Fig. 7 (a), are in fact the two­
dimensional Mohr circles for the yz- and xy-planes, but for completeness 
we shall derive their properties again here. Considering the latter, the 
stresses corresponding to the point H of Fig. 7 (b) for which l=cos 8, 
m=sin 8, n=o, are by § 4 (26) and § 4 (29), respectively, 

0'=0'1 cos' 8+0'1 sin2 8 
=!(0'1+0'2)+i(O'CO't) cos 28, 

.,.2=1(0'1-0'2)3 sin2 28. 
Since the stress 1 at this point is known to be represented by H in 

Fig. 7 (a) it follows that the angle HAP is 28. In the same way it follows 
that the angle DBR is 2.p. 

1 Note that here .,. is the magnitude of the shear stress. In the two­
dimensional discussion of § 3 both sign and magnitude were treated. 
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This gives a simple, completely geometrical construction for the stress 
at the point E determined as in Fig. 7. (b) by l=cos 0, n=cos ",. Marking 
off the angles 20 and 2", as in Fig. 7 (a) gives the points Hand D, and the 

FIG. 8 

intersection of circles through them, with centres B and A respectively, 
gives the required stress. A diagram with a family of such circles is shown 
in Fig. 8 in which the numbers on the curves are the values of ", and 0 
in degrees. 

6. DISPLACEMENT AND STRAIN. INTRODUCTION 

When a substance is distorted so that the relative configuration 
of a system of marked particles 0, P, Q, R, ... in it is changed in 
any way, it is said to be strained. The analysis of strain is essentially 
a branch of geometry which studies such changes of configuration. 

Suppose that in Fig. 9 (a) the full lines represent the 'initial' or 
'unstrained' position of the substance and the dotted lines the 
'final' or 'strained' position, 0', P', Q', ... being the strained 
positions of the points 0, P, Q, ... The vector 00' is called the 
displacement of the point 0, and, if the displacement is specified 
for every point of the substance, the state of strain is completely 
known. 

The ultimate objectives of the theory of elasticity are problems 
such as the calculation of the displacements in a body which is 
subjected to known stresses. Before such problems can be dis­
cussed, it is necessary to study stress and strain and the relation­
ship between them. Just as in the analysis of stress we assumed a 
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knowledge of certain stresses at a point and then studied in detail 
the variation of stress with direction, so, in the analysis of strain, 
we assume that the displacements are known and are given by a 
formula, and we study in detail the nature of the strain and its 
variation with direction. 

It should be remarked that strain as defined above is a change in 
relative configuration of the particles of the substance. Thus if the 
displacement corresponds to translation and rotation as a rigid 
body there is no strain. It is convenient, however, to allow dis­
placements to be quite general, and, in the course of the analysis, 
to separate out the elements of translation and rotation. It should 
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be understood also that the displacements may have any magni­
tude; in the problems of elasticity which arise in engineering they 
are usually quite small, but in problems of plasticity and hydro­
dynamics to which much of the geometrical theory applies they 
can be indefinitely large. 

The purpose of the analysis of strain is largely to introduce 
quantities which give a measure of the strain, and to discuss the 
way in which these vary in the neighbourhood of a point. There 
are two obvious measures of strain, firstly, the change in the length 
of a line, and secondly, the change in the angle between two lines 
or between a line and a plane: these give rise to the notions of 
extension and shear, respectively. 

Suppose that I is the distance between two neighbouring points 
o and P in the unstrained state, and l' that between the corre­
sponding points 0' and P' in the strained state, then e, the 
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e:dension corresponding to the points 0 and P in the unstrained 
state, is defined by 

1'-1 
8=-,-, (I) 

that is, it is the ratio of the change in length to the original length. 
This is not the only quantity of this type in use as a measure of the 
extensional strain, in fact in discussing finite strain it is more con­
venient to use the quadratic elongation it defined by 

it=(I'/l)2={I+8)2. (2) 

Next, suppose that OP, OR are perpendicular directions at 0 
in the unstrained state, and that the angle between the correspond­
ing directions 0' P' and 0' R' in the strained state is In-lp, cf. Fig. 
9 (a). Then the shear strain" at the point 0 associated with these 
directions is defined as 

" .. tan 11'. (3) 
The reason for the name and the importance of the concept is 

that near the point 0, parallel lines such as OP, BA, DC may be 
regarded as having slid or been 'sheared' across each other into 
the positions O'P', B'A', D'C', etc., Fig. 9 (b). Similarly, in three 
dimensions, if a line and a plane are perpendicular in the un­
strained state and in the strained state make an angle of In-lp with 
one another, the amount of the shear is " .. tan 11" 

The general theory 1 indicated above is in fact so complicated 
as to be almost useless for practical purposes. This is, essentially, 
because of the fact that straight lines in the unstrained state be­
come curves on straining. There are two simplifying assumptions 
on which a workable theory is obtained: 

(i) Infinitesimal Strain. Here it is assumed that at every point of 
the body the quantities e and" defined in (I) and (3) are so small 
that their squares and product are negligible. This is the normal 
assumption of the Theory of Elasticity. 

1 The general theory is developed in Love's Mathematical Theory of 
Elasticity (Cambridge, Ed. 4, 1927), also, using more advanced mathe­
matical methods, in Murnaghan, Finite Deformation of an Elastic Solid 
(Wiley, 1951), and Green and Zema, Theoretical Elasticity (Oxford, 1954). 
Fairly full and elementary discussions of homogeneous strain occur quito 
early in the literature, e.g. Thomson and Tait, Treatise on Natural Philo­
sophy, Vol. I, § 155 if., Becker, 'Finite homogeneous strain', BuU. Geol. 
Soc. Amer., 4 (1893), 13. See also Brace, ibid., 72 (1961), 1059. 
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(ii) Homogeneous Strain. This is a special case of the general 

theory of finite strain which can be studied by elementary methods. 
A strain is called homogeneous if all straight lines remain straight 
lines after straining, and parallel straight lines remain parallel, 
though their direction may be altered. It follows by elementary 
geometry from this definition that similar and similarly situated 
figures at all points of the body are deformed in the same way, cf. 
Fig. 9 (c). This implies that the state of strain may be regarded as 
being the same allover the body. This is one reason for the name 
'homogeneous' . 

There are two reasons for studying homogeneous strain: firstly, 
it will be shown in §§ 10, I I that in the general case there is a small 
region in which the strain is homogeneous surrounding any point, 
so that results proved for homogeneous strain apply in this region; 
secondly, while the strains occurring in engineering practice are 
usually infinitesimal, large strains do occur, occasionally in engi­
neering and frequently in geology, and it is very desirable to have 
a detailed knowledge of their nature in a special case. 

The theory of finite homogeneous strain is developed in §§ 7-<), 
and that of infinitesimal strain independently in §§ 10, II. It is 
instructive to deduce results for the latter case from the former as 
in the derivation of § 10 (IS). 

7. THE GEOMETRY OF FINITE HOMOGENEOUS STRAIN 
IN TWO DIMENSIONS 

A general account of the analysis of finite homogeneous strain 
in two dimensions 1 will be given in this section. This can be done 
by the methods of elementary co-ordinate geometry: this treat­
ment has the advantage that any specific quantity can be calculated 
readily although the formulae are often rather clumsy. 

The displacements of all points of a body can in principle always 
be represented by an algebraic formula which gives the final posi­
tion of a point in terms of its initial position. If 0 is the initial 
position of a point which we choose as origin and 0' is its final 
position, we may choose parallel rectangular axes Oxy and 0' x'y' 
through 0 and 0' and the formula will relate the final position 
(x', y') of a particle to its initial position (x, y). To get the actual 

1 A discussion of the three-dimensional problems to which the two­
dimensional theory applies is given in § 14. 
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displacement of the particle the translation of the origin from 0 to 
0' must be added. 

It is almost obvious (and it will be proved formally in (10) 
below) that homogeneous strain as defined in § 6 corresponds to 
a linear relation between x', y' and x, y. Before considering the 
general case, the important special cases which often occur will be 
mentioned briefly. 

(i) Simple Extension along the x-axis, 
x'=kx, y'=y, (I) 

if k> I the strain is an extension, and if o<k< I, a contraction. 
(ii) Extension along both the x- and y-axes, 

x'=k1x, y'=ka)', (2) 
where kl and k2 may have any positive values. 

y 

y' 
\ y' \ X' 

\ Y \ 

\ X' 
~ ........ 

\ '" I~""e 
0 x lC 

(a) 

• 

B A B 

~:-t----r' I I +. '0-' .t-
I • " c';- ------- -if, , 1.---
CDC' C 

FIG. 10 

a' 

I 

, , , 

A A' 
---; , 

/ , 

0' 0 
(c;) 

(iii) Pure Shear. This is the special case of (ii) in which kl=k> I, 

k2=k-t, so that 
x'=kx, y'=k-1y. 

(iv) Simple Shear. 
X' =X+2sy, y' =y, (4) 

where s is a constant (the factor 2 is inserted for analytical con­
venience). 

(v) Rotation through an Angle O. The formulae for finite rotation 
(which frequently occurs in combination with strain) may be 
written down from Fig. 10 (a). They are 

x' =X cos O+y sin 0, y' =-x sin O+y cos 0, (5) 
x=x' cos O-y' sin 0, y =x' sin O+y' cos O. (6) 
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The way in which a square ABeD with sides parallel to the axes 
is deformed by pure shear (3) and simple shear (4) is shown in 
Fig. 10 (b) and (c). It will appear later that these two important 
types are closely related: for the present we merely note that 
simple shear corresponds to a sliding of lines parallel to AB across 
one another without distorting them, so that the right angle BEO 
becomes the angle B' EO of tn-1p where 

tan 1p=2S, 

and this is the shear strain y as defined in § 6 (3). 
The General Linear Transformation. (I) to (5) are all special cases 

of the formula 
x' =ax+by, y' =cx+dy, 

where we shall assume a>o, d>o. Solving (7) for x and y gives 

Jz2x=dx' -by', h2y=-cx' +ay', 
where 

Jz2=ad-bc. 

It will appear later that areas are increased by the strain in the 
ratio h2 : I, so it may be assumed that h2>0. We shall now consider 
in detail the changes in configuration caused by the strain (7). 

The Transformation of Straight Lines. The line 

y=mx+c 

in the unstrained state becomes by (8) 
(a+bm)y' = (c+dm)x' +ch2, . (10) 

so that all straight lines remain straight lines after straining, and 
parallel straight lines remain parallel. Thus the formulae (7) fulfil 
all the conditions for homogeneous strain given in § 6 and, clearly, 
the linear transformation (7) is the most general transformation 
which does so. 

Next, we consider the way in which the angle between two 
straight lines which are perpendicular in the unstrained state is 
altered by straining. As remarked in § 6, if this angle changes to 
tn-1p, y=tan 1p is the shear associated with these directions. Sup­
pose that initially OA and OB are perpendicular lines which make 
angles () and tn+() with Ox, Fig. II (a), and that O'A' and O'B' 
are their final positions after straining which make angles ()' and 
in-1p+()' with O'x', Fig. II (b). 
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Writing m=tan 0, so that tan (tn+O)=-m-l, it follows from (10) 
that 

0' c+dm (0' 1. ) c-dm-1 

tan = a+bm' tan +2n -tp = a-bm-1 ' . (II) 

Therefore, using (9), 
h2(m+m-l) 

tan (tn-tp)=b2+d2--aCc2-(ab-+cJ5(m-=-m--':I) . (12) 

a A' 

a' Bo 
a I 

a' '\. I 

" A' 
.... ' A ~ 1 ,oJ) .. ' ... " 

y'!1T e 1'11-011 .. .. ' .... 
I ...... S' 

, ... ... 4 ______ 

° x 0' x' x 

(0) ( b) (el 

FIG. II 

Since m=tan 0 it follows that 
2h2 tan tp=2(ab+cd) cos zO+(b2+d2-a2-c2) sin zO. . (13) 

Since y=tan tp this gives the way in which the shear y varies 
with direction. It follows from (13) that OA' and OB' are perpen­
dicular, tp=o, only 1 if 0 has the values ex or ex+tn where 

z(ab+cd) 
tan zex=a2+c2_b2~J2' . (14) 

Thus there is only one pair of lines which are perpendicular 
before straining and which remain perpendicular after straining. 
The initial positions of these lines are called the principal axes of 
strain. 

A result of great importance, which follows immediately by 
differentiating (13), is that tp, and therefore the shear y=tan tp, has 
its greatest magnitude when O=ex:l:!n, where ex is given by (14), 
that is, for directions in the unstrained state which bisect the 
angles between the principal axes. 

Except for the trivial case a=d, b=-c for which 1p=O for all 8. This 
corresponds to an extension which is the same for all directions combined 
with a rotation, cf. (5). 
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The angles ex and ex+!n which the principal axes make with Ox 
in the unstrained state have been found in (14). We also need the 
angles ex' and ex' +in which their final positions make with 0' x'. 
To find these put tan O'=tan ex'=m', tanex=m, 'IjJ=o, in (II) which 
become 

bmm' +am' -dm-c=o, 

cmm' -dm' +am-b=o. 

Adding and subtracting (IS) and (16) gives 

(IS) 
(16) 

, m'+m b+c 
tan (ex +ex)= I-mm'=a-d' (17) 

m'-m c-b 
tan (ex'-a)= I+mm'= a+d' (IS) 

It follows from (17) and (IS) that 
, 2(ac+bd) 

tan 2ex = --- . . (19) a2+b2_c2_d2 • 

The angle ex' -ex given by (I S) is called the rotation; it is the angle 
between the principal axes and their final positions. If b=c the 
rotation vanishes and the strain is called irrotational. 

The Transformation of a Circle. So far the discussion has been 
confined to the changes in direction of straight lines: we next con­
sider their changes in length. The simplest way of doing this is to 
study the deformation of the circle of unit radius in the unstrained 
state, namely, 

X2+y2=I. 

By (8) this becomes the ellipse 

c2+d2 '2 2(ac+bd) , , a2+b2 '2 • (21) 
~x h4 xy+~y =1. 

This is called the strain ellipse and is fundamental to the whole 
subject. It gives an immediate picture of the nature of the deforma­
tion. To find the proportional change of length p in any direction, 
put x'=p cos 0', y'=p sin 0' in (21) which gives 
(c2+d2) cos 2 O'-2(ac+bd) sin 0' cos 0' +(a2+b2) sin2 0' =h'/ p2. (22) 

Differentiating (22) it appears that p has a stationary value when 
(a2+bC c2-d2) sin 20'-2(ac+bd) cos 20'=0, 

that is, when 0' has values ex' or ex'+ln, where ex' is given by (19). 
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These directions are those ofthe axes ofthe strain ellipse (21), and 
it thus appears by (19) that they coincide with the final positions 
of the principal axes of strain. 

To find the lengths of the axes of the strain ellipse (21), follow­
ing the usual method of coordinate geometry, we consider its 
intersection with the circle of radius R, 

X'I y'2 

R2T R2=1. 

Subtracting (21) and (23) gives 

{ C2+d2 1}'2 2(ac+bd) , , {a2+b2 I} '2_ . (24) -xr-R2 x h4 xy + ~-R2 Y -0 

for the equation of the pair of straight lines through the origin and 
the points of intersection of the circle (23) and the ellipse (21). If 
(24) is a perfect square these lines coincide, that is, the circle 
touches the ellipse, and the condition for this is 

{C2+d2_~}{a2+b2_~}_(ac+bd)2= h4 R2 h4 R2 h8 0, 

or, using (9), 
. (25) 

The quadratic (25) gives two values for the radii of circles which 
touch the ellipse (21); these are the lengths of its major and minor 
axes. Writing A and B for these with A '>B, (25) gives 

A2+B2=a2+b2+c2+d2, (26) 
AB=h2• (27) 

It follows, again using (9), that, 
(A+B)2=(a+d)2+(b-c)2, 
(A-B)2={a-d)2+{b+c)2. 

The lengths A and B of the axes follow from (28) and (29). 
Since the area of the ellipse is nAB and that of the circle which 
was deformed into it was n, it follows from (27) that h2 is the ratio 
of these two areas. The quantity (hi_I) is called the dilatation; if 
it is zero the strain causes no change in area. 

Now that the directions and lengths of the axes of the strain ellipse are 
known it is frequently convenient to use them as new axes of reference. 



STRESS AND STRAIN 29 

If Xl and .>'1 are coordinates relative to them, the equation of the strain 
ellipse is 

Firstly, the lines whose lengths are unchanged by straining may be 
found. These are the lines through the origin and the intersection of (30) 
with the circle of unit radius X12+YI'=I, that is, the lines 

XI2U2-I )+YI2(~2-I )=0. . . (31) 

These are real only if A>I >B, and they make angles :l::a' with the OXI 

axis where 
B(A2_I)1 

tan a'= A(I-B2)1' 

(32) gives the position of these lines in the strained state: their initial 
position is given by (38) below. 

Secondly, the shear strain can be determined in the following way: in 
the unstrained state the radius vector to a point of the unit circle and the 
tangent to the circle at that point are perpendicular; if the radius vector 
to the corresponding point of the strain ellipse and the tangent at that 
point make an angle lOT-'I' the shear strain is y=tan 'P. To calculate this, 
suppose that (Xl> kxl ) is a point on the strain ellipse (30); the normal at 
this point makes an angle tan- l (kAI/BD) with the Xl-axis and therefore 

k(AI_BI) 
y=tan'l' BI+A2kl' • (33) 

As k varies, y given by (33) has a maximum when k=:l::B/ A. That is, 
the angle .p' between the final position of the directions of maximum shear 
and the major axis of the strain ellipse is given by 

.p'=:I:: tan-I (B/A). • (34) 

The initial positions of these directions have already been found to 
bisect the angles between the principal axes of strain. 

The Reciprocal Strain Ellipse. In general, ellipses are trans­
formed into ellipses, but there is one case of great importance. 
namely, the ellipse 

(a2+c2)x2+2(ab+cd)xy+(b2+d2)y2= 1 • • (35) 

which is transformed into the circle X'2+y '2= I. This follows imme­
diately from (7). (35) is called the reciprocal strain ellipse. The 
same type of analysis used in (21) to (29) shows that its axes are 
inclined to Ox at angles given by (14), that is, that they are the 
principal axes of strain. Also the lengths of its axes are 

(I/B) and (I/A), . (36) 
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where A and B are given by (28) and (29), that is, they are the 
reciprocals of the lengths of the axes of the strain ellipse. If 
AB=h2=I, the condition for no change in area by the strain, the 
two ellipses are equal. 

The initial positions of the lines of unchanged length, whose final 
positions were found to be given by (32), follow in the same way from 
the intersection of the unit circle and the reciprocal strain ellipse: they 
are inclined at ± /) to its major axis where 

tan /)=[(I-B2)/(AI_I)]l. • (37) 

If there is no rotation, the major axis of the reciprocal strain ellipse 
coincides with the minor axis of the strain ellipse. Such a strain is called 
a pure strain, and the analysis of this section shows that the most general 
homogeneous strain in two dimensions can be expressed as the combina­
tion of a pure strain and a rotation. 

The Case 0/ Steadily Increasing Strain. It is of some interest to consider 
what happens if the strain is increased steadily from zero to its final 
value (7). Since zero strain corresponds to x=x', y=y', steadily increasing 
strain may be represented by replacing a, b, c, d by I+,.(a-I), ,.b, ILC, 
I+,.(d-I), respectively, where,. increases from 0 to I. For infinitesimal 
strain, i.e., very small ,., (18) gives 

ex'-ex=i,.(c-b), 

so that ex' ~ ex and the rotation tends to zero as ,. ~ o. If exo is the 
common value of ex and ex' as ,. ~ 0, (17) gives 

b+c 
tan 2exo= a-d' • (38) 

This gives the position of the principal axes for infinitesimal strain. 
From (17) and (38) 

so that the position of the principal axes for infinitesimal strain bisects the 
angle between the principal axes and their final position for any finite 
strain. The relation between these sets of axes is shown in Fig. I I (c): 
as,. increases from 0 to I, all lines in the angle AoOA successively become 
principal axes. 

The Quadratic Elongation. The results obtained above by considering 
the geometry of the strain ellipse and the reciprocal strain ellipse might 
also have been found by studying the change in length of a line initially 
inclined at 0 to the x-axis. If r is the initial length of the line, so that 
x=r cos 0, y=r sin 0, the quadratic elongation A, § 6 (2), is, by (7), 

A=(X'I+y'I)/rl 

=(al+cl ) COSI O+z(ab+cd) sin 0 cos O+(bl+d l ) sin2 O. • (40) 

This may be discussed as before; for example, it follows on differentiat­
ing that A has maximum and minimum values in the directions (14) of the 
pnncipal axes. 
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A Numerical Example. Consider the case 
a=2, b=l, c=0·3, d=o·S. 

By (17) and (IS), or.'+or.=47·3°, or.'-or.=-14·00, so that or.=30·7°, or.'=16·6°, 
also by (39) or.°=23·7°. The rotation is 14° clockwise. By (9), hB""I·3 so that 
areas are increased in this ratio. (2S) and (29) give A=2·33, B=0·S6 for the 
axes of the strain ellipse. The axes of the reciprocal strain ellipse are 
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I/B=1·79 and I/A=O·43. By (37) and (32) the lines of unchanged length 
initially make angles :l::8=:l::21·So with the major axis of the reciprocal 
strain ellipse and in their final position make angles :l::8'=31·3° with the 
major axis of the strain ellipse. By (34) the final positions of the directions 
of maximwn shear make angles :l::~'=:l::13·So with the major axis of the 
strain ellipse, while their initial positions bisect the angles between the 
principal axes. 

In Fig. 12 the principal axes OA, OB are shown together with their 
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final positions OA', OB'. A'B'C'D' is the strain ellipse and A, B, C, D 
on the unit circle are the initial positions of the points A', B', C', D'. 
PQRT is the reciprocal strain ellipse and P', Q', R', T' are the points 
on the unit circle into which the points P, Q, R, T are strained. The 
initial and final directions OU, OU' of the lines of unchanged length, and 
OS, OS' of the directions of maximum shear strain are also shown, as well 
as the directions OA o, OBo of the principal axes for infinitesimal strain. 

It should be remarked that, while formulae have been given for the 
lengths and directions of the axes of the strain ellipse and the reciprocal 
strain ellipse, we have not indicated which of the perpendicular directions 
corresponds to the major axis: this can usually be found by inspection or 
by the use of (II) or (7), which are always available to determine corre­
sponding directions unambiguously. 

Pure Shear and Simple Shear. These special cases will be examined in 
the light of the general formulae: they can, of course, be discussed 
independently in a few lines. 

(a) ( b) 

FIG. 13 

For pure shear given by (3), the constants in (7) have the values a=k, 
d=k-l, b=c=o. By (14) and (19), «=«'=0, so that there is no rotation and 
the principal axes coincide with the x- and y-axes. By (9), hS=I, so that 
the dilatation is zero. By (28) and (29), the axes of the strain ellipse are 
k and k- 1• By (34) the initial and final positions of the directions of maxi­
mum shear strain make angles of ±1T / 4 and ±tan -1 (k -2), respectively, with 
Ox. Finally, by (32) and (37), the directions in which lengths are un­
changed make angles ±tan -1 (k -1) with Ox. 

One of these directions, OP, together with the strain ellipse and the 
circle from which it has been deformed, is shown in Fig. 13 (a) to illus­
trate an important property of pure shear. Since all lines parallel to OP 
are unchanged in length, the chord C'D' of the ellipse is equal in length 
to the chord CD of the circle, and the strain may be regarded as being 
produced by the sliding of chords of the circle parallel to OP (simple 
shear). The locus of the midpoints of these chords makes an angle Q'Ox 
equal to 1T-tan-1 (k- 3) with Ox, so that the shear strain tan 'I' is given by 

tan'l'=tan {!1T-tan-1 (k-3)-tan-1 (k- 1)} 

=k-k-l. 
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Thus a pure shear may be regarded as a simple shear referred to axes 

inclined at tan- 1 (k- 1) with Ox. The value of s in (4) is t(k-Iz-l). 
Considering next simple shear given by (4), we have a=d= I, b=2S, c=o. 

By (17) and (18), CX+CX'=t1T, cx-cx'=tan- 1 s; thus the rotation is-tan-1 s, the 
principal axes make angles i tan- 1 S :l:t1T with Ox, and their final 
positions make angles :!:t1T-i tan- 1 s with Ox. From (28) and (29), 
A= y(S2+1)+I, B= y(S2+ I)-S. It follows that a simple shear corresponds 
exactly to a pure shear with k=y(s"+I)+s and the major axis of the strain 
ellipse inclined at t1T-i tan- 1 s=tan- 1 (k-1) with Ox. This is the result 
derived above by considering pure shear. The position of the strain ellipse 
is shown in Fig. 13 (b). 

8. FINITE HOMOGENEOUS STRAIN IN 
THREE DIMENSIONS 

In this section the way in which the two-dimensional theory of 
§ 7 is extended to three dimensions is indicated briefly. Actual 
quantitative calculations are best performed by Mohr's method 
discussed in the next section. 

In three dimensions, the most general transformation from the 
unstrained position (x, y, z) to the strained position (x', y', z') 
will be 

x'=a1x+a2y+aaz, (I) 
y'=b1x+b2y+baz, (2) 
z'=C1X+C2y+caz. (3) 

It is found that in general there is only one set of three mutually 
perpendicular directions in the unstrained state (the principal axes 
of strain) which remain mutually perpendicular after straining. If 
the initial and final positions of this set are the same, the strain is 
i"otationalj if not, they can be made to coincide by a finite rotation 
about some axis. A sphere of unit radius is deformed into the 
strain ellipsoid whose axes are the final positions of the principal 
axesj while the ellipsoid which deforms into a sphere of unit radius 
is the reciprocal strain ellipsoid and its axes are the principal axes 
of strain. The most general strain of this type can be expressed as 
a combination of a pure strain (which is specified by the shape of 
the strain ellipsoid) and the rotation which brings the principal 
axes of strain from their initial to their final positions. The ratio 
of the difference in volume between the strain ellipsoid and the 
sphere from which it was deformed to the volume of the sphere 
is the dilatation. If this vanishes the strain is sometimes called 
equivoluminal. 
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If A, B, C, where A> B> C, are the lengths of the axes of the strain 

ellipsoid, and Xl> Yl> Zl are coordinates relative to these axes, its equation 
will be 

and the sphere from which it was deformed will be 
X1S+Y11+Z12=1. (5) 

The intersection of (4) and (5) gives the lines whose lengths are un­
changed. Subtracting (4) and (5), it appears that these lines lie on the cone 

X1SU.-1 )+Y12(~I-1 )+Zll(~I-1 )=0 (6) 

which is real only if A> 1 and C < I. This is the analogue of the pair of 
lines of unchanged length of § 7 (31). 

The intersection of (4) with a sphere of radius B (the intermediate axis 
of the strain ellipsoid) lies on the pair of planes through the origin 

X1SU.-~.)+Z12(~._~S)=0 (7) 

which are real and inclined to the xl-axis at angles 
-1 {C(AS-B2)l} 

::I:tan A(lP-CI)l' (8) 

These planes and all planes parallel to them cut the strain ellipsoid in 
circles called the circular sections. They are planes in which the lengths of 
all lines are increased in the same ratio, namely B:I. If B=I the cone (6) 
and the planes (7) are the same and the circular sections give the lines of 
unchanged length. If B= 1 and C= 1 / A so that the strain is equivoluminal, 
(8) becomes 

::I:tan-1 (I/A). 
The circular sections have been much discussed in connection with strain 
hypotheses of failure, cf. § 25. 

9. MOHR'S REPRESENTATION OF FINITE HOMOGENEOUS 
STRAIN WITHOUT ROTATION 

Consider the strain 
X'=X(I+6"l), y'==Y(I+£.), Z'=Z(I + 6"8) (1) 

which is the general pure strain in three dimensions with coordinates 
referred to the principal axes of strain. A complete representation of the 
variations of extension and shear in any direction may be obtained by the 
methods of Mohr which were developed in § 5 for the representation of 
stress. 

If the length of a line OP is r in the unstrained state and is OP'-r' in 
the strained state, we have as in § 6 (I) 

(2) 
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where £ is the extension corresponding to the initial direction OP. In 
calculating the lengths of the lines it is the squares of the lengths which 
appear, so that the natural quantity to consider is not r' /r but its square 

>"=r'2/r l. • (3) 

This is called the quadratic elongation, and in dealing with finite strains it 
is always this which is studied.1 

The quantities 
>"1=(1+£1)2, >",=(1+£2)', "a=(I+£3)2 (4) 

are called the principal quadratic elonIfations. 
If the direction cosines of OP are (I, m, n), so that x=lr, y=mr, z=nr, 

and so, by (I) and (4), x'2=>"lx2=>"1/'r2, etc., we get 
>"=r'l/rl= >"1/2+ >"2m2+ "ani. (5) 

",' 

'p 

(a) 

f,m,ri .. 

( b) 

FIG. 14 

." " .". ~tm.n 

This gives the quadratic elongation corresponding to any initial direction. 
Also from (I), the sphere 

becomes the strain ellipsoid 
X'I y'l Z'I 
-+-+-=I "1 >... >"s ' 

while the reciprocal strain ellipsoid 
>"1X2+>..ay2+>"sZI_1 

becomes the sphere 

(6) 

(8) 

X'I+y'I+Z'I= I. (9) 

To find the shear corresponding to an initial direction (I, m, n), suppose 
that P and P' are corresponding points on the sphere (6) and the strain 
ellipsoid (7). Let T and T' be the tangent planes to the sphere and the 
ellipsoid at these points. We shall use the notation (1, m, n) for the 

1 In dealing with infinitesimal strain in §§ 10, II, C is assumed to be so 
small that cB is negligible and so >"=-1+2E. >.. is also closely related to the 
'natural strain' defined in § 18. 
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direction cosines of the direction OP in the unstrained state, (1', 111', n') for 
its direction cosines in the final state, and (l", m", 71") for the direction 
cosines of the normal to the tangent plane T', Fig. 14. All these directions 
are of physical importance and it is useful to be able to express quantities 
such as elongation and shear in terms of any of them. As in § 6 (3), the 
shear y corresponding to the initial direction (I, m, n) is defined by 

y=tan 'P, • • (10) 
where 'P is the angle between the radius vector OP' and the normal to the 
plane T', so that 

cos 'P=l' l"+m' m"+n' n". 

To evaluate this, we notice that the point P' is by (I) 

/}I.,I, mA.I, nA.I, 

so that the tangent plane to (7) at this point is 

lx' A,-I+m),' "-a-I+nz' A. -1= I. 

(II) 

The direction cosines (I", m", n") of the normal to (7) at the point (12) 
are thus proportional to IA,-I, mA.-., nA.-I, and so 

l"=I(A,R)-I, m"=m(A.R)-I, n"=ll(A.R)-I,. . (14) 

where R=(l2/ A,)+(m2 / A2)+(712 / A.). . (15) 
Also the direction cosines (I', m', n') of OP' are proportional to (12) so 

that, using (5), 
1'=IA,IA-I, m'=mAo.A-., n'=7IAaIA-I. (16) 

Using (14), (16), and 12+m2+7I2=1 in (II), we get 

y2=tan 2 'P=seco 'P-I=RA-I. (17) 

Multiplying out, we get finally, 

A, A.Asy2= A,( A.- AS) 2m2nO+ Ao( A3- A,) 2n2ZO+ AS( A,- Ao) 212m2. (18) 

(5) and (18) give the quadratic elongation and shear corresponding to 
the initial direction (l, m, n) of OP. 

Using (16) in 12+mO+nO=1 gives 

and using it in (18) gives 

y:=(~_~)O m'2n'2+(~_~) 2 n'2['2+ (~_~)21'.m'2. . (20) 
A A. AS A3 A, A, Ao 

These express A and y in terms of the direction cosines (I', m', n') of the 
line OP' in the strained state. 

Finally, manipulation of a similar type gives for the formula for y in 
terms of (I", m", n"), the direction cosines of the normal to T', 

• (A,- A.)21"2m"2+( Ao- A3) "m""n"2+( A3- AI) 2["2m"· 
y = ----- -(.Q"·+>'om"·+A~n":if· ----. . (21) 

Two very interesting representations of Mohr's type for the variation 
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of A and l' may now be found. The first of these is in terms of (r, m', n'). 
If we use the notation 

\, 1 
I\=X' 

in (19) and (20), these become 

A'=A\['2+,\'21/1"+'\'31/'2, • (23) 

y"=( '\'c'\' 2) ,['2m',+(,\',-'\' 3)2m'2n'2+('\'3- ,\\)2n"['2. • (24) 

These are identical in form with the equations § 4 (26) and (29) for 
normal and shear stress across a plane, so that ,\' and 1" can be represented 
completely by Mohr's circle diagram. The whole of § 5 can be taken over 
mutatis mutandis. 

Clearly the above, which involves circles only, is the geometrically 
simplest type of representation: it is possible, however, to get a similar 
representation of ,\ and yin terms of (I, 111, n) which involves ellipses. To 
do this, using (IS) we write (17) in the form 

[. m' n' y2+I 
X;+-X;+-X;=-A-' 

and then, solving (25), (5), and ['+m2+11 2=1 for 12, m', n2, gives 

/2- '\\('\::-'\2)(A- '\3)+y'A1'\2'\3 
- - "(ACA~)(.\C'\3) ... , 

, '\2(,\-,\\)(A-'\3)+y'A\'\2'\. 
m = -·A( A."::' A3)( .\~=-A1) . .. , 

1/'= '\3('\-'\1)('\- ~2)+Y'A\ '\2 A• 
A( A3- A1)(.\3- A.) . 

If 11=0, (28) becomes 

[,\-!( "1+ A2)]'+'\1 '\21'2= t(,\c A2) 2, 

which is an ellipse in the ('\, y) plane with its centre at (!('\1+'\'), 0), and 
A- and y-axes of t('\l-A.) and !(,\C,\')(,\lA2)- ,respectively. If <\ ><, >'3 
we have '\1>'\2> A3 and the curves corresponding to /=0, m=o, n=o are 
the ellipses shown in Fig. IS. In the same way other constant values of 
1, m, n lead also to ellipses. 

FIG. IS 
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For m=o, which by Fig. IS gives the largest values of y, we have, 
writing l=cos Ct, n=sin Ct in (S) and (18), 

A=A1 cosl Ct+A. sinl Ct, • (30) 
AI-A. . 

y= 2{AIAJl sm 2at. (31) 

It follows that the greatest shear occurs when at=1r/4, and so by (16) 
corresponds to a direction in the strained state making an angle 

tan-I (Aa/AI)l 

with the x-axis which is the direction of greatest extension. This is the 
result of § 7 (34). 

10. INFINITESIMAL STRAIN IN TWO DIMENSIONS 

In this section the theory of infinitesimal strain will be developed, 
and, in particular, the way in which extension and shear vary with 
direction in the neighbourhood of a point will be calculated subject 
to the assumptions stated in § 6, namely, that the squares and 
product of these quantities are negligible. 

y a' 

o •••• :,·,j / 
y 

/ P'(x. u,y.y) 

P(x,y) 

0 'x 0 It 

(0) (b) 

FIG. 16 

Choosing axes Ox, Oy, suppose that the point P which is at 
(x,y) before straining is atP' (x+u,y+v) after straining, Fig. 16 (a). 
Then (u, v) is the displacement corresponding to the point P. 
u and v are functions of x and y, and we shall assume that they 
vary slowly so that squares and products of their derivatives 
au/ax, au/'Oy, &/ox, &/oy, are negligible. This is essentially the 
fundamental assumption of infinitesimal strain in a slightly differ­
ent form. 
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Now consider a point Q close to P whose coordinates are 
(x+x', y+y'), where x' and y' are so small that their squares and 
product are negligible compared with x' and y'. The displacement 
of Q will be (u+u', v+v') where 

(I) 

(2) 

by Taylor's theorem, neglecting terms in X'2, x'y', etc. It follows 
from (I) and (2) that the coordinates of Q relative to P, which are 
changed from (x', y') to (x'+u', y'+v') by the strain, are linear 
functions of x' and y', and thus that the strain in the immediate 
neighbourhood of any point P is homogeneous in the sense of § 7 so 
that the whole of the theory of that section is applicable. It is more 
convenient, however, to develop the theory ab initio in a manner 
closely related to the theory of stress in § 3. 

Introducing the fundamental notation 
ou ov ou ov 

EIIJ=ox' EII=oy' rllJlI=rllllJ=oy +ox' 

l(OV OU) 
ro=2 ox -oy , 

(I) and (2) become 
U'=E.,x'+!rIlJIIY'-roy', (5) 
v'=tr~'+EIIY'+rox'. (6) 

The terms (-roy', rox') in (5) and (6) are just the components of 
the displacement of the point (x', y') due to rotation through a 
small angle ro, so that ro is called the component of rotation. If ro=o 
the strain is irrotational. 

The quantities EIIJ, Ell' rllJll are called the components of strain: to 
find their physical significance, consider the displacements of the 
points A and B in Fig. 16 (b) for which y' .. o and x'=o, respec­
tively. By (5) and (6), A moves to the point A' such that P'A" 
=(I+EIIJ)X', A'A"=(ro+bllJlI)x', and B moves to the point B' such 
that P'B"=(I+EII)Y', B'B"=y'(bllJll-ro). It follows (since squares 
of EIIJ, etc., are negligible) that E(JJ is the extension of an element 
initially parallel to the x-axis, and Ell that of one initially parallel 
to the y-axis. Also, the lines P'A' and P'B', which before strain 
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were parallel to the x- and y-axes, are inclined at !y.",+OJ and 
iY"'II-OJ to them, respectively, after strain: thus OJ represents the 
angle through which they must be rotated to make them sym­
metrical with the x- and y-axes, and the angle between them is 
!n-y."" corresponding to a shear of this amount as in § 6 (3). 

The three components of strain have been derived by differ­
entiation from the two components of displacement so it might be 
expected that they are not independent. In fact, there is a relation 
between their derivatives, namely, 

02S",+ 02SII= 02Y"'1I (7) 
oy2 ox2 ax oy' 

which follows immediately from (3). This is called the compati­
bility condition for the components of strain. 

Having defined the components of strain, we now proceed to 
express the extension of the element PQ in terms of them. Using 
(1) and (2) and neglecting squares and products of au/ax, etc., we 
have 

P'Q'2=(X' +U')2+(y' +V')2 

{( aU), au ,}2 {OV , ( OV) ,}2 
= I+ox x +oyy + oxx + I+oy y 

=X'2+y '2+ 2- X'2+ 2 -+- x'y' +2-y'2 au (aU OV) ov 
ax oy ax oy 

=X'2+y'2+2S..,x'2+2Y",vX'y' +2S lIy'2, (8) 

using the notation (3). Now suppose that PQ is of length rand 
makes an angle e with Ox so that 

x' =r cos e, y' =r sin e, 
then by (8) 

P'Q'2=r2{I+2E", cos 2 e+2Y"'1I sin e cos e+2E1I sin2 e},. (9) 

and taking the square root, remembering that the squares of s'" , 
etc., are negligible, 

P'Q'=r{I+s", cos2 e+Y"'1I sin () cos e+e ll sin2 e}. • (10) 
The extension e, § 6 (I), of a line at P in the direction e is thus 

p'n' -r 2 e . e () . 2 () e=--<---=e", cos +Y"1I sm cos +e ll sm . 
r 

. (II) 
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This is the fundamental result, analogous to § 3 (4) for the nor­
mal stress across a plane inclined to the axes, and the subsequent 
analysis differs only from that of § 3 in notation and in the unfor­
tunate absence 1 of a factor 2 in the second term of (II). 

The variation of E with 0 may be discussed as in § 3. 8 is stationary 
when 

0= ~~=(811-8",) sin 20+Y"'1I cos 20, • (12) 

that is, when 

tan 20= Y"'II • • (13) 
8",-811 

The directions given by (13) are the unstrained directions for 
which greatest and least extension occurs, so that they are the axes 
of the reciprocal strain ellipse defined in § 7. They are called, as 
before, the principal axes of strain, and the values of 8 in these 
directions are called the principal strains and will be denoted by 
81 and 8 2 with the convention 81 >8z • If a point is plotted distant 
R=k/81 from the origin in the direction 0, this point, whose co­
ordinates are x=R cos 0, y=R sin 0, will lie on the conic 

8.,x2+y",vX;Y+Elly2=k2• • (14) 
This conic is called the strain conic and the directions of its axes 

are given by (13). Referred to principal axes as new x- andy-axes, 
its equation will be 

81X2+8aY 2=k2, 
where 81 and 82 are the principal strains. It is an ellipse if 81 and 82 
have the same signs; an hyperbola if they have opposite signs; for a 
pure shear, 82=-81 , it is a rectangular hyperbola. The strain conic, 
which gives a measure of the extension of a line in any direction, 
should be distinguished carefully from the strain ellipse of § 7 
which gives the positions in the strained state of the ends of all line 
elements of unit length drawn from a point; the latter may be 
obtained by displacing the circumference of the unit circle radially 
by the amount (I I). 

Next, the variation of shear strain Y with direction has to be 
1 This discrepancy can be removed by inserting a factor t in the 

definition (3) of " .... but this is usually not done because of the very large 
amount of literature using the present notation. The change is made in 
developments of the subject which use tensor analysis. 



ELASTICITY, FRACTURE AND FLOW [§ 10 

considered. To find this, the change in angle between two direc­
tions initially at 0 and In+O is needed: this calculation is precisely 
the same as that leading to § 7 (I3) except that, by (S) and (6), the 
quantities a, b, c, d are replaced by 1+8111 , trlllll-CO, trlllll+CO and 
1+811 , respectively, and in the present instance the quantities 
8111 , 811 , i'1II1I' co and tp=i' are so small that their squares and pro­
ducts may be neglected. It follows from § 7 (I3) with these modi­
fications that 1 

i'=(811-8111} sin 20+i'1II1I cos 20. • (IS) 

(II) and (IS) may be regarded as formulae for change of axes. 
If Ox' and Oy' are new axes rotated through 0 from Ox and Oy 
and 8,r , 811 and i',rll are the components of strain relative to them, 
( I I) with 0 and O+ln gives 

e:r-8111 cos2 0+i'1DII sin 0 cos 0+811 sin2 0, (16) 

SY=8111 sin2 0-i'1DII sin 0 cos 0+811 cos2 0, (I7) 
while (IS) gives i'z'" • Addiilg (16) and (I7) gives 

e:r+SY-8111+811 • (IS) 
so that this quantity is invariant and equal to 81+82, cf. § 3 (S). 
This quantity is also the dilatation .6.; this follows since the axes 
of the strain ellipse are 1+81 and I +8. so that its area is n( 1+ 81+ 8.}, 
neglecting the small quantity 8181; the ratio .6. of the change in area 
to the original area n is therefore 

.6.=81+8• • • (19) 
(II) and (IS) have precisely the same forms as the expressions 

§ 3 (4) and (S) for the variation of normal and shear stress with 
direction. Thus the whole of the discussion of § 3 of the variation 
of (J and 7: with direction may be taken over. If the principal axes 
of strain are chosen as x- and y-axes, the extension 8 and shear 
strain i' for a direction inclined at 0 to Ox are by (II) and (IS) 

8-81 cos· 0+82 sinS 0=!(81+8S}+!(8C8.) cos 20, • (20) 
Y=-(81-82} sin 20. • (21) 

These are identical with § 3 (13) and (14) (except for the factor 
! in 7:) and it follows as in § 3 that 8 and !y can be represented by 
the Mohr diagram of Fig. 17 (a), cf. Fig. 4 (a). 

1 (9) may be derived in the same way from the expression § 7 (40) for 
the quadratic elongation. 
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The result (zo) may be applied to the experimental determination of the 

principal axes and strains at a point of the surface of a strained solid. This 
can be done by measuring the extensions in three directions, OP, OQ. 
OR, inclined at known angles a. and {3 to one another. Such measurements 
are made by strain gauges, 1 and this sort of arrangement is called a rosette. 
Suppose that OP is inclined at the unknown angle 0 to the principal axis 

y 

Y2'Y 

p 

0 f, f 0 x 

(a) ( b) 

FIG. 17 

Ox, Fig. 17 (b). Then, if £p, £Q, £B are the measured extensions in the 
directions OP, OQ, OR, (zo) gives 

£P=!(£1+£.)+!(£c£.) cos zO, 

£Q=!(£1+£.)+!(£c£.) cos Z(O+IX), 
£B=!(£1+£.)+!(£1-£.) cos z(O+a.+{3). 

These equations can be solved for £1> £. and O. For example, for the 
important case a.= {3=7T / 4, the solutions are 

£1+£.=£P+£R, 

£1- £2=[( £P-Z£Q+ £B) 2+ (£p- £B) 2]t, 

tan zO=(£p-Z£Q+£B)/(£P-£B). 

The Components of Strain in Plane Polar Coordinates 
So far we have only discussed displacement and strain in rectangular 

Cartesian coordinates, but many important problems can be most simply 
stated in plane or cylindrical polar coordinates. The development of the 
theory in polar coordinates follows the same lines as for Cartesians but 
with minor modifications. 

Let P, Q, Fig. 18, be two near points whose polar coordinates are (r, 0) 
and (r+r', 0+0'), respectively, where r' and 0' are small. Suppose that the 
displacement of P to P' is (u, v) referred to the radial and transverse 
directions PR and PT at P, and similarly that the displacement of Q to Q' 

1 Hetenyi, Experimental Stress Analysis (Wiley, 1950); Strain Gauges 
(Philips Technical Library, 195z). 
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is (u+u', v+v,) referred to the corresponding directions for Q. Then, by 
Taylor's theorem 

, GU,~, ,_ Ov , ~, 
u =W + 06 ' v - 0/ + 00 . (22) 

\Ve wish to calculate the extension 
£=(P'Q'-PQ)/PQ • (23) 

corresponding to PQ. Suppose that PQ is of length p and makes an angle 

o 

Q' 
\ 

\ v+v' , , 
I ,. 

~/' 
T v;~,' 

\ , 
\ , 
\ Q~~'" p' 
\ \ ,.R 
\ P \~ .... ...-'" 
'. cp ".' 
", u 

FIG. 18 

</> with PRo Writing, for shortness, l=cos </>, m=sin </>, and neglecting 
squares of the small quantities r' and f)', we have 

r'=lp, r8'=mp. . (24) 
Now, again neglecting squares of these small quantities, the coordinates 

of Q' referred to the rectangular axes PR, PT are 
pl+(Il+Il')-v8', pm+uf)'+(v+v'). 

Therefore, using (22) and (24), 
P'Q'2=[pl+u' -v8'] 2+ [pm+uf)' +v'j Z 

=p2{1(1+~)+7(;-v)}\p2{1~~ +m(I+;+~ ~)}2. 
Assuming as before that Gu/or, etc., are small, and in addition that II, v 

are small, l this becomes 
P'Q,z=pZ{I+2l"£r+21mYr/l+2m2£o}, • (25) 

1 The reason for this assumption and for the terms such as u/r which 
appear in (26) is that in this coordinate system the displacements them­
selves as well as their derivatives contribute to the strain. For example, 
a radial displacement u of the ends of an arc of a circle of radius r gives 
a tangential strain 14/r of the arc. 
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where 

£,= ;;. £o=Ku+ ~~). Y,o=K~~-v)+ ~:. • (26) 

Taking the square root of (25) gives for the variation with .p of the 
extension given by (23) 

£=£, COS 2 .p+y,o sin.p cos .p+£o sin2 .p. • (27) 

(27) is the analogue of (II) in the present coordinate system. and (26) 
are the components of strain. £, and £0 may be identified with the exten­
sions of lines in the radial and transverse directions. and tw-Yro with the 
change in angle between these lines. The dilatation d is 

au u av 
d=£ +£0=-+-+-. • (28) , or. r r 08 

It follows from (26) that the components of strain satisfy the compat­
ibility condition 

1 I. INFINlTFSlMAL STRAIN IN THREE DIMENSIONS 

The analysis proceeds exactly as in the two-dimensional case. 
We take a fixed set of mutually perpendicular axes of reference and 
suppose that the coordinates of a marked particle P relative to 
them are (x, y, %) and (x+u, y+v, %+:0) in the unstrained and 
strained states respectively, so that (u, v, w) are the components 
of displacement at P. Then if Q (x+x', y+y', %+%') is a point near 
P, its displacement will be (u+u', v+v', WHO'), where 

,ou,ou,ou, 
u =oxx +oyy +0%%' 

,0v,Ov,0v, 
V =oxx +oyy +0%%' 

,0W,OW,ow, 
w = ox x + oyy + 0%% , 

(2) 

by Taylor's theorem, neglecting the terms in x'lI, x'y', etc. 
Since in (I) to (3) the displacement of the particle at Q relative 

to that at P is linear in x', y', %', it follows that in the immediate 
neighbourhood of any point the strain is homogeneous and so the 
results of § 8 hold locally. In particular, a small sphere with centre 
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at P becomes an ellipsoid, the strain ellipsoid, and there is one 
ellipsoid with centre at P which becomes a sphere; this is the 
reciprocal strain ellipsoid and its axes are the principal axes of 
strain. 

The fundamental notation is 

ou OV ow 
Ere=ox' EII=ay' E,= OZ' (4) 

ow ov au ow ov au 
1'11.=1'011- oy +oz' Y"",=Yre·""Oz + ax' Yrell=Yllre=OX +oy' (5) 

ow ov au ow ov au 
2COre= oy -oz' 2COII"'OZ - ax' ZW·=ox -oy' (6) 

Using this notation, (I) to (3) become 
, , 1 I l' , , U =X EIl.j'IY Yrell+2Z Yre.+Z COII-Y CO., 
I .1 ' '.1 ' , , V "IX Yvre+Y EII+2Z Yvz+X CO.-Z COre, 
, l' 1·' , I , W "2X Y=+2Y YOII+Z E.+Y COre-X COli • 

The last terms, namely 
z'COII-Y'w., X'W.-Z'Wre , y'core-x'wlI , (10) 

are just the components of the displacement of the point (x', y', z') 
due to a small rotation of components (core, COli , wa). These are 
called the components of rotation and it may be noted that if Ca) is 
the vector of components (core, COli' 00,) specifying the rotation and 
u is the vector of components (u, v, w) then by (6) 

2Ca)=curl u. . . (II ) 
If core=wlI=co.-o, the strain is irrotational. 

The quantities Ere, Ell' E., 1'111' Y.re, Yrev are the components. of 
strain. Ere , Ell , E. are the extensions of lines in the directions of the 
axes, while tn-I'll. is the angle in the strained state between lines 
initially parallel to the Y- and z-axes. 

Next, precisely as in § 10, we determine how the length of the 
line PQ has been altered by straining to P' Q'. Using (I) to (3) and 
making the assumption of infinitesimal strain, namely, that squares 
and products of the derivatives ou/ox, etc., are negligible, we find 

P'Q'''=(x' +U')2+(y' +V')2+(Z' +W')2 

{ '( OU) ,ou 'OU}\! .. x Hox +Yay+z az 
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{ Ov ( OV) Ov}2 {OW ow ( OW)}2 + x' ox +y' Hoy +Z' OZ + X' oX +y' oy +Z' H OZ (12) 

_X'2+y'2+Z'2+2x'2e:a:+2y'2el/+2z'2e.+2Y' Z' Y 1/1+2Z' X' Y I:a: 
+2x'y'Y<I:tI· (13) 

Now suppose that PQ has length r and direction cosines (I, m, n) 
so that x'=lr, y'=mr, z'=nr, and (13) becomes 
P'Q'2=r2 {I +212e:a:+2m2el/+2n2e.+2mny l/1+2nly z:a:+21my <I:tI},. (14) 

and, finally, taking the square root and neglecting terms in e:a:2, 
etc., the extension e corresponding to the direction (I, 11l, n) in the 
unstrained state at P is found to be 

P'Q'-r 
e .. --­

r 

=12e:a:+m2el/+n2ez+mnYI/,+nlYz:a:+lmy<l:tl' . (IS) 

If a point is plotted in the direction (I, m, n) whose distance from 
the origin is kle l , it will lie on the quadric 

x2e:a:+y2el/+z2e.+yzYl/l+zXY.:a:+XYY<l:tl=k2. • (16) 

This is the strain quadric whose theory may be developed in the 
same way as that of the stress quadric in § 4. In particular, its axes 
will be the principal axes of strain and the extensions el , e. , ea in 
these directions will be the principal strains. As before, 

~=e:a:+el/+eZ=el+e2+ea • (17) 
is an invariant. It is, in fact, the dilatation or the ratio of the change 
in volume to the initial volume. 

Finally, it should be remarked that, as was seen in the two-dimensional 
case in § 10, the six components of strain are not independent: they are 
derived by differentiation from the components of displacement, and 
because of this there are in fact six identical relations between them, 
namely, § 10 (7) and two similar equations involving y, z and z, x, and 
also 

• (18) 

and two similar equations. These relations are the compatibility conditions 
satisfied by the components of strain. 

The formulae for change of axes are also often needed. Suppose that 
Ox', Oy', Oz' are new axes whose direction cosines relative to Ox, Oy, 011 
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are (I, m, n), (I', m', n'), (I", m", n''), respectively, then the components of 
strain fi",' , fi.' , fi.· , ".'.' , ",'",' , " .... ' relative to them are 

fi.,a:fi"ll+fi.ml+fi.nl+" • .mn+"""nl+"".zm, (19) 

" .... , .. 2fi"l'I"+2fi.m'm"+2fi.n'n" 
+" ... (m'n"+m"n')+" .. (n'I"+n"l')+".,.<l'm"+l"m'), (20) 

and four similar equations. Of these, (19) has been derived in (IS), and 
(20) follows from the three-dimensional analogue of the calculation leading 
to § 10 (IS). 

Finally, the way in which the analytic theory of finite strain is begun 
may be indicated. Exactly as above, we consider the points P, (x, y, .11') and 
0, (x+x', y+y', .11'+.11''), where x', y', .11" are so small that their squares and 
products are negligible, and find the length P'O' of the line PO in the 
strained state. For this (I) to (3) and (12) still hold, but in the case of 
finite strain the squares and products of au/ox, au/ay, etc., are not 
negligible so that (13) is replaced by 

P'Q·I"x,a+y'l+z'I+2(fi:,x'I+fi;""I+fi:Z'I+,,;.y'z'+,,:.z!x'+,,:.x'y·"J, (2I) 
where 

(22) 

with similar formulae for fi; , ,,:, , etc. These quantities fi:, ••. , ,,;., .•. 
are the components of strain in the general case and reduce to (4) and (5) 
for the case of infinitesimal strain. It follows from (21) with y'=z'-o that 
the extension in the x-direction is 

P'O'-x' 
--,--(1+2fi:)'-I, • • (24) 

x 
with similar formulae for those in the y- and z-directions. It also appears 
that, just as in § 9, the most satisfactory way of studying (21) is by con­
sidering the quadratic elongation p'O'· / PO· which can be represented by 
a quadric surface. The way in which the angle between two lines varies 
may also be calculated. Finally, the dilatation fl., the ratio of the change in 
volume to the original volume of an element of volume, is found to be 
given by 

(I +fl.)I .. ( 1+2fi:)(1 +~fi)( I +2fi:)+2,,;',,:.,,;. • 
-(I +2fi;)";.I_(1+2fi;),,:,,,I_(1 +2E:)" ... I. (25) 

A full discussion along these lines is given in Love, lac. cit., Chap. I 
(Appendix). 



CHAPTER II 

BERA VIOUR OF ACTUAL MATERIALS 

12. INTRODUCTORY 

THE notions of stress and strain developed quantitatively in 
Chapter 1 are universal notions, the one being essentially a part 
of statics and the other a part of geometry. Any substance may be 
regarded as being in a state of stress and strain, the relationship 
between them depending on the nature of the substance. The pro­
cedure for finding this relationship is the same as that at the outset 
of any branch of mathematical physics: certain simple experiments 
are made (for example in a tensile testing machine) in which both 
the stress and strain are measured and the connexion between them 
is determined; this is idealized into a simple mathematical formula 
connecting stress and strain on the basis of which the behaviour 
of bodies under more complicated conditions can be calculated 
and in some cases (e.g., hollow cylinders under tension or torsion 
combined with internal pressure) compared with experiment. 

It should be remarked that the idealizations studied are to some 
extent determined by the simple experiments such as tension, 
compression, and torsion which are possible, and also by the fact 
that most of the experimental work has been done on metals be­
cause of their technical importance and of the ease of experiment­
ing with them; thus, for example, the perfectly plastic solid which 
has been much studied is a much more useful approximation to 
the behaviour of metals than of rock material. It should also be 
said that the type of behaviour of a substance 1 varies enormously 
with temperature, confining pressure, and rate of strain, and, 
again, that new effects appear when stresses are repeatedly re­
versed, so that the idealizations introduced are only reasonable 

Fo r • the properties of metals see Barrett, Structure of Metals (McGraw­
HiIl, Ed. 2, 1952); Chahners, The Structure and Mechanical Properties of 
Metals (Chapman and HaIl, 1951). For the behaviour of rock materials see 
Nadai, loco cit.; Birch, Schairer and Spicer, Handbook of Physical Con­
stants, Geol. Soc. Am. Special paper No. 36; Scheidegger, 'Examination of 
the physics of the theories of orogenesis', Bull. Geol. Soc. Am., 64 (1953), 
127. 
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approximations to the behaviour of actual substances under very 
limited conditions. 

Suppose, first, that a rod of a ductile metal is stressed in tension 
in a testing machine. The observable quantities are the stress Go, 

oJ' B /-- ,C C 

bO 
bO 
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bO 

bO 'A 

0 E 0 ES € 
0 € 

(e) (b) (e) 

·l :'c:t: 
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FIG. 19 

which is the load applied by the machine divided by the original l 

area of the rod, and the strain 

£=(/-/0)/10' (I) 
where 10 is the original length of the rod and 1 is its length when 
the stress is G c • If Go is plotted against £ a stress-strain curve such 
as Fig. 19 (a) is obtained. For low stresses it is found that if the 
stress is reduced to zero the rod returns to its original length, that 
is, there is no permanent deformation. This is the property of elas-

1 The area of the rod varies during the test, so that strictly a. as defined 
above is not the stress; it is often called the c07IfJentional strell and the 
diagram of Fig. 19 (a) is a c07IfJentional stress-strain curve. The effects of 
the changes in area are considered in § 26. 
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ticity, and the range of stresses in which there is no permanent 
deformation is called the elastic region. In this region it is also 
found to a very good approximation that stress is proportional to 
strain. The stress 0'0 for which permanent deformation first ap­
pears is called the yield stress, and it is at the point A, Fig. 19 (a), 
corresponding to it that curvature of the stress-strain curve first 
becomes apparent. l The strain at the point A is usually quite small, 
of the order of 0·001, so that its square is negligible and the theory 
of infinitesimal strain is applicable. Elastic behaviour may be 
idealized in the perfectly elastic solid of Fig. 19 (d) in which stress 
is proportional to strain for all stresses and there is no yield stress. 

Deformation at stresses above the yield stress is described as 
plastic deformation, and a material with a yield stress may be 
idealized by the perfectly plastic solid of Fig. 19 (e), whose be­
haviour is elastic for stresses below the yield stress but which can 
sustain no stress greater than this and flows indefinitely under this 
stress unless distortion is restricted by some outside agency. The 
typical stress-strain diagram of Fig. 19 (a) shows a rise in the 
region AB beyond the yield stress. This increase is due to strain 
hardening which may be regarded as an increase in the yield stress 
of the material caused by deformation. If the material is stressed 
beyond its yield stress and the load is then removed and reapplied, 
the strain will diminish to e. (the permanent set) and a narrow loop 
DEF, very nearly parallel to OA, will be described, Fig. 19 (b). 
Thus after stressing beyond its yield stress the solid is found to 
behave as if its elastic properties were unchanged but its yield 
stress was increased. 

At C in the curve of Fig. 19 (a) the specimen breaks; the fall in 
the region BC is associated with 'necking' of the specimen. 

The whole of the above discussion applies to ductile materials, 
that is, those which exhibit plastic deformation at sufficiently great 
stresses. There is also a class of materials called brittle in which 
little, if any, plastic deformation takes place. If a brittle material 
such as cast iron or any rock material is tested, a stress-strain curve 
such as Fig. 19 (c) is obtained, the specimen breaking at the point 

1 A distinction is usually made between the proportional limit at which 
stress ceases to be proportional to strain and the yield stress at which 
permanent deformation is first observed. If this is done, there is a region 
of non-linear elasticity between the two values. Since neither is very well 
defined and they are usually close it is simpler to take it that they coincide. 
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C. Sometimes the curve is initially linear and shows curvature only 
as C is approached, sometimes it has a small curvature throughout, 
but it may be roughly idealized by the straight line of Fig. 19 (d), 
ending abruptly in fracture with no significant amount of plastic 
deformation. 

A fact of the greatest importance for geology is that brittle 
materials such as rocks tend to become ductile when subjected to 
compression from all sides. In the classic experiments of von Kar­
man, extended by Griggs,l cylinders of marble and limestone were 
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tested in compression while an additional 'confining' pressure was 
applied by fluid to their curved surfaces. 

In Fig. 20, for limestone, compressive strain is plotted against 
stress-difference (the excess of the axial compressive stress over 
the confining pressure) for various values of the confining pres­
sure. The numbers on the curves are the values of the confining 
pressure in atmospheres. It appears that for confining pressures 
up to about 4,000. atmospheres limestone behaves as a brittle 

1 J. Geol., 44 (1936), 54I. Details of a great deal of work of this type 
are given in Nadai (loc. cit.) and Bridgman, Studies ill Large Plastic Flow 
and Fracture (McGraw-Hill, 1952). 



§ 12] BEHAVIOUR OF ACTUAL MATERIALS 53 

material, but for confining pressures of 6,000 atmospheres and 
over (corresponding to depths of 20 km. and over in the crust) it 
is capable of considerable plastic deformation. Similar results have 
been obtained for many rocks and minerals, though quartz shows 
no plastic deformation at the highest stresses yet attained. 

The results described above may be regarded as typical of those 
which would be obtained by reasonably slow application of the 
load in a testing machine. If the load is applied more rapidly addi­
tional effects appear: in the elastic range these are described as 
time-dependent elasticity or anelasticity.l For example, it is found 
that when a load is applied suddenly the resulting strain does not 
appear instantaneously, but approaches its final value exponen­
tially as in the curve OD of Fig. 21 (a); similarly, if the load is 

--- - - -- --------
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removed the strain returns exponentially to zero as in curve DE 
of Fig. 21 (a). 

In the plastic range, it is found also that when a load is applied 
the resulting strain is not taken up instantaneously but is ap­
proached asymptotically (transient creep) and also that the portion 
AB of the stress-strain curve of Fig. 19 (a) is raised as the rate of 
strain increases. 

Finally, when long time intervals are in question, other types of 
creep appear. The most important of these, called steady state 
creep, consists of a slow steady deformation under load. This 
occurs at all stresses, even in the elastic range, though its rate in­
creases greatly (approximately exponentially) with the stress and 
is also greatly accelerated at high temperatures (the creep rate 
depends on exp (-AjkT), where T is the absolute temperature 

1 Zener, Elasticity and Anelasticity of Metals (Chicago. 1948). 
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and A and k are constants). Creep has been much studied 1 in 
metals, but it also occurs in rocks, particularly in the presence of 
solutions, and provides a possible mechanism for slow deforma­
tion of rocks, more particularly at the higher temperatures in the 
deeper parts of the Earth's crust and interior. 

The discussion above provides a greatly simplified account of 
the behaviour of metals and rocks under stress. In developing a 
mathematical theory, some simple idealization of this behaviour 
must be taken and its consequences calculated. The simplest is 
that of the perfectly elastic body of Fig. 19 (d) on which the classi­
cal theory of elasticity is based. In an attempt to discuss plasticity, 
the simplest assumption is that of the perfectly plastic or St-Venant 
substance of Fig. 19 (e); when this theory has been fully worked 
out the next step is to introduce the additional complication of 
strain-hardening by assuming some simple variation of stress with 
strain in the strain-hardening region, a linear increase as in Fig. 
19 (f), or a power law, are frequently used. Finally, the third 
classical idealization is that of Newtonian viscosity in which rate 
of strain is proportional to stress as in Fig. 21 (b). Non-Newtonian 
or non-linear viscosity in which the rate of strain is a function of 
the stress, though not proportional to it, is also of importance; for 
example, steady-state creep may be studied in this manner. 

The stress-strain relationships of elasticity will be developed in 
§§ 13-17; those of viscosity in § 19; and those of plasticity in 
§§ 27-29. These, however, are still not adequate to describe pheno­
mena of anelasticity such as Fig. 21 (a) or the behaviour of many 
important substances such as paints, clays, doughs, etc. The 
general study of the flow of such substances is included in the 
subject of Rheology, where it is found that their behaviour can be 
expressed in terms of elements containing elastic, viscous, and 
plastic properties: some examples are given in § 30. 

13. THE STRESS-STRAIN RELATIONS FOR A PERFECTLY 
ELASTIC ISOTROPIC SOLID 

The fundamental assumpton of the theory of elasticity, general­
izing the notion that strain is proportional to stress in the simple 

1 Sully, Metallic Creep and Creep-resistant Alloys (Butterworth, 1949): 
Rotheram, Creep of Metals (Inst. of Phys., 1951): Griggs, 'Creep of 
Rocks', 7. Geol., 47 (1939), 225. 
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extension of a wire, is that each of the six components of stress at 
every point must be a linear function 1 of the six components of 
strain at that point so that in all 36 coefficients are involved. These, 
however, are not all independent, and in this section it will be 
found that for isotropic substances only two coefficients are in­
volved in the complete expression of the relation between stress 
and strain. A material is said to be isotropic if its characteristics at 
every point are independent of direction.· It will be assumed 
throughout this book (except in § 16) that the materials discussed 
are isotropic. If the properties of the material are not the same in 
all directions it is called anisotropic or aeolotropic. 

First, we remark that the principal axes of stress and the prin­
cipal axes of strain, defined quite independently in §§ 4 and II, 

respectively, must be identical if the solid is isotropic. This follows 
since the stresses are purely normal in the directions of the princi­
pal axes of stress and thus must produce a system of displacements 
which are symmetrical with respect to these axes, since no asym­
metrical displacement is to be preferred to any other. Now the 
displacements are symmetrical about the principal axes of strain, 
and so the two sets must coincide. An analytical proof of this result 
may be given by the methods of § 16. 

If aI' a2 , as and C1 , C2 , C3 are the principal stresses and strains, 
we may then assume as the stress-strain relations referred to 
principal axes 

al=(A+zG)Cl+Ac2+Aca, 

a2=Acl+(A+zG)C2+Acs, 

as=AC1+Aca+(A+zG)C3 , 

1 If the equations connecting a number of variables contain all the 
variables to the first power only (or, if the equations are differential 
equations, contain successive differential coefficients to the first power 
only), they are said to be linear. The importance of linearity is twofold, 
firstly, the equations are relatively easy to solve, and, secondly, the prin­
ciple of superposition holds in the form that if El is the effect of a cause 
C 1 , and E. that of a cause C. , then E1+E. is the effect of the combined 
causes C1+C •. Because of the difficulty of handling non-linear equations 
it is usually assumed at the outset of a theory that its equations are linear, 
the effect of non-linearity being studied later. Thus, while it is found that 
calculations based on the linear theory of this section give results which 
agree adequately with experiment for small strains, it is necessary to 
develop a non-linear theory when large strains are in question. 
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where A and G are constants, and the form is chosen so that one 
parameter, A+2G, relates stress and strain in the same direction, 
and another, A, relates them in perpendicular directions. The 
physical significance of A and G will appear later. 

Introducing the dilatation 

.6.=E1+E2+ea, • (4) 
equations (I) to (3) may be written 

0'1=A.6.+2GEI, 0'2=J..6.+2GE2 , O'J=} . .6.+2GEa· (5) 

Now suppose that the axes Ox, Oy, Oz are inclined to the 
principal axes, their direction cosines being (I, m, n), ([', m', n'), 
([", m", n"), respectively, so that by § 4 (6) and (7), and § II (19) 
and (20), 

0'",=[20'1+m20'2+n20'a , 7:IIZ=O'I['[" +0'2m'm" +O'an'n", . 

E",=12EI+m2E2+n2Ea, Yn=2(EII'I" +E2m'm" + Ean'n") • 

Then, substituting (5) in (6) and then using (7), we get 
0'",=( [2+m2+n 2»),..6. + 2G( [2EI +m2E2+n 2Ea) 

=J..6.+2GE"" • (8) 
7:lIz=(I'1" +m'm" +n'n"»),..6.+2G(1' [" EI +m'm" E2+n'n" Ea) 

=011&' M 
the term in .6. in (9) disappearing because (l', m', n') and (I", m") 
n") are perpendicular. The complete set of equations connecting 
stress and strain is thus 

0'",=J..6.+2GE"" 0'1I=J..6.+2GEII , 0'.=A..6.+2GE., (10) 

7:1I.=GYIIO, 7:.",=GYZiIJ ' 7:"'II=Gy",". (II) 
Adding (10) and using (4) gives 

O'iIJ+O'II+O"= (3),.+ 2G).6.. (12) 

The quantities),. and G are Lame's parameters and are perhaps 
the most convenient elastic constants to use in theoretical work 
when it is required to express stress in terms of strain. We now 
proceed to define the other commonly occurring elastic constants 
and to express them in terms of J. and G. 

The Modulus of Rigidity is defined as the ratio of shear stress to 
shear strain in simple shear, so by (II) is just the quantity G. 

The Bulk Modulus or Incompressibility K is defined as the ratio 
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of hydrostatic pressure to the dilatation it produces. In this case 
G1=G2=Ga=-P, so, by (12), (3A+2G)~=-3P, so that 

K=-~=(A+tG). • (13) 

The reciprocal of K is called the compressibility. 
Young's Modulus E is defined as the ratio of tension to extension 

in a cylinder which is under axial tension and which is unrestricted 
laterally. In this case we have G'J,=Ga=o in (I) to (3) so that these 
become 

G1=(A,+2G)El+A,E.+A.Ea, 
0=A.El+(A,+2G)E'J,+A.Ea, 
0=).E1+A.E'J,+(A.+2G)Ea· 

It follows from (IS) and (16) that 
A 

E2=Ea=-2(A+G)El , 
and then from (14) that 

E-'!1-G(3A+2G) 
- El- A+G • . (18) 

Poisson's Ratio v is defined as the ratio of lateral contraction to 
longitudinal extension for the cylinder in the case above, that is, 
by (17), 

There are many relations between the various elastic constants 1 

A, G, K, E, v, of which the following are frequently useful: 

A= Ev G=~ (20) 
(I+V)( 1 -2V)' 2( I+V)' 

K 2(I+V)G =_E_ ( ) 
3(1-2V) 3(1-2V)' 21 

E= 9KG v='3K - 2G) ~=~. (22) 
3K+G' Z(3K+G)' G 1-2V 

It follows from the last of (22) that V< t, and from the last of 
(20) that V>-I. 

1 Many writers use f' in place of G for the rigidity, and (J in place of " 
for Poisson's ratio. 
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The equations (10) and (II) give the components of stress in 
terms of those of strain. Solving them and using (20), gives for 
strain in terms of stress 

Ee.=(1z-"«(1I1+(1.), Eell-(1I1-"«(1z+(1.), Ee.=(1.-"«(1z+(1I1)' • (Z3) 
EI'II.""Z(I+71)'rll.. EI' .. =z(I+"lr .. , EI'ZI/=z(I+"lrZl/' • (Z4) 
In Table I typical values of the elastic constants are shown in 

order to give an idea of the orders of magnitude involved. It may 
be remarked that for many solids and rocks A is very nearly equal 
to G: the assumption A-G, which is often made to simplify cal­
culations, is known as Poisson's relation and leads to 

K-SG/3, E-SG/2, ""1/4· . (zS) 
Another simplifying assumption sometimes made is that the 

solid is incompressible so that K-oo, this requires 

A=K=oo, "-I/Z, G=E/3. 
The dimensions of all the elastic moduli A, G, E, K are those of 

stress, since strain, being a ratio, is dimensionless. The units com­
monly used are dyne cm.-I , lb.in.-I, or kg.cm.-I , the latter being 
approximately equal to 1 atmosphere. Values in the table are given 
in dyne cm.-I : to convert to lb.in.-I multiply by 1'45)(10-5, and 
to convert to kg.cm.-I multiply by l'OZ)( 10--e. There is, of course, 
a very large variation between the elastic properties of rocks of the 
same type. 

TABLE I 

E)( 10- 11 G)(IO-11 KXIO-11 II 

Steel 20'9 8'1 I 16'6 0'29 
Copper 12'3 4'5 

! 
15'4 0'37 

Lead 1'6 0'56 3'8 0'43 
Quartz fibre 5'2 3'0 1'4 -
Rubber 0'05 - - 0'46 
Granite 4'6 1'9 2'6 0'21 
Limestone 5'8 2'3 4'0 0'26 
Sandstone 5'7 2'6 2'3 0'10 
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14. SPECIAL CASES: BIAXIAL STRESS AND STRAIN 

In §§ 3, 7, 10 the variation of stress and strain in two dimensions 
was considered in detail because of its great simplicity relative to 
that in three dimensions, but since in general stress or strain in one 
direction is accompanied by effects in perpendicular directions, 
it is desirable to see precisely what practical systems can be 
represented adequately in two dimensions. The simple special 
cases, when referred to principal axes, may be classified as 
follows: 

(i) Uniaxial stress 0"1+0, 0".=0"3=0 

This is the case of a bar uniformly stressed in one direction, and 
free in the perpendicular directions, which has already been dis­
cussed in § 13 (14)-(19). There is extension 81=0"1/E in the direc­
tion of the stress and contraction 8.=83=-V81 in perpendicular 
directions. The dilatation A is (1-2V)0"1/E, so that since v<l there 
is an increase of volume if 0"1>0 and a decrease if 0"1<0. 

(ii) Uniaxial strain 81+0, 8.=83=0 

Here by § 13 (I)-{3) 

0"1=(A+2G)el' 0".=0"3=Ae1• (I) 
The assumption is that there is no displacement perpendicular 

to the x-axis, and stresses 0". , 0"3 given by (I) are called into play 
to prevent this displacement. 

(iii) Biaxial Stress or Plane Stress 0"1+0, 0".+0, 0"3=0, as in a 
thin sheet stressed in its own plane. By § 13 (23) 

. (2) 

so that there is expansion or contraction in the 83 direction accord­
ing as 0"1+0"2<0 or >0. For pure shear, 0"1+0"1=0, there is no strain 
in the 8 3 direction. The dilatation is 

A=(0"1+0"1I)(1-2V)/E. • (3) 

This case occurs in the analysis of stress at any free surface, for. 
if the x- and y-axes are taken in the plane of the surface and the 
z-axis normal to it, the condition that there be no normal or shear 
stresses across the surface is 
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(iv) Biaxial Strain or Plane Strain £1+0, £2+0, £3=0. 
This is by far the most important special case in the theory of 

elasticity; it contains many important practical problems. By 
§ 13 (1)-(3) 

G1-(A+ZG)£I+A£S' Gs=(A+2G)£s+)'£I' (4) 
Ga-A(£I+eS)=V(G1+G:a}, (5) 

adding (4) and using § 13 (19). Solving (4) gives 

E£I""(I-V2)GI-V(I+V)Gs, E£s=(I-V2)Ga-l-{I+V}Gl' (6) 
A=(G1+Ga)(I-V-2VS)/E. . (7) 

In this case a stress given by (5) must be applied perpendicular 
to the plane of G1 and Gs to give zero displacement in this direc­
tion. If the x- and y-axes in the plane are not principal axes, we get 
in the same way by (5) and § 13 (z3), (24) 

E£",=(I-Vs)a",-v(I+v)a., E£.-(I-"2)a.-v{I+")a,,,, . (8) 
EYzw"'2(I+1I}'rzw· (9) 

In both this case and (iii) the two dimensional analysis of stress 
and strain is the same as that of §§ 3, 10, but the situation in thxee 
dimensions is slightly different. 

(v) The Case 0'1+0, £2-0, 0'3-0, 

that is, zero stress and zero extension in two perpendicular direc­
tions normal to the stress 0'1' By § 13 (23) 

E£I-(I-,,2)al, 0'2,,"11(11' £3-=-(V/1-V)£I' • (10) 

(vi) Combined Stress Systems. Since the stress-strain relations of 
§ 13 (1)-(3) are linear in the 0' and £, it follows that if £1, £., £3 
are the strains corresponding to stresses 0'1 , 0'2,0'3, and £1' , £,: , 
£a' correspond to 0'1' ,0''1' ,0'3' ,then £1+£1' ,etc., will be the strains 
corresponding to the combined stresses 0'1+0'1' , etc. 

(vii) Syftems with Rotational Symmetry 
If two principal stresses are equal, say O'II-O'S' it follows that s.-e. and the stress and strain ellipsoids become ellipsoids of revo­

lution. The variation of stress and strain in any plane thxough the 
e1-axis follows from the two-dimensional theory. 

One difference between the caae of rotational symmetry and the 
general caae appears in the circular sections of the strain ellipsoid, cf. 
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§ 8 (7). In the case of rotational symmetry, ~1"£3 , all sections of the strain 
ellipsoid perpendicular to the £1-axis are circles, but by § 8 (6), neglecting 
squares of £1 , etc., the lines of unchanged length lie on a cone about the 
£1-axis whose semi-vertical angle is 

tan-1 (-£t!£.)l. (II) 
For example, in uniaxial stress, (i) above, the lines of unchanged length 
lie on a cone of semi-vertical angle 

tan-1 (v-i). • (12) 

For the general case, £1 >~2 >£3, the strain ellipsoid has two circular 
sections passing through the £2-axis, and by § 8 (8) these make angles 

:!:tan-1 [(£I-£2)/(£I-£,)]i • (13) 
with the El-axis. If E.=O the lines of unchanged length lie in these circular 
sections, and in case (v) above they make angles of 

:!:tan-1 [(1-1')/1']1 • (14) 
with the El-axis. These results are of interest in connection with strain 
theories of failure, § 25. 

When studying problems on regions with rotational symmetry it is 
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usually convenient to use cylindrical polar coordinates, the z-axis being 
the axis of symmetry. In these coordinates the position of a point P is 
specified by its distance z from a plane perpendicular to the z-axis and 
the polar coordinates (r, 8) of its projection on this plane, Fig. 22. 

The components of stress at P are measured relative to the orthogonal 
,,8, z directions PA, PB, PC; they are a" aB' az' Tre, TBz' ".,. In the same 
way, if u, v, w are the displacements in the " 8, z directions, the com­
ponents of strain are found by an extension of the analysis of § 10 (26) 
to be 
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1 ow ilv OU ow I(OU) ilv 
Y&,s=;ao+OZ' Yrz=oz+or' Yre=; oO-v +or' (16) 

011 oW I( ilv) d=a;:+oz +; U+ ao . 
The stress-strain relations § 13 (10), (I I) referred to these axes become 

(1,=.\d+2G"" (1e=.\d+2G"e' (1z=.\d+2G"z' (18) 

IS. STRAIN-ENERGY 

The potential energy per unit volume stored in the body by 
elastic straining is a quantity of great theoretical importance and 
also has been made fundamental in several of the criteria for 
fracture and flow. 

Consider a small cube of side length a with its faces perpendicu­
lar to the principal axes of stress (and strain). Suppose that in the 
final state of stress the principal stresses are <11' <12 , <13 and the 
principal strains are e1 , ea , e3 , and that this state is built-up by a 
gradual increase during which the stresses are k<11 , hua , hua and 
the strains ke1' ke., kea, where k increases from 0 to 1. Then at 
any stage the force applied to the surface of the cube perpendicular 
to the <11 axis is kaa<11 , and when k increases from k to k+dk the 
displacement of this surface is ae1dk, so that the total work done by 
forces in the <11-direction in producing the final state of strain is 

(1) 

There will be similar contributions from the other directions, 
and adding these and dividing by the volume a3 gives 

W=!(<11B1+<1aBs+<1aea) (2) 
for W, the potential energy per unit volume or strain energy per unit 
volume of the body. Clearly, by conservation of energy, the results 
( 1) and (2) must be independent of the way in which the final state 
of stress is reached, and the linear increase was chosen above as 
the simplest to calculate. 

The result (2) may be put in a variety of forms. Using § 13 (5) 
it becomes 
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and using § 13 (23) it becomes 

W= 2~{a12HI22+(f32_2V«(f2(f3+(f3(fl+(fl(f2)}' 

By § 4 (22) and (23). this becomes 

t4) 

on using § 13 (23) and (24). (5) might have been proved directly by 
the type of argument leading to (I). It follows from (5) that 

oW oW oW 
~- =e." ~=(f.,. ~- =1'1/1. etc. (6) 
u(f., ue., url/. 

Another important expression for W is given in § 27 (26). 

16. ANISOTROPIC SUBSTANCES 

These may be regarded as being of two types, firstly crystals, and 
secondly substances such as sedimentary rocks or wood which have 
different properties in different directions. Only the simplest cases can 
be treated here to give an indication of the way in which the theory is 
developed and of the new effecta which appear. 

It is usual to choose for axes of reference directions related to the 
symmetry of the substance under consideration so that all six components 
of stress and strain will appear, and we assume the most general linear 
relation between them, namely, 

a"=cllE,,+C12EW+C13E,+CuY .. +C15Y"'+CuY,,, , 

al/=c21E"+C2IEW+C2SE.+C2.Y'.+C26Y.,.+C28Y ..... 

a,~C31E"+C32E,+C33E,+C"y,,+c36y,,,+c3fY"" • 

'T •• =cU£ .. +C .. E,+CUE.+C .. Y,.+cuY .. +c •• Y .... , 

'T "'=C61 E"+CU£"+C63E.+C"y,.+c65y .. +c,,y,,, • 

'T"II=CuE"+CuE,+CaaE,+C"y"+C8IY"+c,,y,,, • 

The 36 constants Crr are called the elastic coefficients and for various 
types of crystal symmetry there are relations between them. Firstly. it will 
be shown that it is always true that 

",=C .. , 

so that there are at most 2I independent coefficients. 
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To prove this, it follows from 1 § IS (6) that 
aa" aaw ca. 
a£.= a." a •• = a£,,' (8) 

and, using the values (I) and (2) of a. and a., this gives CIl=CI1, and in the 
same way the equality of the other pairs of (7) may be derived. 

In most cases a further reduction of the number of coefficients follows 
from the symmetry properties of the material in question, though the 
most general case, that of a tric1inic crystal, contains the full 21 coefficients. 
The simplest special cases are discussed below. 

(i) Material with Different Properties in Three Onhogonal Directions. 
Taking the axes Ox, Oy, Oz in these directions, the material has the 

Z'I~ • I 
X, I 

... I 
..... I , .. , 

y-----~ y 

)C 

(el 

z' Z 
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property that any plane perpendicular to one of these axes is a plane of 
symmetry. The stress-strain relations relative to these axes are given by 
(I) to (6), subject, of course, to (7). 

It follows from the nature of the material that the stress-strain relations 
must be precisely the same if, instead of looking at it in the direction Ox, 
we look at it in the opposite direction. That is, we must get precisely the 
same set of stress-strain relations for the axes Ox', Oy', 018' of Fig. 23 (a) 
which are just the original axes rotated through 1800 • That is, referred to 
these new axes, we must have 

a .... cll£.·+Cll •• ·+C18£ .. +C1&y.· .. +cuy.·,.,+C18y .. W· , (9) 
and five equations similar to (2)-(6) with x, y, ••• replaced by x', y' • •.. 
Now the quantities a .. , ••• , .a' , etc., in these are related to the a", ••• , 
•• of (1) to (6) by the formulae § 4 (6), (7) and § II (19), (20) for change 
of axes, the connection being 

C,a'=-E'z , E',,=-~ , E.'=E'. , 'Y.'.'=-Y .. , ".'a'==-Y_ , Y",,'="_, (10) 
(1a'-a~, a" .. a., a"=a,, T.,.'=:-T,." 7','8'=-.,.., .,.",y-=7' ... (II) 

Using these, (9) becomes 
(12) 

1 As remarked in § IS, the result § IS (5) is a general one and indepen­
dent of the simple arguments used in that section to prove it. The 
equations (8) are the conditions for dW to be a perfect differential, that 
is, for W to be a single-valued function of the strains. 
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Comparing (12) and (I), it follows that 

Cl'=O, CI5=0, 

and treating the othel" five equations corresponding to (9) in the same way 
gives 

C2,,=C25=C3,=C35 =c 46=C 56= o. 

Also, a rotation of 180' about Ox gives in addition 

C18=C26=Cas=C.,=o. (14) 

Thus, finally, the stress-strain relations for a solid with three mutually 
perpendicular planes of symmetry are 

U~=Cll£z+C12£~+C13£ , 

uw=C12"Z+C22"~+C23£' , 

a,=cl3E':c+C23E',,+c33E', , 

'T,a:=C~U'Y"" Ta=Cssi'q, 'T.1')'=C 86Yz,. J 

which involve nine independent coefficients. 
(ii) Material with an Axis of Symmetry. Suppose the z-axis is an axis 

of symmetry in the sense that the properties of the material are the same 
in all directions at right angles to it (as in a sedimentary rock with z-axis 
perpendicular to the bedding). In this case the same system of equations 
has to be obtained, not only for a reversal in direction of the z-axis, but 
also for x- and y-axes rotated through any angle () about it as in Fig. 23 (b). 
Proceeding as in (i), the equations are found to be 

Uz=Cll£Z+(Cll- 2CU)£,,+C13E •• 

uW=(Cll-2C,,)£~+Cll£,,+C13E, , 

u,=c13£z+C13ElI+Ca3£' , 

""",=c"Ywa, 'rq=C .. ,Yn;, 'Tzp=C66YZW' 
involving five independent coefficients. 

(19) 
(20) 

(21) 

(22) 

(iii) The Cubic Crystal. This is the simplest and most important of the 
crystal classes. In this case the equations must have the same form relative 
to any right-handed set of mutually perpendicular axes chosen from the 
axes of symmetry; that is, not merely for the axes, Ox, Oy, Oz and Ox', 
Oy', Oz' of Fig. 23 (a) corresponding to a rotation through 180° but also 
for the axes Ox', Oy', Oz' of Fig. 23 (c) corresponding to rotation through 
90°. For such a rotation 

E'z'=E. , £1/'=£:': , E.z:'=E'z, Y.'a'=-Y= , Yz'z'=Y." , i'z'.'=-i'Zlf , 

Oz'=O,l, (/,,'=0%, a,' = a, , ",,','=-Tu , 'Tz'z'="""" Tz',!,=-Tz., 

and using these in the same way as (10) and (II) gives finally 

UZ=Cll£Z+C12E~+C12£' , 

u~=C12"~+CllE~+C12£" • 

o,=c12E'z+CUE',,+cll E'z:, • 

'T .. ,=C44i'., J '1'"=c, .. ,," J 'T.l")'=Ct4i'.c,., 

which involve three independent coefficients. 
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A complete collection of the equations for all the crystal classes is given 
in Love's Elasticity or Wooster's Crystal Physics (Cambridge, 1949). 

The stress-strain relations above and the expressions for the com­
ponents of stress and strain referred to any axes give any information 
required, although the algebra involved usually is very heavy. 

Considering, for example, the set (ISHI7), suppose 0'.'"'0'.=0, then, 
solving 
~Z=O'z(C22Caa-czal)/ D, ~.=O'Z<claCu-clIcaa>/D, e.=O' (C12C2I-CnC18)/D, (a7) 
where Dalc11 CII cui 

CII Cia Cal 
ClI Cia Caa. (as) 

Young's modulus for uniaxial stress in the x-direction is 
O'.,/e.=D/{clsca.-czal), • (a9) 

and for stress in this direction there will be different Poisson's ratios for 
the y- and :or-directions, namely, 

e. Clalll-CIIC" 
~=-c~-c;;-cl3a , 

Each direction of stress will have 
variation of Poisson's ratio about it. 

e. CnCla-CssCn 

;"=-c.;Caa-c;;" • • (3°) 

its own Young's Modulus and a 

In general, the six relations (I)-{6) can be solved for ~." ••• , Yzv 
leading to six equations of which the first is 

e,,-suO'.+IIIO'.+luO'.+IUT.,+SuT..,+luT .. , • (3 I ) 

where the 36 quantities Ir. (actually at most aI since s .. =s .. ) can be written 
out as determinants involving the Cr •• The Sr. are called elsstic moduli 1 

and it may be noticed that they, rather than the Cr., are the quantities 
accessible to experiment. 

17. FINITE HYDROSTATIC STRAIN 

In discussing the behaviour of matter under high pressures, both in 
laboratory experiments and in the interior of the Earth, the assumptions 
of infinitesimal strain break down and a theory of finite strain must be 
developed. The general theory is given in Murnaghan (loco cit.); here, to 
indicate the ideas involved, only the simplest and most important case, 
that of finite hydrostatic strain in an isotropic material, will be considered. 

In this case the extension is independent of direction, so by § II (2I) 

Y;'=Y:'=Y;'=o. 
Also, by § I I (24), the extension in any direction is 

{I+ae:)l/I-I 

(I) 

(a) 

1 There is a considerable variation in the names given to the c .. and Sr •• 

That used above is common in crystallography: on the other hand, Love, 
loco cit., calls I/Sr• a modulus in conformity with the usage of § 13. 
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and therefore the volume of a sphere whose radius is To in the unstrained 
state will be 4 'ITT 0 3( I + 2~:)3/213 and so the dilatation .i will be 

Writing for shortness -~ for ~:, the negative sign being chosen since 
~: is negative for the case of hydrostatic pressure, the densities P and Po in 
the strained and unstrained states will by (4) be connected by 

pi Po=(1-2~)-3/2. (5) 

It follows from (5) that 
dp 3Po 
d~ (1_2~)6/2' 

(6) 

At this stage it is necessary to make some assumption about the relation­
ship between stress and strain, and the simplest general assumption is that 
the pressure can be expanded as a power series in the strain, that is, 

p=al~+a.~'+ ... , (7) 

where al and a. are constants. Murnaghan (loco cit.) gives theoretical 
reasons for expanding the strain energy in a power series-this is equi­
valent to (7). In practice, only the first few terms of (7) are needed: even 
in the extreme case of the deep interior of the Earth the density is of the 
order of 16, and comparing this with the density of iron at the surface, 
7'9, gives by (5) a strain of ~=O'19 so that the series (7) should be rapidly 
convergent. 

Because of the importance of the quantity (1-2~), an alternative 
assumption to (7) which is sometimes made is 

P=(1-2~)-P{bl~+b.~2+ ... }, (8) 

where {3, b1 , ••• are constants. 

Alternatively, again, assumptions may be made about the incompressi­
bility as a function of pressure. For finite strains, the incompressibility K 
at any pressure p is defined as the ratio of the increment of pressure Sp to 
the increment of volumetric strain -Svlv, that is, 

. vSp dp dp 
K=- hm -=-V-=PT:. (9) 

dp-+O 8v dv dp 

The simplest assumption K=Ko , independent of pressure, gives by (9) 

p-Pl=Ko In (pI PI), • (IO) 

where PI is the value of P when P=Pl' This is useful only for small changes 
of pressure. 

The next possibility, K a linear function of p, or 

K=Ko+rr.p, (II) 

where Ko and rr. are constants, leads to 

p={Kol rr.) {{pi PoY1.- I } , 

where Po is the value of P when p=o. 

(12) 
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If the relations (7) or (8) are assumed, the incompressibility can be 
expressed as a function of density by (5) and (9): for example, (7) gives 

K=t(Po/p)2/3{a:l+a 2[1-(p/Po)-2/3]+ ••• }, • (13) 

and putting P=Po gives al=3Ko, where Ko is the incompressibility when 
p=o. Similarly, (8) gives b1=3Ko • 

Retaining only the first term of (8) gives 

P=(3/2)Ko(p/ Po)2(jJ-l)/3 {(pi Po)2/8_ 1 }. • (14) 

Density and compressibility can be measured as functions of pressure 
up to pressures of hundreds of thousands of atmospheres, 1 and from the 
results of such experiments attempts are made to select most suitable 
values for the constants in the various possible expressions such as (7), 
(8), (12). For example, Birch has found that (14) with {3=7/2 is the one­
parameter formula which best fits the behaviour of all substances in the 
pressure range from 0 to 100,000 atmospheres. 

18. NATURAL STRAIN 

The definition of extension (=(1'-1)/1 of § 6 (I) is not very suitable for 
large strains since its form for small changes, namely, 

8(-81'/1, • (I) 

relates the change in length 81' to the original length 1. Clearly, it would 
be more satisfactory to relate at' to the actual length 1', that is, to write 

8i= aI' /1', • (2) 

d. § 17 (9) for a similar definition. 
The quantity l defined by (2) is called a natural or logarithmic strain. 

Integrating (2) over the whole change in length from t to l' gives 

fl'dl' l' 
i= y= In 1= In (I+(). 

Mueh of the theory of §§ 7-9 can be rewritten in this new notation; 
thus the quadratic elongation ,\ of § 6 (2) is given by 

,\= exp (2~), (4) 

and similarly the three principal quadratic elongations of § 9 (4) can be 
expressed in terms of the three principal natural strains il , is , ia • Also, 
by § 9 (7), the dilatation !J. is given by 

!J.=('\1'\2'\3)1-1= exp {i1+i2+i3}-I, (5) 
so that the condition for the strain to be equivoluminal is 

(6) 

This holds accurately, however large the strain, while the condition 
(1+(2+(,=0 is only valid fOT infinitesimal strains. 

1 Bridgman, Physics of High Pressure (Bell, Ed. 2, 1949); Birch, 
J. Geophys. Res., 57 (1952), 227. 
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For a complete theory of natural strain it is also necessary to introduce 
natural shears. These are usually defined relative to a set of mutually 
perpendicular axes fixed in space, the increments of the three components 
of natural shear being the changes in the angles between pairs of lines in 
the body which instantaneously coincide with two of the axes. 

The importance of natural strain arises from the fact that at any stage 
of deformation the stress-strain relations may be regarded as connecting 
increments of stress with increments of natural strain. 

As an example we consider some problems of finite plane strain in a 
perfectly elastic material. By § 14 (4) the relations connecting the incre­
ments of stress and natural strain referred to principal axes will be 

BO"l=(M2G)Bi1+A8iz , B0"2=ABi1+(M2G)Bil • (7) 

For the case of finite pure shear, 0"1=-0"1 , these give 
Bi1=-8is""BO"d2G. (8) 

Since the principal axes of stress and strain remain coincident and the 
same throughout the deformation, (8) may be integrated and gives 

or 
i 1=-is=O"d2G, 

I+~1"'I/(I+~2)= exp (O"d2G). 

The case of finite simple lhear is also interesting and introduces an 
important new point. It was shown at the end of § 7 that when the amount 
of the shear is I, § 7 (4), the axes of the strain ellipse make angles of 
1l'=l1T-l tan-1 I and !1T+at' with the x-axis and their lengths are (SI+I}I±s. 
It follows that the principal natural strains are 

• (II) 
The new feature is that the principal axes of strain rotate during strain­

ing, and, since the principal axes of stress must coincide with them at all 
stages, these latter must also rotate and the nature of the stress must 
change-in particular it cannot be a constant shear stress Tq • Suppose 
that a known shear stress Tq is applied to the material; we calculate the 
additional shear stress, specified by 0""=-0",, • which is necessary to bring 
the principal axes of stress into the required position. By § J (II) these 
axes make angles at' and at'+t1T with the x-axis given by 

tan 2(1'=::1 2T., _ ... ,., 
u~-a. a. 

• (I2) 

and equating this to the value of at' found above from the amount of the 
shear gives 

• (IJ) 
This determines 0". in terms of sand Tq • and the maximum shear stress 

TO is, by § J (I8), 
T01=0".I+T .. I""T ... '(I'+I). • (14) 

Since referred to principal axes the shear is now a pure shear i.""-i1 
and the stress system is a pure shear stress O"I=-O".=TO , we can use (II) 
and (I4) in (9) which gives 

sinh- 1 ,-(To/2G)=T ... (II+I}'/2G. • (IS) 
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19. THE EQUATIONS OF VISCOSITY 

A fundamental property of a fluid is that it can withstand no 
shear stress, however small, without permanent deformation. A 
fluid in laminar motion, however, is found to exert a shear stress 
on its boundaries which is proportional to the rate of shear. On 
this basis the equations for viscous flow in three dimensions are 
set up in exactly the same way that the stress-strain relations of 
elasticity were generalized from Hooke's law for simple tension. 

The displacements of the particles of the fluid do not appear (at 
least in the usual Eulerian equations) but only their derivatives, 
the velocities. Writing a dot for differentiation with respect to the 
time, the components of velocity will be u, fl, W, in the notation of 
§ II, and the components of rate of strain will be by § II (4), (5) 

. ~ . ~ . ~ () 
Ez""ax' EII=ay' E'=az' 1 

. awav. auaw. avau () 
'Y 11'= ay + az' 'Y.= az + ax' 'Y qey= ax + ay' 2 

and the components of rate of rotation will be given by 

2m = ~ _a~ 2m = au _ aw 2m = av _ au (3) 
z ay oz' II az ax' • ax ay· 

The vector (3) is called the vorticlty, and if it vanishes the motion 
is called irrotational. 

These velocities and strain rates are to be understood as those at 
a fixed point referred to fixed axes. The components of stress in 
the fluid defined in § 4 will be referred to the same axes. The 
fundamental assumption, then, is that each of the components of 
stress must be a linear function of the components of rate of strain, 
and the discussion is precisely the same as that of § 13 with 8", re­
placed by t z , etc., except that, since in a liquid there is usually a 
hydrostatic pressure p superposed on the viscous stresses which 
vanish when the velocity is zero, terms -p are added to (11 , (1. and 
(1a to allow for this. Thus in place of § 13 (I) to (3) we get 

O'l--p+(l' +21]}el+l'sa+l 'sa, (4) 
(1,--p+l' t1+(l' +21])sll+l' Sa , (5) 
(1a""-P+l'Sl+l'es+(l'+21])sa, (6) 
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where A' and 1] are the constants of proportionality appropriate to 
the present case. 

Precisely the same analysis as that leading to § 13 (10), (II), (12) 
gives the fundamental relations 

a.,=').'A+2'Y)8,,-P, ay =).'A+2'Y)811-P, a.=A'A+2'Y)8.-P, (7) 

TlI.='Y)YI/.' T • .,='Y)Y • ." T"I/='Y)Y"lI' (8) 
a"+0'1I+0'.=-3P+(3A' +21])A. (9) 

(9) is a connexion between pressure and rate of change of 
volume so that A' +2'Yj/ 3 is a bulk viscosity analogous to the bulk 
modulus of § 13 (13). An effect of this type, though it presumably 
exists, is of no general importance so that we may assume it to 
vanish and take 

3A' +2'Yj=0. . (10) 
Using this, (7) and (9) become 

a,,=2'Yj8.,-i'YjA-p, 0'1/=2'Yj811-i'Yjll-p, a.=2'Yj8.-i'YjA-p, (II) 

0'''+0'1I+0'.=-3p. (12) 
Thes~ are the equations of viscosity. For an incompressible fluid 

!l and !l vanish, and (II) becomes 

0'.,=2'Yj8,,-P, 0'1/=2'Yj811-P, 0'.=2'Yj8.-P. 
The condition 

. auavaiv 
!l=--+--+-=o . ax ay az 

for an incompressible fluid is the equation of continuity which ex­
presses the fact that the mass of fluid within any imaginary fixed 
closed surface remains constant. 

In the simplest case of simple shearing motion of planes 
z=constant in the direction of the x-axis, we have u= U, the 
velocity, which is a function of z only, t=w=o, so that the only 
non-vanishing component of rate of strain is 

and (8) gives 

. au 
y • .,= az' 

. (15) 

rJ is called the coefficient of viscosity, its dimensions are those of 
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stress x time. The unit usually used is the Poise or dyne.cm-z.sec. 
Values for some typical substances are shown in Table II. 

TABLE II 

Substance Viscosity (Poises) 

Air (zo' C.) 
Water (zo' C.) 
Mercury (ZOO C.) 
Castor oil (ZOO C.) 
Pitch (IS' C.) 

.. (500 C.) 
Glass (ZOO C.) 

.. (575 0 C.) 
Lava flow 

1·86x 10-' 

0·010 
0.01 56 

7·Z 
ZX lOll 

I·SXIO' 
1021 

1·IXIOll 

4XIO' 

In connexion with this table it should be remarked that sub­
stances such as glass or pitch do exhibit true viscous effects (that 
is, effects describable by (8) and (13) ) with very high coefficients 
of viscosity; also phenomena such as the creep of cement and the 
high temperature creep of metals show behaviour very similar to 
true viscosity. A substance with a linear relation between stress 
and rate of strain is described as perfectly viscous or Newtonian 
and many substances possess this property to a very close approxi­
mation. Non-Newtonian or non-linear viscosity in which 'f/ is not a 
constant but a function of the shear stress is of great importance in 
Rheology. 

20. FRACTURE AND YIELD 

In § 12 it was noted that most substances (except viscous fluids 
in shear and some of the composite substances of § 30) behave 
elastically at low stresses. As the stress is increased the body will 
begin to yield at some point if it is ductile, while if it is brittle it 
will fracture at some point without appreciable yielding. 

From the mathematical point of view the discussion of the two 
effects is very similar: we have certain information about the 
stresses at which the substance will fracture (or yield) in simple 
tension or compression; it is desired to set up a criterion which 
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will enable us to determine at what stress and at what point frac­
ture (or yield) will begin in a body subjected to more complicated 
stress systems. Various criteria have been set up, such as 

(i) Maximum principal stress, 
(ii) Maximum principal strain, 

(iii) Maximum shear stress (or maximum stress difference), 
(iv) Maximum shear strain, 
(v) Maximum strain energy, 

(vi) Maximum distortional strain energy, 
(vii) Maximum conserved distortional strain energy, 

and there are many other possibilities. Of those listed above, (i), 
(ii) and (v) do not fit all the facts, although (i) is essentially the 
criterion for brittle fracture as defined below; (iii) and its general­
izations discussed in §§ 21, 22 give simple and useful criteria; 
(vi) has conspicuous mathematical advantages which will appear 
later and is much used in modem theories of yield; (vii) and its 
generalizations attempt to take into account the effect of rate of 
straining on failure. 

Much more attention has been devoted to the study of ductile 
materials than to that of brittle ones, both because of the greater 
ease of experimenting with metals and their greater technical im­
portance, so that the theories of yield are in a much more advanced 
state than those of fracture. Both flow and fracture are observed on 
large and small scales in geological material so that criteria for 
them are vital for the interpretation of geological phenomena: it 
should be added that since in this case displacements are the 
observed quantities, criteria involving strain rather than stress 
would be more useful, but, despite many attempts, no satisfactory 
strain theory has been developed, cf. § 25. 

In §§ 21, 22 the simple criterion (iii) and its generalizations will 
be discussed and interpreted with reference to fracture, while in 
§§ 27, 28 yield criteria, including (iii) and (vi), will be discussed. 

With regard to fracture 1 it is necessary to be precise about the 
terminology used and the principal effects to be described: the 
latter are shown diagrammatically in Fig. 24. 

(i) For ductile materials failure in tension occurs by localized 

1 The tenn 'fracture' implies the appearance of distinct surfaces of 
separation in the body. 'Yield' is used for the onset of plastic defonnation, 
and 'flow' for unrestricted plastic defonnation. Failure is used here in a 
general sense, including both fracture and flow. 
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plastic deformation called 'necking', which usually is terminated 
by a 'cup and cone' fracture, Fig. 24 (a), of which the sides AB 
and CD are conical while the central portion BC (in which frac­
ture actually begins) is flat. This process of failure in ductile 
materials by localized plastic deformation is frequently called 
rupture. 

(ii) For brittle materials in tension, fracture, known as brittle 
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FIG. 24 

fracture (sometimes as tensile or cleavage fracture), takes place 
across a surface perpendicular to the direction of tension, Fig. 24(11). 

(iii) For brittle materials in compression, fracture, called shear 
fracture, takes place along a pair of planes or a cone approximately 
in the direction of greatest shear stress but always lying between 
this direction and the direction of the compressive stress, 
Fig. 24 (c). Shear fracture also occurs in the cone AB of the 'cup 
and cone' in (i). 

Other types of fracture,1 for example, those due to fatigue 
caused by repeated reversal of stress, and those due to creep at 
high temperatures, are also recognized and have been studied. 

The tensile and compressive strengths of a brittle material are 
the stresses necessary to cause fracture. For a ductile material the 

1 For a full discussion of fracture in general see Orowan, Reportl on 
Progrell i" Physics, 13 (1949), 18S. 
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'ultimate' stress defined in § 26 is that usually given. Some typical 
values are given in Table III. 

TABLE III 

Material Tension I Compression 
(kg./ern. l ) (kg./ern. l ) 

Granite 4 0 1,400 
Gabbro 1,800 
Marble 60 1,000 
Limestone 4 0 900 
Sandstone 20 700 
Brick 3 00 
Cast iron 1,500 
Mild steel 4,600 
Copper 1,600 
Glass 600 
Quartz fibre 10,000 

21. THE MAXIMUM SHEAR STRESS THEORY OF 
FRACTURE AND ITS GENERALIZATIONS 

The maximum shear stress theory, which dates back to 
Coulomb, states that failure occurs at a point when the maximum 
shear stress is equal to some definite value which is called the 
shear strength of the material. Now, if 0"1,0"1,0"3 are the principal 
stresses at a point, it is known from § 4 that the maximum shear 
stress has magnitude 

i(O"cO"a) 
and occurs across a plane whose normal bisects the angle between 
the greatest and least principal stresses. This implies that, if Co is 
the compressive strength of the material in a pure compression 
test in which 0"1=0"2=0, O"a--Co, the material may fail across any 
plane inclined at 45° to the direction of compression. The angle is 
in fact usually less than 45° and there are more serious difficulties, 
notably that the theory implies that the tensile and compressive 
strengths are equal. 

This theory has been modified by Navier into a form which 
qualitatively fits most of the facts, and which has been used by 
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Anderson 1 in a discussion of the types of geological faulting. 
Instead of assuming that fracture takes place across the plane over 
which the shear stress first becomes equal to a constant So (the 
shear strength of the medium), it assumes that this shear strength 
is increased by a constant p times the nonna! pressure across the 
plane. This is analogous to ordinary friction in which the tan­
gential force is p times the normal reaction, so that p is frequently 
called the coefficient of internal friction. If a and l' are the normal 
and shear stresses across a plane. the criterion states that fracture 
takes place for the plane at which the magnitude of l' first becomes 
equal to So-pU (the negative sign is due to the convention that a is 
positive if it is a tension). This criterion 

ITI-So-pu . (I) 
may be reached in a number of other ways. Thus, if it is assumed 
that the general criterion can be expressed by the vanishing of 
some unknown function of a and 1', the linear function (I) would 
be studied first. Another interpretation of (I) will appear in con­
nexion with Mohr's theory, § 22. 

We now discuss (I) in detail, taking the case of two dimensions 
first. If a1 and a. are the principal stresses, by § 3 (13) and (14) 

a-l(al+a~)+l(acal) cos 26, (2) 
T--l(aca.) sin 26. (3) 

pa+ITI-lp(a1+a')+1(aca.Hsin 26+p cos 26}. (4) 
Values of6 between 0 and 90° only need be considered. since only 
the magnitude of l' occurs in (I): changing the sign of 8 only 
changes the sign of sin 26 and does not affect either a or IT!. so that 
the result is symmetrical about 6-0. 

Fracture is assumed to take place when the quantity pu+/TI first 
attains the value So. Now (4) has its maximum value when 

tan 26-I/p, (5) 
and the value of this maximum is 

Ip(a1+a.)+l(aca.)(,u2+I )l. . (6) 
Thus by (I) failure takes place across the plane whose normal is 
specified by (5) when 

a.{p+(.u2+I)l}+ua{.u_(.u2+I)l}_2So· . (7) 

1 The])yruJmiu of Faulting (Oliver and Boyd, Ed. a, 1954). 
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Considering first the direction of the normal to the plane of 

failure, if p=o, 6-45°; if p-I,6-22!0; if p-+oo, 6-+0, that is, as 
p increases the normal moves towards the direction of maximum 
stress (reckoned algebraically, tension being positive) and the 
plane of fracture moves towards the direction of least stress, that 
is, the direction of maximum compression if one or both of the 
stresses is compressive. Values of p of the order of I are inferred 
from the directions of fracture of rocks in testing machines and 
also from geological faulting. It should be remarked that, because 
of the symmetry in 0 mentioned above, the theory leads to two 
possible planes of fracture equally inclined to the principal stresses 
and gives no reason for preferring either. 

The formula (7) leads to a criterion for failure under combined 
stress in terms of the compressive and tensile strengths, Co and 
To , of the material. 

Failure in pure tension corresponds to 0'1= To , 0'1=0 in (7) so 
that 

(8) 

Failure in compression corresponds to 0'1""0, O'lI=-Co in (7) so that 

It follows that 
Co{(p2+1)l-p}-2So• (9) 

Co (p2+1).+p 
To=(p,2+£jl":'p,' 

and that (7) may be written 

O't 0'1 ( ) ----=1 • II 
To Co • 

This may be represented on the (0'1' 0'2) plane of Fig. 25 (a). 
Since 0'1>0'1 only the region to the right of the line POQ is in 
question, and (II) is the straight line AB. Then if the point corre­
sponding to principal stresses 0'1 , 0'1 lies in the angle ABQ the 
material will fail, while if it lies in the angle ABP the material can 
sustain this state of stress. It should be added that this simple 
representation holds also for axial symmetry in which two of the 
principal stresses are equal, but has to be modified along the lines 
of § 28 if the three principal stresses are different. 

It follows from (10) that the theory predicts that the compres­
sive strength of a material is always greater than its tensile strength, 
but the ratio is rather smaller than that found in practice, for 
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example, P-I gives Co-S·8To which may be compared with the 
values in the table of § 20. Another inadequacy of the theory is 
that it predicts that under any conditions the normal to the plane 
oHracture makes the same angle, !tan-1 (I/p), with the direction 
of greatest principal stress. This is approximately true for com­
pressive stresses but is very far from the truth in the case of pure 
tension when; as remarked in § 20, the failure is usually by brittle 
fracture with the plane of fracture normal to the direction of ten­
sion. The reason for this is presumably that the above theory 

Q 

p (b) 

A (a) 

FIG. 25 

assumes shear fracture, so that To should not be the actual (brittle) 
tensile strength but the value at which shear failure in tension 
would take place if in fact brittle fracture did not occur in practice 
before this value is reached. This is in line With geological thought 
which distinguishes sharply between shear faults and tension 
faults. Despite the above criticisms which refer to systems with a 
predominant tensile principal stress, the theory gives a reasonably 
accurate quantitative account of the behaviour of rocks under 
combined compressive stresses. 

In three dimensions the matter is best discussed by using Mohr's 
representation of Fig. 7 (a) or Fig. 25 (b). (5) may be expressed by 
the statement that p.c7+ITI for planes whose normals lie in the plane 
of (11 and (18 is a maximum at the point P of Fig. 25 (b) where OP 
makes an angle :z8o-tan-1 (I/p) with the direction of greatest prin­
cipal stress. It follows by inspection of Fig. 25 (b) that its value at 
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this point is greater than that for any other direction in three 
dimensions. We thus have the result that the planes of fracture pass 
through the axis of the intermediate principal stress and their normals 
make angles =!tan-1 (l/p,) of between 0 and 45° with the greatest 
principal stress. If two of the principal stresses are equal the two­
dimensional theory can be taken over immediately, but instead of 

0", 

(e) 

FIG. 26 

the two possible planes of fracture there will be a cone of fracture 
with the direction of the third principal stress as axis. 

One important application of these results is the study of faults 
which are fractures of the rocks of the Earth's crust (they may be 
on any scale, large or small). Geologists distinguish three major 
types of fault, and Anderson (loc. cit.) has shown that these are 
determined by the relative magnitudes of the principal stresses. 
One principal stress should always be nearly vertical, and three 
cases arise according as this is the greatest, intermediate, or least. 
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(i) Thrust Faults. In this case the vertical principal stress is the 
least in magnitude and the other two principal stresses are com­
pressive, Fig. z6 (a). The planes of fracture pass through the 
direction of the intermediate principal stress and make angles of 
less than 45° with the direction of the greatest compressive stress 
(and also with the horizontal), Fig. z6 (b). 

(ii) Transcurrent or Wrench Faults. In this case the vertical 
principal stress lies between the other two, of which one will be 
a compression and the other will be small and may even be a 
tension, Fig. z6 (c). The verticle principal stress is now the 
intermediate one so that failure can take place on either of two 
vertical planes AOB, COD, Fig. z6 (d), which are equally inclined 
at angles of less than 45° to the direction of the greatest compres­
sive stress. 

(iii) Normal Faults. At considerable depths the vertical principal 
stress will be the greatest in magnitude, Fig. z6 (e). Failure will 
take place across planes inclined at angles of less than 45° to it, 
Fig. z6(f). 

(iv) Circular Systems 0/ Faulting. A similar treatment can be 
given for stresses disposed symmetrically about a point of weak­
ness in the Earth's crust. In this case the directions of the princi­
pal stresses will be vertical, radial and tangential. Then, for ex­
ample, if the radial principal stress is tensile, the vertical stress 
compressive, and the tangential stress negligible (and thus the 
intermediate stress) there will be cones of fracture with their axes 
vertical. 

Finally, it should be remarked that the discussion above applies 
to shear fracture. Geologists also observe tensile (brittle) fracture 
in a direction perpendicular to important tensile stresses. 

ZZ. MOHR'S THEORY OF FRACTURE 

Mohr's theory assumes that at failure across a plane the normal 
and shear stresses across the plane, a and 1', are connected by some 
functional relation, 

1'-/(a), (I) 

characteristic of the material. This relation may be plotted on the 
(a, 1') plane and, since changing the sign of l' simply changes the 
direction of failure but not the condition for it, the curve must be 
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symmetrical about the a-axis. For the present we shall consider 
the two-dimensional theory only. 

Suppose that AB, A'B', Fig. 27 (a), is portion ofthe curve (1)­
the way in which the curve is completed beyond BB' and AA' will 
be discussed later. Any state of stress can be represented by a Mohr 
circle on the (a, T) plane: if this circle lies wholly within the curve 
ABA'B' the stresses involved nowhere attain the critical values: is 
any portion lies outside it the material could not withstand the 
stresses. The limiting case is that of a circle such as that of centre 
C, Fig. 27 (a), which just touches the curve AB; in this case failure 
will take place under conditions corresponding to the points PP', 
that is, over planes whose normals are inclined at angles of half the 

A 7' 

(a) (b) 

FIG. 27 

angle PCD to the direction of the greatest' principal stress. The 
curve AB will be the envelope of all the circles corresponding to 
all conditions at which fracture takes place, and for this reason is 
known as the Mohr envelope. In principle, three circles which touch 
it can be found from simple experiments, namely, those of centres 
C1 , 0, and C., Fig. 27 (b), corresponding to tension, simple shear, 
and compression, respectively. In practice, it is difficult to perform 
shear or tensile tests on rock material, and the triaxial test is pre­
ferred. In this, the material is subjected to axial compression and 
to hydrostatic pressure in the perpendicular directions. By varying 
the hydrostatic pressure any number of circles, all to the left of the 
T-axis in Fig. 27 (b), may be found. Since increasing the hydro­
static pressure in general increases the resistance to fracture, it 
seems probable that the Mohr envelope is open to the left. 
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The simplest possible Mohr envelope is the pair of straight lines 
of Fig. 28 (a), 

T-=:(rl-pa). • (2) 
In all cases the normal to the plane of fracture makes an angle 

! tan-I (I/p) 
with the direction of the greatest principal stress. Thus the straight 
line Mohr envelope gives the Coulomb-Navier theory of § 21. It is 
f~und that the results of triaxial tests on most rock materials may 
be represented quite well by a straight line Mohr envelope and it 
is usual to determine their shear strengths in this way. 

A 

(a' (It) 

FIG. 28 

In three dimensions the theory leads to the result that only the 
Mohr circles for the plane containing the greatest and least prin­
cipal stresses need be considered, and that fracture always takes 
place in planes passing through the direction of the intermediate 
principal stress: this is not altogether consistent with the experi­
mental results. 

Mohr's theory, as enunciated above, is an empirical attempt to 
set up a criterion which gives not only the stresses necessary to 
cause fracture but also the direction of fracture: it has the merit 
that these quantities involve both the mean stress 0'",-1(0'1+0',) and 
the maximum shear T",-l(O'I-O'.)' The more usual point of view is 
that an experimental relation can be found connecting the princi­
pal stresses 0'1 and 0'11 at which fracture occurs; since 0'1 and 0'11 can 
be expressed in terms of O'm and Tm this gives a 'fracture curve' such 
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as A'P'Q' of Fig. 28 (b), the point P' of which corresponds to the 
point P of the Mohr envelope. If either of the curves APQ or 
A'P'Q' is known, the other can be found; except that, if the Mohr 
envelope has a finite radius of curvature at the point Q at which 
it crosses the a-axis, any points on the fracture curve A'P'Q' 
within the circle through Q and Q' will have a Mohr circle lying 
wholly within the Mohr envelope and so the original assumption 
breaks down. This case is not of any practical importance since the 
point Q, corresponding to triaxial or hydrostatic tension, has not 
yet been attained experimentally. 

23. EARTH PRESSURE 

It is found experimentally that the behaviour of soil materials above 
the water table can be fairly adequately represented by the straight-line 
Mohr envelope of §§ZI, :az, which, for the present purpose, may be 
written in the form 

(I) 

Here the constant c, which is the shear stress which the material can 
sustain at zero normal stress, is called the cohesion, and '" is called the 
angle of friction. Since soil cannot sustain tension, only the portion of the 

B A B A , , , 
Pa ' \ \ , , \ 

\ , P P , , , 
«' c 

C 
(a) (b) eel 

FIG. 29 

Mohr envelope (I) to the left of the T-axis is in question: this is shown 
by the full lines in Fig. 29 (a). Two special cases are of importance: (i) for 
very soft clay ",-0; (ii) for dry 1 sand, which is cohesionless, &-0 so that 
the straight lines of the Mohr envelope pass through the origin, in this 
case '" has the physical interpretation that it is the maximum possible 
angle of slope of a sand surface. 

Many important results follow from the geometry of the Mohr en­
velope, Fig. 29 (a). Since we are only concerned with compressive stresses, 

1 For wet sand the value of a is to be increased by a constant represent­
ing the pore-water pressure. 
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we write trl=-Pl, tr.--P. for the principal stresses so that the lengths 
OP1 and OPt are PI and P • • Also, it is convenient to introduce as a new 
parameter the angle at defined by 

at= .... so+i~ • (z) 
so that in Fig. Z9 (a) the angles BAP1 and BTP1 are both Zat. When failure 
takes place, the plane of sliding will make an angle at with the direction of 
lesser compression. It follows from (z) that 

2 tan at 
cot ~ ... -tan Zat----. 

tan1at-I 

Now from the geometry of Fig. Z9 (a), 

PIT-PIA cot at=lCP.-Pl) cot at, 

and also P1T-c+Pl tan ~. 
From (3), ( .... ) and (s) it follows that 

(5) 

P.-ze tan at+Pl tan' at. (6) 

This is the fundamental relation which connects the principal stresses 
at which failure takes place with the properties of the material. These 
properties are usually measured by the triaxial test in which the soil in 
the form of a finite cylinder is enclosed in a waterproof cover and sub­
jected to external hydrostatic pressure PI and an axial load PI which is 
increased until the specimen fails 1: two such experimenta give c and tan at 
by (6), or a series of such testa at different values of PI will determine the 
actual Mohr envelope for the soil, which of course will differ slightly from 
the straight line assumed in the simple theory. 

As another example of the use of (6) we consider the simplest case of 
equilibrium of soils which leads to the theory of earth pressure on retain­
ing walls, etc. Suppose that AB is the horizontal surface of a mass of soil, 
Fig. 29 (6), and that we wish to find the horizontal pressure which must 
be applied at each point of the side of a vertical trench AC to prevent the 
soil from slipping into the trench. Suppose P is the required pressure at 
depth h and p is the density of the soil, then -P and - ph will be the 
principal stresses which by symmetry must be horizontal and vertical. 
Then in (6) we have PI-P, PI-ph, so that 

P tan l at-ph-zc tan at. (7) 
If a pressure given by (7) is applied at each point of AC, the material 

will be in a state of incipient slip down the dotted planes in Fig. 29 (6) 
which are inclined at at to the horizontal. This is known .. the active 
RmIki". ltate of plastic equilibrium. 

The pressure P was less than ph in the above. It is also possible to have 
plastic equilibrium (Rankine's passive state) with p>ph, corresponding 
to the pressure being sufficiently great to cause the soil to slip upward. 

1 In practice, various types of test are distinguished according to the 
speed of testing and the arrangements made for the escape or otherwise 
of pore water from the soil. 
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In this case Pl=ph, PI-P, and by (6) 
P-2Ctan ex+phtan l ex, (8) 

and the material is in a state of incipient slip upwards along the dotted 
planes of Fig. 29 (c) inclined at ex to the vertical. 

24. THE GRIFFITH THEORY OF BRITTLE STRENGTH 

The mathematical theory involved is too difficult to give here, but the 
results are indicated as an example of an important method of attack and 
of another criterion of failure. 

It is well known that attempts to calculate the tensile strengths of simple 
crystals give results which are very much higher than those observed 
experimentally. Griffith explained this by the presence of a large number 
of minute cracks, Griffith cracks, in the material, and demonstrated their 
existence and the general validity of the formulae below by experiments 
on glass. 

The effect of a crack is to produce a very high concentration of stress 
at its edge. The amount of this can be calculated from the result that the 
maximum tensile stress in a flat plate containing an elliptical hole of major 
axis 21 and subjected to an average tensile stress a in a direction perpen­
dicular to the major axis is given by 

2a(1/ p)t, • (I) 

where p is the radius of curvature at the ends of the major axis. The 
maximum stress (I) occurs at the ends of the major axis, and as ~o, 
that is, the ellipse tends to a flat crack, the stress tends to infinity. For the 
type of crack under consideration p may be estimated to be of the order 
of the intermolecular spacing a. 

The crack will spread if the stress given by (I) is equal to a., the 
maximum tensile stress which can be sustained by the material without 
cracking. To estimate this, the process of cracking must be conaidered: 
this produces two new surfaces within the material whose distance apart 
is of the order of the intermolecular spacing a and which each possess 
surface energy ex per unit area which may be regarded as an intrinsic and 
messursble property of the material. This surface energy must be provided 
by the strain energy stored in the solid before cracking, and the quantity 
available will be of the order of that stored in the volume of the crack, 
this is aa".I/2E per Unit area of the crack (assuming § IS (4) to hold up 
till the moment of fracture). Equating these two expressions for the 
energy gives 

(2) 

Equating (2) to (I) with p=a gives for the tensile strength To in 
uniaxial tension in a direction perpendicular to the crack 

To-(Eex/l)t. (3) 
Values of To calculated from (3) prove to be of the right order of 
magnitude. 

This theory can be extended to biaxial stress, the assumption being that 
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the material contains a large number of incipient cracks, randomlyorien­
tated, and that failure takes place when the highest local stress at the 
longest' crack of the most dangerous orientation is equal to u .. given by (2). 
This' leads to the criterion of failure 

ul=To , if 3ul+u.>0, 
(UI-U.)1+8To(Ul+U.)-0, if 3Ul+u.< 0, 

where To is the tellsile strength (3) in uniaxial tension and Ul and U. are 
the principal stresses with Ul>uJ. That is, failure takes place when the 

point (Ul , U.) crosses the curve ABC of Fig. 
30, composed of straight lines and portion 

cra of a parabola. 

c 25. STRAIN THEORIES OF FAILURE 

In geological, as distinct from engineering 
To crt work, strain or displacement is the only 

observed quantity so that it is natural to 
attempt to set up criteria for flow or fracture 
in terms of strain rather than stress. It is to 

B be understood that finite strain is in. ques­
tion here, and this must for simplicity be 
aasumed to be finite homogeneous strain; 
since this is completely described by the 
strain ellipsoid, it is natural to set up criteria 
for failure in terms of the strain ellipsoid. 

The most obvious aasumption is that 
fracture will occur across planes for which 
the shear strain is a maximum, though ex­
perience with stress criteria shows that it 
might well prove that this simple aasump­
tion would have to be modified subse­
quently. The history of the matter is rather 
curious. Becker, in 1893, (cf. § 7), made this 
aasumption, but incorrectly concluded that, 
in the case in which there is no change 

FIG. 30 in area, the directions of maximum shear 
coincide with the directions of unchanged 

length; in three dimensions this led to the statement that the planes of 
maximum shear Coincide with the circular sections of the strain ellipsoid. 
For this reason the criterion that the planes of fracture are the planes of 
the circular sections of the strain ellipsoid was for many year. used ex­
tensively in geological literature. It may be seen to be inconsistent with 
the fairly generally observed fact that the planes of fracture make angles 
of leas than 45° with the direction of maximum compressive stress. Thus, 
for example, in the system of § 14 (v) it was shown in § 14 (14) that the 
circular aections make angles :l:tan-1 [(1_11)/11]. with the direction of com­
pression. This angle is determined only by Poisson's ratio II, and since 
11<1. it is always greater than 45°. It may be remarked also that in uni-
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axial compression the lines of unchanged length also make angles greater 
than 45° with the direction of compression (cf. § 14 (12) ). 

Apart from this mistake, Becker's analysis is interesting because it offers 
a possible line of attack on the common and puzzling phenomenon that 
of the two directions of fracture which on the stress theories should be 
equally probable (and usually appear so in laboratory experiments), one 
system is usually preferred in geological fractures. Becker's theory in two 
dimensions may be stated as follows: suppose that the criterion of failure 
(whatever it may be) indicates two planes which in the unstrained state 
make angles %'1) with a principal axis of strain, and in the strained state 
make angles %'1)' with the axis into which this is strained. These two axes, 

(0) (b) 

FIG. 31 

as in § 7, make angles ex and ex' with Ox, and the planes in question make 
angles ex%'I) with Ox before straining. Now suppose the strain is increased 
steadily from an infinitesimal amount to its final value. When the strain is 
infinitesimal the principal axis will, by § 7 (39), make an angle exo-.(ex+ex') 
with Ox, also in many cases 'I) tends to 45°: we shall assume this to be the 
case, if it is not a similar argument can be used. For infinitesimal strain the 
initial positions of the lines in question, OA and OC, make angles of 
exo:l:45° with Ox, while for the finite strain they are OB and OD which 
make angles of ex%'I) with Ox. Thus, as the strain is increased to its final 
value these lines sweep through the two wedges AOB and COD of 
Fig. 31 (a) and (b), which are drawn for '1»45° and '1)<45°, respectively. 
The angles of these wedges differ by the amount of rotation ex-ex', and 
inspection of Fig. 31 (a) shows that if ">45° the wedge in the direction 
of rotation is the smaller, while if '1)<45°, Fig. 31 (b), that in the direction 
of rotation is the larger, and if 'I)-45° the two wedges are equal. The fact 
that these wedges are unequal implies an asymmetry which may lead to 
a preferred direction of failure. Becker suggested that in the larger wedge 
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through which the linemuetsweep mOJ;e rapidly during straining, fracture 
would be more likely, and, in the smaller wedge, flow would be eXpected .. 

"If maximum shear strain is taken as the criterion of failure it follows 
from § 7 (13) that '1"45°, so that for this particular criterion the two 
wedges are equal and neither would be preferred. But, as remarked above, 
almost any other criterion would lead to unequal wedges and a preferred 
direction of fracture, provided, of course, that the strain is rotational. 

26. THE TENSILE TEST ON DUCTILE MATERIALS 

This has been described in § 12; further discussion of the plastic region 
ABC will now be given. As remarked in § 12, the strains in this region 
are so large that the conventional stress a. defined by 

a ... P/ao, (I) 
where P is the load applied by the testing machine and ao is the initial area 
of the bar, differs appreciably from the true stress a which is 

a-P/a, • (2) 
where a is the area at that stress. It is therefore necessary to reduce the 
conventional stress-strain curve of Fig. 19 (a) to a true stress-strain cun'e 
connecting a and €. 

c 

o 
-1 o 

FIG. 32 

Suppose that OABC, Fig. 32, is the conventional stress-strain curve 
connecting a. and the strain € given by 

~=(/-/o)/Io , (3) 
where I is the length and 10 the original length of the bar. As remarked in 
§ 12, it shows a yield point at A, a maximum at B, and at C the specimen 
breaks. The value a. of a. corresponding to the maximum at B is ca1led 
the ultima" IITess. 

In the region AB it is found that the bar remains uniform in cross­
section, and since it is found that in processes of plastic deformation the 
change in volume is very smaIl, its area will be given by 

a-/oOo/l-ao/(r+~), • (4) 
and thus the true stress a is given by 

a=P/a-(r+~)P/ao=(I+~)cr (5) 
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Using (5), the true stress-strain curve OAB' of Fig. 32 can be obtained 
from the conventional stress-strain curve OAB. Since at the point B of 
the latter, a.=au , da./d£=o, it follows from (5) that at the corresponding 
point B' 

da 
d£=au • (6) 

That is, the (a, £) curve has slope au at the point B', and the tangent to it 
at this point has intercepts OD=-l on the £-axis and OE=au on the 
a-axis. 

At B in the stress-strain curve some sort of instability 1 sets in, the 
cross-section of the bar ceases to be uniform and a 'neck' develops at some 
point at which fracture ultimately takes place. To discuss the portion Be 
of the curve the shape of this neck and the stresses in it must be con­
sidered, cf. Bridgman, loco cit. 

If the natural strain i defined in § 18 is introduced, a natural stress­
strain curve of a against l is obtained. It follows by the arguments leading 
to § 18 (9) that for a perfectly elastic material this curve would be a=E€, 
and attempts have been made to represent the early portion of the curve 
OB' by a power relation of the form a=kin with 71< 1. 

27. YIELD CRITERIA 

In this section the mathematical formulation of yield criteria for 
the perfectly plastic solid will be discussed and some of the more 
commonly used criteria studied. 

So far as is known at present, hydrostatic pressure alone does 
not cause appreciable plastic deformation in metals and crystalline 
rocks. Thus, in developing criteria for yielding, it is usual to sub­
tract a hydrostatic part from the actual stresses, calling the re­
mainder a stress deviation, and assuming that this quantity alone 
produces yield and that conditions for yield may be expressed in 
terms of it alone. The necessary preliminary theory, (1)-(13) and 
(17)-(22) below, is quite general and might have been given in § 4. 

1 If a small additional strain 8£ is imposed when the stress is a, strain­
hardening requires the load to be increased by ao(da/d£)8£/(I+£), while 
the reduction of area corresponds to a reduction of the load by 

-a8a=aao8£/(I + £)2. 

For a,<au the latter quantity is the less, so that an increase of strain 
corresponds to an increase of load, but when a,-a .. the two quantities 
balance exactly by (6) so that the strain may be increased without increas­
ing the load. 
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If (1"" (11/ , (1, are the normal stresses referred to any system of 
axes, the mean normal stress 1 is defined as 

S=«(1",+(1I/+(1.)/3=«(11+(12+(13)/3, (1) 
this quantity being invariant by § 4 (21). The stress deviation is 
defined as having components s'" , sl/ , S. , SI/I' S.'" , s"'l/ given by 

S",=(1",-S, sl/=(1I/-s, S.=(1.-S, (2) 

S".='t'"., S..,='t'."" S"",='t'",,, • (3) 
This quantity may be reduced to principal axes as in § 4: the 

principal axes for the stress deviation are the same as the principal 
axes of stress, and the principal stress deviations SI , S2 , Sa are 

SI=(11-S={2(11-(12-(1a)/3, S2=(12-S={2(12-(11-(13)/3,} 
Sa=(13-S={2(13-(1C(12)/3. (4) 

It follows from (I) that 
S",HI/H.=sl+s2+sa=0. (5) 

In the same way the components of strain can be decomposed 
into the mean normal strain e defined by 

e=(e",+eI/+e.)/3={el+e2+ea)j3=~/3, (6) 
which by § II (17) is one-third ofthe dilatation ~ and is invariant, 
and the strain deviation whose components e"" ••• , ell' , • • • are 
defined as 

e",=e",-e, el/=e,,-e, e.=e.-e, (7) 

e".=Y"., e.",=y.", , e"",=y",,, • (8) 
As in the case of stress, the principal axes of the strain deviation 

coincide with the principal axes of strain, and the principal strain 
deviations e1 , e2 , ea are 

so that by (6) 
el+e2+e3=e",+e,,+e.=0. (10) 

The stress-strain relations for an elastic material, § 13 (10)-( 12), 
take a simpler form when expressed in terms of stress and strain 
deviations. Firstly, using (I) and (6) in § 13 (12), (13) gives 

s=3Ke, • (II) 

1 Sometimes, particularly in geological literature, the term 'confining 
pressure' is used in this sense. But it is also used in a different sense in 
experimental studies of deformation, cf. § 12. 
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and using this result in § 13 (10), (II) gives by § 13 (13) 
sz=zGez , s,,=zGell , sz=zGe., (IZ) 
s".=Ge"z, szz=Gezz , sz,,=Gez,,' (13) 

Only two of (12) are independent since, if they are added, both 
sides vanish by (5) and (10). 

In the same way, the equations of viscosity for an incompressible 
fluid, § 19 (8), (12), (13) take the simpler form 

sz=z'YJez , s"=z'YJe,, , sz=z'YJez , } 

SIlZ='YJe7lZ' szz='YJezz , sZ7l='YJezy , 
~=o. 

The mathematical requirements for a yield criterion may be 
illustrated by the case of the maximum shearing stress, or Tresca's, 
criterion which states that yield occurs at a point when the magni­
tude of the maximum shearing stress there has a value 1 !<To which 
is a constant of the material. The maximum shearing stress has 
been found in § 4 (38) to be (GCG3}/Z, so that Tresca's criterion 
may be written 

G1-G3=SCS3=GO' • (16) 

It may be remarked that it gives equal yield stresses of Go in 
uniaxial tension and compression: this is approximately true for 
the case of yield, though as remarked in § 21 it is far from true for 
fracture, and so (16) is ruled out as a criterion for fracture. Further 
consequences of (16) will be discussed later. 

In order to use (16), it is necessary to know the principal stresses 
and to pick out the greatest and least of them: while this can fre­
quently be done in simple probleIns, it makes (16) unsuitable as a 
general mathematical formulation (though it may be made so by 
suitable modification). The most important requirement for a yield 
criterion is that, since the actual yielding cannot be affected by the 
choice of axes, the criterion should be invariant with respect to 
rotation of the axes. Also, as remarked earlier, it is assumed that 
the mean normal stress does not affect the process so that the 
criterion must involve stress deviations only. 

1 It is a little more convenient in subsequent calculations to have yield 
criteria stated in terms of the yield stress (70 in tension rather than in 
terms of that in pure shear, though the latter is the more logical in the 
present connection. 
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This suggests that the invariants of the stress deviation should 
be examined. The invariants 11, I", 13 of the stress have been 
found in § 4 (X8)-(20), and the invariants II, I. , 13 of the stress 
deviation are found in precisely the same way. The first two of 
these are 

11-SeH "H" • . (x7) 
I 1--(S~.H.seHeS,,)+SI/Z 2H.e2+Se,,2 • • (x8) 

Of these, II vanishes identically by (5). Using this result in (x8) 
gives 

I z=l( Se 2+siH, 2)H", 2Hze 2+Se1l2 ( x 9) 
-t {(0',,-0',)2+(0'.-O'e)2+(O'e-0',,)2 }+T". 2+Tze 2H'e,,2 (20) 
-H(0'2-O'a)2+(0'3-0'1)2+(0'1-0'2)2} . (2X) 
-1(SI2H22H32), (22) 

where (20) follows from (x9) by (2) and (3), and (21) and (22) are 
(zo) and (x9) referred to principal axes. 

Since, as above, any yield criterion must be expressible in terms 
of the invariants II , 13 , that is, in the form 

fU2, 13,0'0)-0, • (23) 

where 0'0 is a constant of the material, it is reasonable to examine 
simple relations of this type. The simplest of all is obtained by 
assuming 12 to be constant, that is, by (2X) and (22), 

or 
21,,-sI"H,,"H/'-2O'02/3, . 

(0'2-0'3)2+(0'3-0'1)2+(O'I-0',,)2_ZO'OI, 

where 0'0 is a constant of the material, which, using the values 
0'1-0'3-0, s-O'Ii3, SI-2O'Ii3, Sa-Sa=-O'Ii3 appropriate to uniaxial 
tension, is seen to be the yield stress in uniaxial tension or com­
pression. For pure shear O'a--O'I , 0'2-0, it gives a yield stress of 
0'0/"';3· 

(z4) is the 'Von Mues criterion which is probably the simplest to 
use and the one whose consequences have been most studied. It 
was introduced above by purely mathematical arguments, but it 
can be given a physical interpretation (or if preferred introduced 
as an empirical criterion) by two other types of argument, based 
on strain energy and the concept of octahedral stress and strain, 
respectively. 
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The strain energy per unit volume in the elastic state was found 

in § IS (2) to be given by 

2 W=0'1C1+0'2CZ+0'3Ca • 
Using (4) and (9) this becomes 

2 W =(Sl +s)( e1 +e )+( s2+s) ( e2+e )+(S3+S)( e3+e) 

1 (2 2 2) S2 ( 6) 
.. 2G Sl +S2 +S3 + K' . 2 

using (5), (10), (II), (IZ). It follows that the elastic strain energy 
per unit volume can be split into a part S2/2 K associated with 
change of volume and a part 

(S12+S22+S32)/4G • (27) 

associated with distortion. Thus (24) arises if it is assumed that 
yield takes place when the elastic strain energy of distortion 1 reaches 
a value characteristic of the material: in this form the theory is 
associated with the names of Huber and Hencky. 

Another interpretation of (24) has been given by Nadai in terms 
of the shear stress across the plane whose normal has direction 
cosines l=m=n=I/v'3 and so is equally inclined to the principal 
axes: this plane, he calls the octahedral plane. By § 4 (26) the 
normal stress across it is (0'1+0'2+0'3)/3, and so by (I) is just equal 
to the mean normal stress and may be regarded as playing no 
part in yield phenomena. By § 4 (29) the shear stress Toc across 
it, called the octahedral shearing stress, is given by 

Toc=t{(0'2-0'3)2+(0'3-0'1)2+(0'1-0'2)2 }t=(2] 2/3)t, . (28) 
using (21). Thus the yield criterion (25) may be stated in the form 
that yield takes place when the octahedral shearing stress is equal 
to v'(2/3) times the yield stress in pure shear or (v'2)/3 times the 
yield stress in uniaxial tension. 

The various yield criteria must be judged and compared by the 
way in which their predictions fit the experimental results. Con­
sidering the simple criteria discussed above, Tresca's and von 
Mises's, it has been remarked that they both predict equal yield 
stresses in tension and compression, which is in reasonable agree­
ment with experiment. 

1 Beltrami and Haigh attempted to use the total strain energy as a 
criterion, but this did not prove satisfactory. For example, it predicts 
yielding under hydrostatic pressure which is not observed. 
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The simplest and most satisfactory tests of the theories are made 
under combined stresses on circular cylinders whose walls are so 
thin that they may be regarded as being in a state of plane stress. 
Taking x, y, and z-axes at a point of the cylinder in the axial, tan­
gential, and radial directions, respectively, torsion of the cylinder 
gives a system of stresses in which the only non-zero component 
is T:w. If an axial tension Gz is superposed on this system, the 
stresses in the xy-plane are Gz , Gy=O, TZY • By § 3 (19) the principal 
stresses Gl , G2 , G3 are 

iGz+i(Gz2+4Tzy2)t, 0, iGz_i(Gz2+4TzIl2)t. 

Using these values, Tresca's criterion (16) gives 

Gz2+4T:w2=G02, 

while the von Mises criterion (25) gives 

Gz2+3Tz.}=G02. . (30) 

According to Tresca's criterion the values of Gz and TZII for 
which yield occurs under various conditions lie on the ellipse (29), 

bO 
~ 

'q: b'" 

q: ~~1.2 
>. 

/',0 x .. 
0 CTx B -I 0 ~ 

(0) ( b) 

FIG. 33 

AB, Fig. 33 (a), while for the von Mises criterion they lie on the 
ellipse A'B given by (30). In the classical experiments of Taylor 
and Quinney 1 on metals it was found that the experimental points 
showed considerable scatter but were better fitted by (30). 

Another method of discriminating between the criteria is by 
studying the influence of the intermediate principal stress G2 • The 

1 Phil. Trans. Roy. Soc., A, 230 (1931), 323. 
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value of this relative to 0'1 and 0'3 may be expressed by the para­
meter 

20'2-0'1-0'3 
P, • 

0'1-0'3 
. (3 1) 

which takes values between -I and I as 0'2 varies from 0'3 to 0'1 • 
In terms of this parameter, Tresca's criterion becomes 

(0'1-0'3)/0"0= I, 
and von Mises's is 

The two curves are shown in Fig. 33 (b), the latter having a maxi­
mum of 2/V3=l"IS5 .. whenp,=o. Lode studied this curve experi­
mentally by using thin-walled tubes with combined axial tension 
and internal hydrostatic pressure. In this case there are tensile 
principal stresses in the axial and tangential directions, and the 
third principal stress in the radial direction is zero. By varying the 
amounts of the axial tension and hydrostatic pressure, all values of 
p, can be obtained. The experimental results again slightly favour 
the von Mises criterion. 

Finally, it should be remarked that many other yield criteria 
have been proposed and may be studied in the same way. In par­
ticular the Mohr theory may be regarded as an example of a 
criterion in which the mean normal stress is regarded as having 
an influence. The theory of earth pressure given in § 23 may be 
regarded as that for yield of a material with this property. 

28. THE YIELD SURFACE 

Since criteria for yield will be expressible in terms of the prin­
cipal stresses, it is obviously convenient to represent a state of 
stress by a point whose coordinates are 0'1,0'1,0'3. In doing this, 
it is convenient to abandon the convention 0'1>0'1>0'3 which has 
always been understood hitherto, so that, for the purposes of this 
section only, 0"1 will be the stress in a given principal direction 
irrespective of its magnitude relative to the other principal stresses. 
The 0'1 , 0'1,0'3 space in this sense is called the stress space. 

The criterion for yield will be expressed by a relation 

(I) 



ELASTICITY, FRACTURE AND FLOW 

where CTo is a constant of the material. This may be represented by 
a surface called the yield surface. 

First we consider the intersections of this with the plane CT3"'0 

for the yield criteria previously considered. 
Tresca's criterion requires the difference between the greatest 

and least principal stresses to be a constant, CTo , which is the yield 
stress in tension. If CTl>CT2>0, this requires CTl=CTo, giving the line 
AB, Fig. 34 (a); if CT2>CT1>0, it requires CT2-=CTO' giving BC; if 

oT:"'-,"",::,+--+-Oj 

(0) (b) 

FIG. 34 

(c) 

02>0>CT1' it requires CT.-01=CTo , giving CD; and so on, the final 
locus being the hexagon ABCDEF A. 

The von Mises criterion, § 27 (25), is 
CTt"-(ltCTz+CTz"=CT02, (2) 

giving the dotted ellipse in Fig. 34 (a) which passes through the 
vertices of the hexagon. Comparison of the two curves indicates 
clearly the difference between the criteria. The greatest discrep­
ancy is for pure shear CT.--CT1 for which the values are CTo/2 and 
CTol1l3· 

In three dimensions, it follows from § 27 (4) that all points on 
the line 

CTt-CT.aCTa (3) 
have zero stress deviation, and that all points on a line parallel to 
it have the same stress deviation. Since on the assumptions made 
here the yield criterion involves only the principal stress devia­
tions, the yield surface must be a cylinder in the stress space with 
its axis along the line (3) which is equally inclined to the principal 
directions, Fig. 34 (b). For the cases of Tresca's and von Mises's 
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criteria discussed above, Fig. 34 (a) gives the intersection of the 
cylinder with the plane aa=O. The cross-section of the cylinder is a 
regular hexagon for Tresca's criterion and a circle for von Mises's. 
Its intersection with the plane a1+a2+aa=0 perpendicular to the 
axis of the cylinder is sometimes known as the yield locus and is 
shown in Fig. 34 (c) for the two cases above. In general it possesses 
a high degree of symmetry since the yield criterion must be un­
changed by interchanging two principal stresses. 

The cylindrical form of the yield surface in Fig. 34 (b) is caused 
by the assumption that the mean normal stress has no effect on the 
process of yield. In the more general case in which this assumption 
is abandoned, the surface (i) is not a cylinder. 

29. THE EQUATIONS OF PLASTICITY 

In this section we shall set up stress-strain relations for a per­
fectly plastic substance under the simplest possible conditions. It 
is assumed that the substance satisfies some yield condition such 
as § 27 (16) or (24) and that at every point of a region which is 
behaving plastically this relation holds. For example, if the maxi­
mum shear stress condition is assumed, the maximum shear stress 
at every point in a region behaving plastically must have the same 
value tao . In most problems in which a body is subjected to pre­
scribed stresses it will be divided into elastic regions in which the 
magnitude of the maximum shear stress is less than tao and plastic 
regions in which it is equal to lao. Problems are further divided 
into two classes: (i) those in which the elastic and plastic displace­
ments are of the same order of magnitude, for example in many 
engineering problems such as highly stressed pressure vessels, 
(ii) those in which there is unrestricted plastic deformation, as in 
extrusion; in such cases the elastic displacement can often be 
neglected in comparison with the plastic deformation and a con­
siderable simplification results. 

Each yield criterion will lead to its own set of equations. Here 
we shall consider only the von Mises criterion, § 27 (24), 

2]2=s12+S22+Sa2=2ao213. • (I) 
This is assumed tQ hold at all times and points in the plastic 
region so that, in addition, 

12=0, (2) 
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where, as in § 19, a dot denotes differentiation with respect to the 
time. 

To obtain the simplest possible set of equations we shall con­
sider only the case of an incompressible substance for which 
~=e-o, so that e1-=el' etc., and also assume that the elastic strains 
are negligible in comparison with the plastic strains. 

The stress-strain relations, due to St-Venant, are then obtained 
by assuming that the principal axes of rate of strain and of stress 
deviation are the same, and that the principal stress deviations are 
proportional to the principal rates of strain, just as in § 13 (1)-(3) 
or § 19 (4)-(6), except that, because of the assumption of incom­
pressibility ~=o, these equations take the simpler form 

SI=*I' Sa=-2cpea, Sa=2CP83 ' 
where cp is a quantity yet to be determined. 

Precisely similar analysis to that leading to § 13 (10), (II) gives 
for the equations referred to any axes 

s.=*., SII-=2t/J811 , Sc=ZCP8c,} 
SII.-#III' sn-CPYn, sn=#n· 

These equations are similar in form to the equations of viscosity 
§ 19 (13), (8), but there is a very fundamental difference since, 
while the viscosity 'Y/ was an absolute constant, the quantity cp is a 
function of position to be determined from the condition that the 
stresses must satisfy the yield condition (I). Substituting (3) in (I) 
gives 

cp2(812+8a2+832)=(102/6, (5) 
and in this 812+8.2+8a2 is an invariant of the rate of strain. Putting 
(5) in (3) gives 

SI-r,,(· • . II . 2)]1' etc. u 131 +1311 +ea 
(6) 

It appears that the stresses are unaffected if all the rates of strain 
are multiplied by a constant factor. This illustrates the funda­
mental difference of these effects from those of viscosity in which 
stress varies linearly with the rate of strain. 

The equations (3) may be regarded as connecting small changes 
of plastic strain ()el , "e., "ea with the stress deviations; that is, 
SI:S.:s3="el:"e2:"e3, or, using § 27 (4), 

2(11-(1.-(13 "131 2(Jc(1a-(1a ()e1 

2(11-(11-(13 =-()e2' 2(1a-(1c(1." ()ea' 
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Using the result <5s1+<5s2+<5s3=0 corresponding to incompressi­

bility, these give 

20'2-O'C0'3 2<5S2-<5SC <5S3 
0'1"'::0';-= <5sC bs3 (8) 

This is a relation connecting increments of plastic principal 
strains with the principal stresses. It can be studied experimentally 
in the simple situations described in § 27 and shows reasonable 
agreement with experiment. 

30. SUBSTANCES WITH COMPOSITE PROPERTIES 

In § 12 the three important first approximations to the behaviour 
of actual materials were noticed and their properties have been 
discussed in the preceding sections. It was pointed out that most 
substances show effects dependent on the time: while these may 
be neglected in most engineering problems, a proper description 
of them is of the greatest importance in some geological connexions 
and in Rheology,l which is the study of flow in general. 

These time effects may be described phenomenologically by 
combinations of the simple elements already discussed, which will 
be described again from the present point of view in (i) to (iii) 
below. To see the effects involved, it is convenient to study them 
in one variable which will be taken to be extension (though it 
might equally well be shear) and to represent them by simple 
mechanical models. When this has been done, the general mathe­
matical formulation will be discussed. 

(i) The Perfectly Elastic or 'Hookean' Substance 2 

In this case the extension s is instantaneous and is related to the 
stress 0' by 

O'=ks, (I) 
where k is a constant of the material. Such a substance can be 
represented by a spring as in Fig. 3S (a). 

1 Cf. Reiner, Deformation and FLow (Lewis, 1947); Reiner, Twelve 
Lectures on Theoretical Rheology (Amsterdam, 1949); Scott Blair, Survey 
of General and Applied Rheology (Pitman, Ed. 2, 1947). 

2 The practice of attaching names of this sort to the various models 
avoids the use of terms such as solid and fluid, which are inadequate to 
describe many of these substances. 
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(ii) The Perfectly Viscous Fluid or 'Newtonian' Substance 
In this case the rate of strain e is connected with the stress G by 

G='YJE, (2) 
where 'YJ is a constant, and so, if 1;;=0 when t=o, 

I;;=Gt/'YJ. (3) 
The substance can be represented by the dashpot of Fig. 3S (b). 

(iii) A Yield Stress Go 
This may be represented by a frictional contact, Fig. 3S (c), 

which can supply a frictional force Go due to static friction. If the 

(0) 

~ 
//////////////// // ///// 

(d) 

FIG. 35 

applied stress G<Go there is no strain, but if G>Go the contact 
yields. Strain hardening, an increase of yield stress with strain, 
may be represented by a number of such contacts connected by 
loose strings, Fig. 3S (d). 
(iv) The Perfectly Plastic Solid or 'St-Venant' Substance 

In this case the strain is elastic and given by (I) until the yield 
stress Go is reached. The appropriate model is Fig. 3S (e). 

(v) The 'Kelvin', 'Voigt', or 'Firmo-viscous' Substance 
This is represented by a spring and a dashpot in parallel as in 

Fig. 36 (a). Physically, it is the sort of model which might be ex­
pected to apply to a cellular elastic material with the holes filled 
with viscous liquid. 

If I;; is the strain, the stresses in the spring and dashpot, res pec-
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tively, will be ke and 'YjE, by (1) and (z), so that a, which is the sum 
of these, will be given by 

'Yj6+ke=a. 
If at t=o, when the strain e=O, a constant stress S is applied. the 

solution of the differential equation (4) is 
e=(S/k){I-e-kt/~}, (5) 

and thus the strain S/k, which would occur instantaneously in 

(a) (b) 

FIG. 36 
(e) 

the absence of the dashpot, is approached exponentially as in 
Fig. 36 (b). 

Similarly, if the system is extended till the strain is eo and then 
is released, the strain at time t is 

e=eoe-kt/ , (6) 
and the strain decreases exponentially to zero, Fig. 36 (c). This is 
described as relaxation of strain under zero stress, and the time 
TJlk in which the strain falls to lie of its initial value is called the 
Telaxation time. 

If a mass m per unit area is attached to such a substance its 
equation of motion will be 

mN'Yjt+ke=o. (7) 
This is the differential equation of the damped harmonic oscil­

lator and its solution is 
e=Ae-,)t/2m cos {('Yj2-4km)it/zm+B}, (8) 

where A and B are constants determined by the initial conditions. 
Thus this model can represent the damping of vibrations by in­
ternal friction and 'Yj can be estimated from the decrement. 

This model is the simplest which corresponds to a solid in which 
vibrations are damped by internal friction and in consequence has 
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been much used in connexion with the damping of earthquake 
waves. While it represents the behaviour of some substances such 
as cork and rubber reasonably well, the model (vii) discussed below 
is in general much more satisfactory. 
(vi) The 'Maxwell' or 'Elastico-viscous' Substance 

In this case the spring and dashpot are in series, Fig. 37 (a). The 
same stress q acts across both the spring and the dashpot, so that 
if £1 and £a are the strains in them 

£1=q/k, Ea=q/n, (9) 
and therefore the total strain £=£I+£a satisfies 

e=(& /k)+(a In). 

FIG. 37 

oX -en 

o 

(10) 

t 

( b) 

If the system is suddenly given a strain £0 at time t=o, the stress 
at time t is given by 

q=k£oe-kt/T/. . . (II) 
In this case the stress relaxes at constant strain, falling to 1/ e of 
its value in time n/k. This time is Maxwell's relaxation time. 

If the substance is unstrained at time t=o and constant stress S 
is then applied, the strain £ is found from (9) to be given by 

£=(S/k)+ St/n . (IZ) 

and so there is an instantaneous elastic strain, S /k, followed by a 
linearly increasing strain, Fig. 37 (b). The two are equal at the 
relaxation time TJ/k. 

This model was introduced by Maxwell to describe substances 
such as pitch which show instantaneous elasticity but flow in a 
viscous manner under small stresses. It has been applied to the 
study of the material in the Earth's mantle which must behave 
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elastically for short times since it transmits shear waves, but at the 
same time may flow very slowly under continuously applied 
stresses. 

(vii) The General Linear Substance 
This may be regarded as consisting of a spring in parallel with 

a Maxwell element, Fig. 38 (a). If 0'1 is the stress on the Maxwell 

;. 
~ ---------------

o 

FIG. 38 

e~ement and 0'2 that on the spring, and 8 is the strain, (I) and (10) 

give 

therefore. if 0'=0'1+0'2 is the total stress, 
0'+tOd'=kl(8+tlE ). 

where 

If constant stress S is applied at t=o when the substance is un­
strained, there is an instantaneous strain of S/(k+kl) given by (13). 
and solving (14) with this initial value of 8 gives 

8= S{I_~e-t/tl} . (16) 
kl k+kl 

which tends exponentially to a final value of S/k1 , Fig. 38 (6). 
This is a much better approximation to the behaviour of most 
substances than the Kelvin model. 
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It follows from (14) that the general linear substance has two 
relaxation times, to for relaxation of stress at constant strain, and 
t} for relaxation of strain at constant stress. 

Like the Kelvin model, the present one gives a representation of the 
damping of vibrations by internal friction. This is usually measured by 
studying steady periodic oscillations. Suppose that 

€=eeio>t, o=seio>t 

corresponding to steady vibrations of period 21T/W, then by (14) 

== k1(I+iwt1) K ei6 • (17) e I+iwt. 1,· 
where Kl=kl[(I+w2t12)/{I+w2to2)]1, 

and • (18) 

B measures the lag of strain behind stress, and it is known from the 
theory of vibrations that this provides a measure of the damping. The 
internal friction of solids is frequently studied 1 by measuring the 
variation of tan Il with w. 

The relation (14) has the form 
c}E+c2e=cad"+c,0", (19) 

where C1 ••••• c, are constants, and so is the most general linear 
relation connecting e, 0" and their derivatives. This gives rise to its 
name. It includes all the above models, except (iii) and (iv), as 
special cases. 

FIG. 39 

(viii) The Bingham Substance 
The perfectly plastic substance of (iv) has no restriction on its 

movement once the yield point is passed. This disadvantage is re­
moved in the Bingham body, Fig. 39, which is the simplest model 
which gives a reasonable representation of the flow of a substance 
possessing a yield point. It behaves as an elastic body for stresses 

1 For complete details see Zener, loco cit. 
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less than the yield point, and for greater stresses gives a steadily 
increasing strain. That is, for constant stress a applied at t=o, 

e=a/k, if a<ao, (20) 

e=(a-ao)tjr;+a/k, if a>ao. • (21) 

(ix) Other Substances 
The models described above, that is, essentially, the general 

linear substance and the Bingham substance, are adequate to de­
scribe most engineering and geological phenomena, but more com­
plicated systems are needed to describe the behaviour of materials 
such as flour dough. 

The models above are intended for descriptive purposes only, 
though the formulae given apply in simple shear or extension. We 
now have to consider how they may be applied to three-dimen­
sional situations. For an incompressible substance, the equations 
of elasticity § 27 (12), (13) state that each component of the stress 
deviation is proportional to the corresponding component of the 
strain deviation; similarly, in the equations of viscosity, § 27 (14), 
they are proportional to the corresponding components of rate of 
stra~ deviation. The generalization of these corresponding to the 
general linear body (19) is to assume a linear connexion between 
the components of stress and strain deviations and their time­
derivatives, that is, 

. (22) 

with five similar equations for the other components. This set of 
equations, being linear, is not difficult to handle mathematically. 
Equations of motion for a Bingham substance in three dimensions 
have also been set up and studied but their theory is relatively 
difficult. 

Finally, the question of failure of these bodies should be men­
tioned. Reiner and Weissenberg (cf. Reiner, loco cit.) have pro­
posed the criterion that failure takes place when the conserved 
strain energy reaches some definite value. This may be illustrated 
by considering the Maxwell substance (vi). In the process of strain­
ing, some energy is dissipated in friction in the dashpot, while an 
amount 

tke12=a2/2k 

is stored as potential energy in the spring. The hypothesis is that 
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failure takes place when this quantity reaches a value E character­
istic of the material. that is. when the stress is 

a-y'(2kE). . (23 
Now by (10) the rate of strain when the material fails is 

e-(iJ/k)+(2kE)l/'YJ. (24) 
so that the rate of strain at which the material fails increases with 
the rate at which the load is applied. 



CHAPTER III 

EQUATIONS OF MOTION AND EQUILIBRIUM 

31. INTRODUCTORY 

IN the previous chapters the general theories of stress and strain 
and their relationship in actual materials have been studied in 
some detail. The final stage in the development of the mathemati­
cal theory is the setting up of the equations of motion for the 
various types of substance considered: the equations of equil­
ibrium follow from these as the special case in which there is no 
motion. These equations will be derived in §§ 33,39, _p. 

While mathematical methods for the solution of probleIns in 
elasticity and viscosity have been standard for many years, those 
for probleIns in plasticity and on the flow of more complicated 
materials such as the Bingham substance are both less well de­
veloped and more difficult. At the same time it is important to 
appreciate the differences in behaviour between the various sub­
stances, and to illustrate this a number of simple probleIns will be 
solved from first principles in § 32. In the later sections more 
general methods will be employed. 

In treatises on the mathematical theories of elasticity and vis­
cosity the fundamental equations are derived at a very early stage 
and the vast bulk of the theory is concerned with methods for their 
solution: But for practical applications it is the equations them­
selves and the detailed analysis of the stress and strain patterns 
represented by their solutions which are of importance, rather than 
the actual mathematical processes involved in finding the solu­
tions. Accordingly, only a few typical probleIns will be solved 
here, partly to show how the whole of the theory fits together, and 
partly to illustrate points of practical importance. 

32. SIMPLE PROBLEMS ILLUSTRATING 
THE BEHAVIOUR OF ELASTIC, VISCOUS, PLASTIC 

AND BINGHAM SUBSTANCES 

In this section a number of probleIns on flow in a cylindrical 
tube, flow between rotating cylinders, and torsion of a circular 
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cylinder will be solved. It has been remarked above that the dis­
cussion of the general equations of motion of perfectly plastic and 
Bingham substances involves relatively difficult mathematics so 
that the best way of comparing the behaviour of the different types 
of substance is by studying simple situations of practical impor­
tance for which the equations can be written down from first 
principles. 1 

(i) Elastic Displacement of a Circular Cylinder of Radius a and 
Length I due to Uniform Pressure P at One End and Zero 
Pressure at the Other, there being no Displacement over the 
Curved Surface 

We shall assume that the displacements are in the direction of 
the axis of the cylinder, so that, choosing the z-axis in this direc­
tion and writing r for the distance from it, Fig. 40 (a), the only 

,. 

w 

(a) (b) (c:) 
FIG. 40 

non-vanishing component of displacement is w in the direction of 
the z-axis, and the only non-zero components of shear stress and 
strain are Tn and 'Yn=dw/dr, so the stress-strain relations, 
§ 14 (19), become 

(I) 

If, in addition, we assume that the solid is incompressible, w 
must be independent of z. and therefore, by (I), Tn must also. 
Now, considering the equilibrium of a cylinder of radius r and 
length I in the material, the forces on the ends of this are 'JU2p and 
zero, and the force over the curved surface is 2'JU/Trc,so the condi­
tion for equilibrium of the cylinder is 

Trc=-rP /21. . (2) 
1 For the discussion of many other problems on these lines the standard 

works on Rheology may be consulted, e.g. Reiner, loco cit. 
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This is the fundamental relation which will be used again in (ii) 
to (v) below. Using (1) gives 

dw Pr 
dr =-2Gl, (3) 

and integrating and using the condition w=o when r=a gives 

w=P(a2-r2)/4G1. (4) 
Thus the effect of uniform pressure P across the cross-section 

is to distort it into a parabolic form. 

(ii) Flow of an Incompressible Viscous (Newtonian) Fluid through a 
Circular Cylinder of Radius a and Length I caused by Pressure 
P at one End 

\Ve assume laminar flow, that is, that the only non-zero com­
ponent of velocity is W in the direction of the z-axis. Then, as in 
§ 19 (8), the stress-strain relation is 

dW 
'r.=YJTr· (5) 

Also the argument leading to (2) still holds, so using (5) in (2) 
gives 

dW Pr 
dr=-2YJI' (6) 

If it is assumed that W=o when r=a, that is, that there is no slip 
between the fluid and the cylinder, integrating (6) gives 

W=P(a2-r2)/4YJI. (7) 

The parabolic distribution of velocity over the cross-section, 
shown in Fig. 40 (b), is characteristic of laminar flow. The ob­
served quantity is the discharge Q, the quantity of fluid flowing 
from the tube per second, this is 

Q-f: 2:nrWdr=:nPa'/8YJl. (8) 

(8) is Poiseuille's relation which is much used for the measure­
ment of viscosity. 

(iii) Non-Newtonian Viscosity 
In this case the rate of shear is not proportional to '" and thus 
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the problem is non-linear and exact solution becomes difficult. 
One of the simplest and most important cases is the power law 

dW 
Tr-kr"Jrnl"-l. (9) 

The form of (9) is chosen so as to make dWjdr change sign with 
Tn and be proportional to the nth power of its magnitude. The 
case n-l reduces to (5). 

Using (2) in (9) gives 
dW kr"pta 
Tr- 2"1'" 

so that, assuming as before that W ... o when r=a, 

W= kJ>n(a"+1-r"+1). • (10) 
(n+x )2"1" 

(iv) The Perfectly Plastic Substance under the Conditions of (ii) 
In this case the maximum shear stress which the material can 

sustain is So , and the substance behaves elastically until this stress 
is attained. Now by (2) the maximum shear occurs at the boundary ,-a so that when the pressure P reaches the value 

21SoIa • (II) 
slip occurs at the boundary. The material will then move through 
the tube as a solid plug at a rate determined from outside. 
(v) The Bingham Substance under the Conditions of (ii) 

This behaves elastically until the maximum shear stress attains 
the value So. By (iv) this occurs at the boundary , .. a when the 
applied pressure attains the value (II). When this value has been 
passed in any region there will be flow in that region, and the 
magnitudes of the shear stress and rate of shear will, as in § 30 (viii), 
be connected by 

IT"I-So+1JI~~l . (12) 

Just as in problems on friction in elementary dynamics, the 
direction of the frictional force does not determine itself auto­
matically but has to be chosen to conform with the direction of 
motion. In the present problem both Tn and dW j d, are negative, 
therefore (12) becomes 

. (13) 
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Tn: is given by (2), so that if r<ro , where 

ro=2ISo/P, . (14) 
"Cn:<80 and there is no yield. In the region ro<r<a, by (2) and 
(13), 

dW rP 
r;--80=--· 

dr 21 

Integrating, and using the condition W=o when r=a for no slip 
at the boundary, gives for the velocity 

W=-80(a-r)/r;+P(a2-r2)/4/r;. (16) 
When r=ro, given by (14), W has the value 

P(a-ro)2/4r;1. . (17) 
Thus in the region ro<r<a there is a velocity distribution given 

by (16), while a plug o<r<ro moves as if solid with velocity given 
by (17), Fig. 40 (c). This illustrates the characteristic difference 
between the Bingham substance and viscous fluid: in the latter case 
there is some motion at all points; in the former it frequently 
happens that flow is confined to certain regions, the remainder 
moving as if solid. 

(vi) Viscous Motion in the Region between Two Coaxial Rotating 
Cylinders 

Suppose that the region is a<r<b, that the inner cylinder is of 
radius a and at rest, and the outer cylinder is of radius b and is 
rotated with angular velocity Wo about its axis. There is supposed 
to be no motion in the axial or radial directions so that all quanti­
ties are functions of r only. 

If TrlJ is the shear stress at radius r, the couple per unit length 
on a cylinder of fluid of radius r must be 2J'tr2-rrlJ and this must be 
constant and equal to the couple per unit length M on the inner 
cylinder, that is, 

TrlJ-M/znr2• (IS) 
The equations of viscosity § 19 (S) give, cf. § 14 (19), 

TrlJ=rrirlJ' (19) 
If V is the tangential velocity at radius r it follows from § 14 (16) 

that 

. (20) 
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and therefore, by (18) and (19), 
dV V M 
dr --;:= 2,nTJr2 • 

[§ 32 

• (21) 

The differential equation (21) for V has to be solved with V=o 
when r-a, and V -wr/J when r=b; this, of course, assumes that there 
is no slip between the fluid and its boundaries. The general solu­
tion of (21) is 

V-Ar-M/.plTJr, 
where A is a constant to be determined, together with the un-

bt---- bt-----r rro ----O 0 Q 

o 0 0 
V V 

(0) (e) 

FIG. 41 

known M, from the two boundary conditions stated above. These 
give 

• (22) 

so that the velocity distribution is given by 

V o=wr/JB(T2-aB)/r(bB-a2), • 

as shown in Fig. 41 (b). This method has been much used for 
determination of the viscosity from the value of M given by (Z2). 

(vii) A Bingham Substance between Rotating Cylinders 
By (18) the shear stress is greatest when r=a, if the vallle here 

is less than So there will be no motion. If it is greater than So , flow 
will take place in the region a<T<To where TO is given by 

ro-(M/2,nSo)i. . (24) 
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In this region we have 

or, using (18) and (20), 

dV V So M 
---=--+-- . (25) 
dr r 17 zn17r2 • 

The solution of (25) with V=o when r=a. is 

~=~(~_~)_ So In~. . . (26) 
r 41117 a2 r2 17 a 

The region ro<r<b in which the shear stress is less than So 
rotates as if solid with the angular velocity COo of the outer cylinder, 
so the tangential velocity when r=ro must be cooro. Using this in 
(26) gives 

M = 41l17a2r02( So 1 !j)) 
( 2 2) coo+ n • ro -a 17 a 

(24) and (27) determine ro and M, and the velocity distribution 
is then given by (26), cf. Fig. 41 (c). If 

2na2S 0<M <znb2S 0 , 

portion of the material rotates as a solid mass. If M>znbsSo, 
there is flow throughout the material. 

(viii) Elastic Torsion of a Circular Cylinder 
Suppose that a circular cylinder of radius a and length I is 

twisted by a couple M applied at its ends and that the relative 
angular displacement of the ends is 0. 

The stress-strain relation § 14 (19) gives 

where v is the tangential displacement at radius r. The relative 
tangential displacement between the ends is just r0, so that 
dv/dz-r0/1 and (28) becomes 

Te.=Gr0/1. (29) 
The total couple M is 

M-f: znr2TfPdr=nG0ac/21. 
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This relation provides one of the simplest methods of determining 
G. 
(ix) Elastic and Plastic Torsion of a Circular Cylinder 

In the problem (viii) the shear stress (29) reaches the value So 
first at the outer surface T=a when the applied couple is 

lna3So· 
If the applied couple exceeds this value the cross-section will 

be divided into two parts, the elastic region O<T<To in which 
T8z<So, and the plastic region To<T<a in which T8z""SO' the 
maximum shear which the material can sustain. By (29), the radius 
TO is given by 

Thus, if the angle of twist is increased steadily, the couple in­
creases linearly until the yield stress is reached at the outside of 

cRo·s 
" o 
.E 
~ 

o 1 
G9a/-tSo 

FIG·4Z 

2 

the cylinder and subsequendy tends asymptotically to the value 
Vfa8So/3, Fig. 42. 
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It should be remarked that this simple treatment is not exact 
since it has used (29) which, from its derivation, is only valid if 0 
is smal1. It is given to indicate the main features of the problem, 
namely, the division into elastIC and plastic regions. In engineering 
practice this frequently occurs also in highly stressed beams and 
pressure vessels. 

33. THE ELASTIC EQUATIONS OF- MOTION 

To calculate the actual stresses and strains in a body subjected 
to given applied forces the equations of motion have to be set up. 
The forces on the body will be of two 
kinds; surface forces (which may be pre- z 
scribed or may have to be calculated) 
applied over the surface of the body, 
and body forces, such as gravity or 
magnetic forces which act on all por­

0' 

tions of the body. 
Choosing axes Ox, Oy, Oz, let (X, B B' 

Y, Z) be the components of body force 0 ~------ y 
per unit mass at the point (x, y, z). 
We write down the equations of motion 
of the small rectangular parallelepiped x 
ABCDA'B'C'D', Fig. 43, whose FIG. 43 
centre is at (x, y, z) and whose 
sides have lengths <5x, <5y, <5z and are parallel to the axes. 

Suppose that (lfIJ , (I'll' (I. , T'IIz, TcfIJ , TfIJ'/I are the components of 
stress at the point P, (x, y, z), then the forces on the parallelepiped 
in the x-direction across the forces AA'D'D, and BB'C'C at 
x-~x and x+~x are, respectively, 

{ -(lfIJ+! ~:<5x }<5Y <5z and {(lfIJ+ i ~:<5x }<5Y <5z.. (I) 

Across the faces ABCD and A'B'C'D' they are 

{ -T'/IfIJ+IO;;fIJ<5y }15X <5z and {T'/IfIJ+lo;;15Y}<5X <5z, 

and across the faces ABB'A' and DCC'D~ they are 

{ -Tp +! ~;15z }<5x f5y and {T .. +! ~:f5Z rx <5y. 
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Also, if p is the density of the solid, the component of body force 
in the x-direction is 

pX bx by bz. . (4) 
Adding (1) to (4) it appears that the total force on the parallelepiped 
in the x-direction is 

(5) 

Now the mass of the parallelepiped is p bx by bz and, if (u, v, w) 
are the components of the displacement of the point P, its com­
ponent of acceleration in the x-direction is very nearly 1 02U/ ot 2 

so that by Newton's second law 

02U oa., 07:11., 07:.", X 
P ot2= ox +ay+~+P , 

and, in the same way for the y- and z-directions 

02v 07:"11 oall 07:'11 y 
~- ox + oy +~+p , 

02w 07:.,. 07:11• oa. Z 
p ot2 =-ax+ay+ oz +p . 

(6) 

(8) 

(6) to (8) are the equations of motion in terms of stresses. For many 
purposes it is more convenient to have equations of motion in 
terms of the displacements. To find these equations, we express 
the stresses in (6) to (8) in terms of the strains by § 13 (10), (II) 
and then express the strains in terms of displacements by § 11 (4), 
(5). In this way, assuming that A and G are constants, we get from 
(6) 

Actually it is the quantity D2u/Dt 2 discussed in § 39. but for small 
velocities this reduces to OIU/otl• 
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using the result § II (17) 

au avow 
Ll=ax +ay + az' . 

and writing y 2 for the operator 

02 02 02 
'V 2=ax2+ay 2+az2 . 

In the same way (7) and (8) give the equations 

a2v _ all 2 
p at2-(hG) ay +G\l v+pY, 

a2w _ all 2 
p at2 -(hG) az +Gy w+pZ. 

· (10) 

· (II) 

(9), (12) and (13) are the equations of motion in terms of displace­
ments. 

Differentiating (9), (12) and (13) partially with respect to x, y, 
and z, respectively, and adding gives, using (10) and assuming p 
to be constant, 

a2Ll_ 2 (ax ay a~ 
p at2 -(h2G)\l Ll+p OX +-oy+ oz)' 

and, if the body forces are constant or zero, 

02Ll = (A+2~ \l2Ll. 
ot2 p) · (IS) 

(IS) is the so-called wave equation. It will be shown in § 37 that 
it has the property that its solutions are propagated with speed 

· (16) 

so that, since Ll is the dilatation, it follows from (IS) that waves of 
dilatation are propagated in the solid with speed (16). These 
correspond, in fact, to the primary seismic waves, cf. § 38. 

Again it follows from (12) and (13) for the case of no body forces 
and p constant, that 

pa2 (OW _~~) ~G\l2(OW _ OV) 
ot2 oy oz ay oz 
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and so, using the definition § I I (6) of the components of rotation, 

a2wz=~n2w . (17) at" pV z· 

In the same way 0>" and 0>. satisfy the wave equation, and they 
will be propagated with speed 

(Glp)l • (IS) 

which will be found in § 3S to correspond with secondary seismic 
waves. For a fluid, G=o and these waves will not be present. 

In certain cases, the displacements u, t'J, fO themselves satisfy the 
wave equation; thus in the equivoluminal case, a=o, it follows 
from (9), (12), (13) that in the absence of body forces 

asu a"t"J o"ro 
p ot2=G\l IU, p at,,=G'1 "t"J, p otS -G'1 "ro. • (19) 

Also in the irrotational case, O>z-o>,,=-o>.=o, 

oa osu a (oV) a (Oro) ax -ox2+oy ax +0.8' ax ='1 2u, 

so that (9) becomes (for the case of no body forces) 

olu 
p otz=(A+2G)'1 Iu, • (20) 

and, similarly, t'J and fO satisfy this equation. 

34. THE ELASTIC EQUATIONS OF EQUILmRIUM 

These are the special case of the equations of motion in which 
all particles are at rest. Putting alulotS, etc., equal to zero, § 33 (6) 
to (S) give the equations of equilibrium in terms of stresses 

Oaz iJT". iJT. X ax +ay-+a;+p -0, (I) 

iJT: Oa. iJT 
--.!!+-!+-2!+pY=o ax Oy 0.8' ' (2) 

Ur .. Ur .. Oas z 
h"+a:y+ all +p =0. 
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Similarly, § 33 (9) to (13) give the equations of equilibrium in terms 
of displacements 

oLl 
(A,+G) ox +G7 2U+pX=0, 

oLl 
(A.+G) oy +G72.zi+pY=0, (5) 

oLl 
(A,+G) oz+G72W+pZ=0. (6) 

Also, by § 33 (IS), (17) it follows that if the body forces vanish 
7 2Ll=0, (7) 

7 2wz= 7 2W'II= 7 2W.=0 . (8) 
that is, Ll, Wz , W'II , w. all satisfy Laplace's equation. 

These differential equations have to be satisfied within the body 
of the solid subject to certain conditions at its surface which are 
called boundary conditions. These usually take the form of pre­
scribed stress or displacement over portions of the surface. 

It should be remarked that these equations do not apply to 
initial stresses (the 'locked-up' stresses produced in engineering 
or geological material in the process of forming) or to thermal 
!ltresses (the stresses produced by inequalities of temperature). 
Thus, for example, in the latter case, it can be shown that if T is 
the temperature at the point (x, y, z), (4) is replaced by 

oLl r;.E oT 
(A,+~+G7 2u-- -=0 

ox 1-211 ox ' 
where ex is the coefficient of (linear) thermal expansion of the body. 

The complete formulation of problems in elasticity can now be 
seen. The stresses have to satisfy (I) to (3), while the boundary 
conditions may involve either stress or displacement. This, in 
effect, covers the statics of the problem. The strains are related to 
the stresses by the stress-strain relations § 13 (8), (9), (23), (24), 
and finally, since the strains are not independent but have to 
satisfy the compatibility conditions § II (18), § 10 (7), these re­
quire additional connections between the stresses so that a self­
consistent set of stresses and strains may be obtained. This is dis­
cussed in more detail in § 35. Finally, when the strains are known, 
their definitions § I I (4), (5) may be regarded as a set of equations 
from which the displacements may be found. 
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As in most branches of applied mathematics, there is a unique­
ness theorem which states that, under fairly general conditions (for 
example, if either the surface displacements or the surface stresses 
are given), if a solution can be found by any means this is the 
unique solution of the problem. This is of great importance 
because (as in the problem discussed below) at least part of the 
solution of many problems is by inspection or artifice and it is 
important to know that the solution so obtained is, in fact, the 
only one possible. 

As a simple but important example to illustrate the way in which 
the various sets of equations are involved in a final solution we con­
sider the semi-infinite region under gravity. Taking x- and y-axes 
in the surface and the z-axis vertically upwards, the region con­
sidered is z<o and the body force is X=Y-o, Z=-g. 

The stress equations (I) to (3) are satisfied if 
Us=pgz, • (10) 

TI/;=T.",=TltI/=O, 

and u'" and u" are functions of z only. (10) also makes u, vanish at 
the surface z .. o. 

In addition we know that, from the conditions of the problem, 
there can be no displacement in the x- and y-directions so that w 
is the only non-vanishing displacement, and, since it must be in­
dependent ofx andy, e. is, by § II (4), (5), the only non-vanishing 
strain. Then, by § 13 (4), (10) 

A=e. , 
U",-UI/=).£,' U.=(A,+2G}Ez • 

From (10), (12) and § 13 (22), 

• (II) 
(12) 

). V V 
Q",-U!I-).+2GUz'" I_pUs"" I_lgz• • (13) 

It may be verified that the strains satisfy the compatability con­
ditions. 

From the definition of the strain £., we have 

and therefore 

ow pgz ~I+P)(1-2P)pgz 
-~E=--" . oz z A+2G E(I-'II) , 

(I+'II)(1-2V)pgz2 
W=·~-~~-·-----~ --+Const. 

2E(I-P) 
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(13) gives the stresses at shallow depths below the Earth's sur­
face. a., , a'll , a. are, of course, principal stresses: the vertical prin­
cipal stress az is just the load or the weight of a column of rock of 
unit area above the point considered; since v is approximately 1/4, 
the horizontal principal stresses are roughly 1/3 of the vertical 
principal stress so the stresses are far from hydrostatic. There is 
some evidence that, even at the depths involved in mining, creep 
in the rocks causes the stresses to approach nearer to the hydro­
static values. It may also be remarked that since the relative 
densities of rock and water are roughly in the ratio 3:1, the (hy­
drostatic) pressure in a fissure containing water will be of the 
same order as the horizontal principal stress for solid rock. 

35. SPECIAL CASES OF THE EQUATIONS OF ELASTICITY 

Because of the complexity of the general equations of § 34, most 
of the special problems which have been solved are either two­
dimensional problems of plane stress or strain, or problems which 
can be simply expressed by reference to one of the other important 
coordinate systems such as cylindrical coordinates, spherical polar 
coordinates, etc. The equations for the most important case of all, 
plane strain, will be given below in both rectangular and polar 
coordinates. 

Plane Strain in Rectangular Coordinates 
This has been discussed in § 14 (iv), where it was found that, to 

keep the displacement in the z-direction zero, stress 
az=v(a.,+a'll) . (I) 

had to be supplied. The stress-strain relations § 14 (8), (9) are 
Ee.,=(I-v2)a.,-v(I+v)ay , Ee,r-V(I+v)a.,+(I-v2)all, (2) 

EY"II=2(I+V)-r",,, • (3) 
The compatibility relation for strains, § 10 (7), is 

02e", 02e" 02Y"'1I 
--+-=--
oy2 ox2 ox oy' 

and expressing the strains in (4) in terms of stresses by (2) and (3) 
gives the compatibility relation for stresses 

( )02a", 02a", ( )02a" 02au 02-r"'11 
I-V oy2 -V ox2 + I-V ox2 -V oy2 =20x oy· (5) 
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If body forces are absent, the equations of equilibrium, § 34 
(1)-(3), become in this case 

00'", Oill", -+-=0 ox oy , 
OillJ1l 00'11 
-+-=0 ox oy , 

and, using these, (5) may be written 

( 02 ( 2 ) ox2+ oy2 (0'",+0'11)=-0. 

Now suppose that there is a function cp such that 
02cp 02cp 02cp 

0' =-- 0' =- i ----'" oy2' 11 ox2' "'11 ox oy' 

(6) 

(8) 

then, using (9) in (6) and (7), it appears that these equations are 
satisfied identically. Also, using (9) in (8) it appears that cp must 
satisfy 

. (10) 

that is 
04cp 04cp 04cp 
OX4+20x20y2+oy4=0. • (II) 

Such a function cp is called a stress Junetron, and the above 
analysis shows that any solution of ( II) is such that its derivatives 
(9) give a system of stresses which automatically satisfy the equa­
tions of equilibrium and the compatibility conditions. Thus most 
of the mathematics will be concerned with the solution of (II); 
this is called the biharmonic equatWn, which is sometimes written 
for shortness, using the notation § 33 (II), 

'V 2('V 2cp)=0 or 'V 4CP=0. . (12) 
The use of stress functions is perhaps the most powerful method 

used in the solution of probleIns in elasticity. The method is not 
confined to plane probleIns, and stress functions are also available 
for the solution of probleIns in three dimensions. 

Plane Strain in Polar Coordinates 
Polar coordinates and the components of strain with reference 

to them have been discussed in § 10. The components of stress are 
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the radial stress a, in the direction PR, Fig. IS, the tangential stress 
a8 in the direction PT, and the shear stress Tr8=T8T associated with 
these directions. 

To find the equations of equilibrium, we consider the region 
ABCD of Fig. 44 bounded by circles 
BC and AD of radii rxil5r and by the 0'8 C tr 
rays DC and AB at angles Oxil50, "-.4i...?l r 
where I5r and 150 are so small that their J~-
squares and product are negligible. 0 . &(' B 

Then if aT, a8, Tr8 are the com- r cf. 
ponents of stress at the point (r, 0), the , y A 
forces (per unit length perpendicular /,~\ e 
to the plane) in the radial and tan- ;;r J, 

gential directions on the faces DC 0 . 
and AB are, respectively, FIG. 44 

x( Tr8xl;08150 )l5r and x( a8X~ ~;150 )l5r, 

while the radial and tangential forces on the faces BC and AD are, 
respectively, 

x (a,x i ~'l5r )<rxil5r)150 and x( Tr8x!o;;l5r ) (rxil5r)150. 

Resolving in the radial direction gives, for the case of no body 
forces, 

(Tr8+!0;;150 ) (I5r) cos iI50-(a9+~~~150 )(l5r) sin ~O 

-( Tr8-io;;150 ) (I5r) cos i150-(a8-1 ~;150 )(l5r) sin 1150 

+( a,+! 0;;157 ) <r+i I57)M-( a,-i °;;157 ) (r-1I5r)150=0. 

Neglecting all tenns of higher order than 157150 gives 
oar 1 OTr8 ar-ae 
ar+; W+-r-=O' • (13) 

Similarly, resolving in the tangential direction gives 

~ oall .,. OTr8 + 2Tr8 '"'0. • (14.) 
GO or r 



ELASTICITY. FRACTURE AND FLOW 

(13) and (14) are the equations of equilibrium in terms of 
stresses. 

Next, a stress function c/> can be introduced as in (9) to (II). 
If there is a function c/> such that 

CTr=~ a:, +~ ~~, CTo= ~~, irO=-;rO ~~). • (15) 

the equations (13) and (14) are satisfied automatically, and it may 
be verified that the compatibility condition for strains, § 10 (29), 
is satisfied if 

( 82 I 8 I 82) (82c/> I 8c/> I 82c/» 
8r2+,8r+"i28e2 8r2+-;' 8r+r2 8e2 =0. 

. (16) 

This is the biharmonic equation (10) in polar coordinates. 

Plane Stress 
In this case CT3=0, and by § 14 (2) the stress-strain equations are 

Ee~=CT~-va!l' Ee'U=-vCT~+CT'U, EY~!I=2(I+V)i~!I' (17) 
The equations of equilibrium in terms of stresses are the same; 

and it is found that (8) still holds so that the theory of the stress 
function (9), (II) is still valid. The position is that the determina­
tion of stresses is the same as for the case of plane strain; in the 
calculation of strains and displacements a difference arises because 
the constants in (17) and (2) are different. 

36. SPECIAL PROBLEMS IN ELASTICITY 

In this section a number of special problems will be discussed to 
indicate the way in which the various branches of the theory previ­
ously studied are involved in the process of solution. 

The simplest and most instructive method of attack, already 
used in § 34 and used again in (i) below, is to write down all the 
equations involved and to solve them step by step with appropri­
ate simplifying assumptions, thus finally building up a solution of 
the required type. A related approach, frequently used in the early 
stages of the development of a subject, is to take a fundamental 
solution of a simple type, see what problem it solves, and build up 
solutions of more complicated problems by superposition of these 
simple solutions, cf. (ii) below. 
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For more complicated problems, more sophisticated methods 
involving additional mathematical theory are needed and a great 
many such methods have been developed for torsion, flexure, be­
haviour of thin plates, and so on. Here, only the use of the stress 
function for problems in plane stress and strain will be discussed. 
In effect this states that every solution of the biharmonic equation, 
§ 35 (II), provides the solution of some problem in elasticity. By 
studying solutions of this equation in various coordinate systems, 
a large number of results for regions bounded by simple surfaces 
may be obtained, cf. (iii) and (iv), and by using the theory of the 
complex variable in its solution 1 others may be obtained for 
regions of less regular shapes. 

(i) The Cylindrical Pressure Vessel. The problem is that of the 
calculation of the stresses in the hollow cylinder a<r<b with 
applied pressures Pl at r=a and P2 at r=b. It is assumed that the 
situation is one of plane strain. 

Since all quantities are independent of e, the equation of equi­
librium § 35 (13) becomes 

also § 35 (14) and all subsequent equations involving 7:,6 are satis­
fied by 7:,0=0. Since the displacements are purely radial, v=o in 
§ 10 (26) and the components of strain are given by 

du u 
e,= dr' eo=-:;. (2) 

The stress-strain relations § 14 (4) for the case of plane strain 
e.=O are 

O",=(A+2G)e,+AIio t 0"0=Ae,+(A+2G)eo. (3) 
Using (3) and (2) in (I), the radial displacement u has to satisfy 

!:.-(dU +'!.)=o dr dr r t 

the general solution of which is 
u=Ar+Bjr, (4) 

where A and B are constants which have to be found from the 

1 Cf. Muskhelishvili, Some Basic Problems of the Mathematical Theory 
of Elasticity (Noordhoff, 1953). 
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known values of a,. at T=a and T=b. Strains calculated from (4) 
satisfy the compatibility conditions § (29). By (z) and (3) 

ar-zA(A.+G)-zGB/r2, all-zA(A+G)+zGB/rl.• (5) 
The conditions a,,=-PI when r=a, a,,=-PI when T-b give 

ZA(A+G)-zGB/al=-PI, zA(A.+G)-(zGB/bl)=-ps· 

Solving and substituting in (5) gives finally 
a2pcb2ps alb2(PI-PZ) 

a"=~_al -~T2(bCa2f' • (6) 

all'" alpcb2pz+ alb'jtcp~} (7) 
bl-a2 r2(b2_a2)· 

The tangential stress all has its maximum value of 
(a2+b2)pczb2pI 
-~bLa2-~ (8) 

when r=a. If PI is negligible, this is always greater than PI , and it 
tends to PI for a very thick cylinder b---+oo. 

For the case PI-O, b---+oo, (6) and (7) give 

(9) gives the stresses around a cylindrical opening in a solid sub­
jected to a pressure which is effectively hydrostatic at large dis­
tances and has magnitude pz there. The greatest stress is the tan­
gential compressive stress ZP'I. at the surface of the hole, and this 
value is independent of the radius of the hole. This is the simplest 
example of stress concentration near openings. 

(ii) The Semi-infinite Region rDith a Line Load 
Results for this case will be derived by studying the properties 

of the simple stress system. 
A cos (J 

a"=--T-' all-O, 'frll-O, • (10) 

which satisfies the equations of equilibrium § 35 (13), (14). Also 
the components of strain derived from it satisfy the compatibility 
condition § 10 (Z9). 

The system (10) gives zero stress in the plane (J=:I:!n except 
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near the origin r~o. Thus it may be regarded as a solution for 
the region x>o with no surface forces except at the origin. To find 
the force at the origin, consider a small circle of radius a about the 
origin, Fig. 45 (a). The stresses over this give a resultant force in 
the x-direction of 

J"'/2 J"'/2 
Z 0 aUr cos 0 dO=zA 0 cos 2 0 dO=1I:A/z, 

and so, if A=-zP/1I: in (10), this solution is appropriate to a con­
centrated line force at the origin of P per unit length in the 
z-direction. 

J,P 
----r"T"l"---y 

Q~ 
X 

(a) (b) 

FIG·4S 

Using § 3 (4) and (5), the components of stress in the x, y 
coordinate system are found to be 

zp cos3 0 zPx3 

u"=-1T: -r-=- 1I:T' ' (II) 

ZPxy2 zPx2y 
(/'11=- 1I:T" TrJ:1I=- 1I:T' • (IZ) 

The stresses for any loading distributed over the face x=o can be 
obtained by integration. For a unifonnly distributed load p per unit 
length over the region -a<y<a it follows from (II) that 

2PXaJII dTJ 
az=----;- [x l +(y-TJ)3]S 

-II 

=(P/'tT) {()c()a+X(y-a)/Tll-x(y+a)/T.a}, • (13) 

where ()l and ()s are the angles PBy, PAy, and Tl, TI are the distances PB 
and PA in Fig. 4S (b). Similarly 

a, ... (p/'tT) {()c().-x(y-a)/Tll+x(y+a)/T.1}, (14) 
'l"q=-pxl(Tal- Tll)/'tTTllrll. (IS) 
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By § 3 (19) the principal stresses at (x, y) are 

P(Ol-Oi)/TT±2pax/TTT1T •. . (16) 
Thus the maximum shear stress at (x, y) is 2pax/1TT1T2 . It follows from 

elementary trigonometry that this has the value 

P/TT • (17) 
at all points of the circle x'+y'=a', and it is easy to show that this is the 
greatest value it attains. 

This analysis gives the stresses wnen a smooth, two-dimensional stamp 
is pressed onto the surface of a semi-infinite solid. Assuming Tresca's 
criterion of yielding, § 27 (16), yield will take place over the surface 
x 2+y2=a' when P=TTUo!2. This result has been used to estimate the 
strength which the Earth's crust must possess in order to be able to 
support inequalities of load such as mountain chains. By (17) its yield 
stress at a depth of the order of half the width of the chain must be of 
the order of the load due to the chain. 

(iii) The Use of a Stress Function in Rectangular Coordinates 
It was shown in § 35 (9), (II) that if cp is any solution of the 

biharmonic equation 
04cp 04cp 04cp 
ox,+2ox2oy2+oy'=O, • (18) 

the stresses for both plane strain and plane stress are given by 
o2cp 02cp 02cp 

a"'=oy2' all=ox2' ."'II=-OXOy" • (19) 

We proceed to see what problems can be solved by simple solu­
tions of (18). The simplest solutions of all are polynomials in x and 
y; if the degree of the polynomial is less than the fourth, (18) is 

'I 
• 

:9~x "I A~ 

r 
C I ·0 C o~ 

(0) p ( b) 

FIG. 46 

satisfied automatically; for polynomials of the fourth or higher 
degree there must be relations between the coefficients. The solu­
tions will be interpreted with reference to the rectangle ABeD, 
o<x<a, -b<y<b of Fig. 46 (a). 
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(i) 4>=Ax2, 0'1I=2A, 0'",=1""'11=0, (20) 
a uniform tension in the direction of the y-axis. 

(ii) 4>=Bxy, 0'",=0'11=0, 1""'II=-B, (21) 
a pure shear. 

(iii) 4>=Cy 3, 0'",=6Cy, 0'11=1""'11=0. (22) 
In this case there is no stress over the surfaces AB, CD, and there 
are normal stresses over AD and BC varying linearly from 6Gb at 
A and B to -6Gb at C and D. The resultant force on these surfaces 
is zero, but the forces have a moment 

M=Jb 6Cy2dY=4Gb3. . (23) 
-b 

The problem solved is thus that of a beam bent by couples M 
applied at its ends. 

As an example of the calculation of displacements, consider the case of 
plane stress (that is, assume that the beam is thin in the direction perpen­
dicular to the plane ABCD). Then, using (22) in § 35 (17) gives for the 
strains and displacements 

OU ov 
E~,.=Eax=6Cy, E~.=Eay=-6vCy, 

( OU (0) 
Eyq=E ay+ax =0 •• (25) 

Integrating (24) gives 
Eu=6Cxy+j(y), EV=-3vCy2+g(X), (26) 

wherej(y) and g(x) are unknown functions. Substituting (26) in (25) gives 
6Cx+j'(y)+g'(x)=0, 

that is, 
g'(x)=-6Cx+A, f'(y)=-A, 

where A is a constant. Integrating (27) and substituting in (26), gives 
finally 

Eu=6Cxy-Ay+B, 
EV=-3vCy2_3CX2+Ax+D, 

where B and D are constants. 
In (28) and (29), B and D correspond to uniform translations in the 

x- and y-directions, and the terms -AyIE and AxlE to a rotation as 
a rigid body through the small angle AlE. These displacements do not 
affect the system of stresses and strains; the calculation of displacements 
always involves this uncertainty. Putting A=B=D=o in (28) and (29), the 
displacement of the centre line y=o is found to be -3Cx2IE. Its radius of 
curvature is 
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which agrees with that given by the elementary Euler-Bemouilli theory 
of the deflection of beams. 

This solution, and others such as (iv) below, is exact only if the forces 
over BC and AD are applied accurately according to (22) and, strictly, is 
not valid for any other system of forces of the same moment M. There is, 
however, a general principle in elasticity, St-Venant's principle, which 
states that if statically equivalent systems of forces are applied over a 
restricted area of a body their effects will be the same at distances large 
compared with the diameter of the area although they will be very different 
at points near to the area. 

(iv) 4>=Dxy3+Fxy, 0",=6Dxy, 0.=0, Tq=-3Dy2_F. (31) 
On AB and CD, 0.,=0 and Tq=-3Dbl_F, so if we choose F=-3Db" 

there will be no stress over these surfaces. With this value of F we have 
0.=0, Tq=3D(b2-y2) on BC, and so the stress over this surface is wholly 
tangential and its total amount P is 

p=Jb 3D(bl-yl)dy=41)b3. • (32) 
-b 

This stress function thus solves the problem of a cantilever bent by a 
concentrated load P at one end BC and held in position by stresses over 
the face AD. Using the above values of D and Fin (31) gives the stresses 

0",=3PXY/2b3, 0.=0, Tq=3P(bl_y2)/4h3. • (33) 
The displacements may be calculated as in (iii). Proceeding in this way, 

and using polynomials of higher orders, a great variety of problems on 
beams with various types of loading can be solved (cf. Timoshenko, 
loco cit.). 

Polynomials are not the only simple solutions of (18). Ali; another 
example it is easily verified that both 

e<JYfI cos wx and ye<JYfl cos wx • (34) 
satisfy it, and, because of the exponential factors, they are appropriate to 
the semi-infinite region y<o. For example, if 4>=A(I-WY)eWY cos wx, 

ox=-w2A(I+WY)e<JYfI cos wx, 01l=-w2A(I-WY)e<JYfI cos wx, 

This gives 
Txy=-AwSye<JYfl sin wx. 

01l=-w2A cos wx, Txy=O (35) 
in the plane y=o, and is thus the solution for harmonic loading on the 
surface of the semi-infinite region y< o. It appears that the stresses in the 
material become negligible at depths of a few wave lengths. 

(iv) Stress Functions in Polar Coordinates 
In polar coordinates the biharmonic equation takes the form § 35 (16). 
It may be verified that 

4>=(A+Br2) In r+(C+Dr2) (36) 

satisfies it and leads to the results of (i) above. Also that 
4>=-(P / 1T)rfJ sin () 

satisfies it and leads to the results in (ii) above. 
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Many important results follow from seeking solutions of the form 
fer) cos n9. (36) above is the case n=o, while that for n=2 is 

(A+Br 2+Cr'+D/rl ) cos 29. (38) 
As an important example of the latter and (36), 

c/>=tT(2al -rl -a'/r2) cos 29+tTrl-Ia' T In r (39) 
gives the solution for a circular hole of radius a in an infinite region 
subjected to stresses which at great distances from the hole are a uniform 
tension T in the direction of the x-axis. 

37. WAVE PROPAGATION 

It was found in § 33 that ~, OJo: , OJII , OJ. all satisfy the wave 
equation which may be written 

1 02VJ 
'V~-C2 ot2 =0, (I) 

where c is a constant. The theory of this equation is well known. 
The most important results can be seen by considering propaga­
tion in one dimension, in which case (I) becomes 

02VJ 1 02VJ 
ox2-c2 ot2 =0. (z) 

The simplest method of attack is to seek solutions of (z) which 
contain the time factor exp ilC(X-ct), real or imaginary parts being 
taken subsequently. Such solutions correspond to harmonic vibra­
tions of wave-length Z-a/IC which are propagated with speed c. By 
superposing waves of this type more general cases can be studied. 

It is easy to show from first principles that any disturbance is 
propagated with speed· c. If !(x) and F(x) are any differentiable 
functions of x, it follows by differentiation that both!(x-ct) and 
F(x+ct) satisfy (z). Now!(x-ct) corresponds to a disturbance 
which moves to the right with speed c, keeping its form (which is 
!(x) at t=o) unchanged. Similarly, F(x+ct) corresponds to a dis­
turbance, whose form at t=o is F(x), which moves to the left 
with speed c. A typical problem is to solve (z) in the region 
-oo<x< 00 with a given initial value of VJ, say VJa!(x), when t=o. 
From the above it appears that 

VJ=lf(x-ct)+lf(x+ct) (3) 
satisfies (z)and has the required value when t-o. This corresponds 
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to one wave of form H(x) being propagated to the right and 
another to the left with speed c, the situation being as in Fig. 47. 

I ct ___ ~ j<--
I 

r-" I I I I 

r- I I 

~ I : 

D 
I I 

D I I 
I I 

: I 
I 

FIG. 47 

Thus (2), and in fact (I) also, correspond to propagation of 
waves with speed c, so that if a disturbance takes place at the 
origin at time t=o, no effect is perceived at distance x until a wave 
front arrives at time t=xjc. 

38. ELASTIC WAVES 

In § 33 the equations of motion of an elastic solid were derived 
and it was found that both the dilatation A and the rotation w 
satisfy the wave equation, waves of dilatation being propagated 
with speed Vp and waves of rotation with speed Vs , where 

Vp= [(J.+zG)jp]l= [G(z-ZV)jp(I-ZV)]!, . (I) 
Vs=(Gjp)l=[(I-zv)j(z-zv)]iVp. (2) 

We now proceed to examine the situation more closely, starting 
with the study of plane waves. Without loss of generality the 
waves may be assumed to be propagated along the x-axis so that 
all quantities will contain the factor exp iK(X-ct) where c is the (as 
yet unknown) speed of propagation. Thus we assume that the dis­
placements are of the form 

u=uIeiK(x-ct), v=vIeiK(x-ct), w=wIeiK(x-ct), (3) 
where UI , VI , WI are constants. 

By § 33 (9), (IZ), (13) the displacements have to satisfy 
o2u oA 

Pot2 =(MG)ox +G"l 2U, (4) 

where 

(5) 



§ 38] EQUATIONS OF MOTION AND EQUILIBRIUM 133 

and two equations similar to (4) for v and w. Substituting (3) in 
these and cancelling the exponential factors gives 
PK2C2UI=(A,+G)K2UI+GK2uI' PK2C2VI=GK2vI , PK2C2wI=GK2w1. (6) 
The set of equations (6) may be satisfied in two simple ways: 

(i) Primary or P waves in which 
V1=Wl=O, C=[(A+2G)jp]I=Vp, 

corresponding to a longitudinal wave in which the directions of 
motion of the particles are in the direction of propagation. This 
motion is irrotational and the wave is one of dilatation propagated 
with speed VI' given by (I). 

(ii) Secondary or shear or S waves in which 
ul=o, c=(Gjp)!=Vs, (8) 

and VI and WI may have any values, corresponding to a transverse 
wave in which the direction of motion of the particles is perpen­
dicular to the direction of propagation. In this case Ll=o, the 
motion is rotational, and the wave is propagated with speed V s 
given by (2). Since V p> V s the first waves to arrive from any 
disturbance will be P waves. 

Precisely as in the theory of light, the reflection and refraction of 
plane waves at the boundary between two media may be studied. l 

The situation is a little more complicated since, in general, when 
a wave of one type is incident on a surface of separation it gives 
rise to reflected and refracted waves of both types. Just as in 
optics, also, the behaviour of waves may be adequately represented 
by a ray theory in which propagation along the ray (normal to the 
wave front) takes place with the speed of wave propagation and 
the path of the ray between two points is determined by the 
principle of least time, namely, that the path of a ray between two 
points is such that the time for the actual path is less than that for 
any possible neighbouring path. 

In a uniform, infinite medium the simple types (7) and (8) are 
the only ones which appear, and more general wave motions can 
be built up by superposition of them. But if the medium is 
bounded or non-uniform other simple types appear, the most 
important of which are the surface waves which it is found can be 

1 Cf. Bullen, An Introduction to the Theory of Seismology (Cambridge, 
1947), Seismology (Methuen, 1954). 
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propagated near the surface of a solid without much penetration 
into its interior: these will now be discussed. 

Rayleigh Wtwes. Suppose the region z>o is filled with solid with a free 
surface in the plane z=o: we investigate the possibi~ity of waves whose 
amplitude diminishes exponentially in the z-direction being propagated 
along the x-axis. That is, we seek solutions of the equations of motion (4), 
etc., for u, v, W of the form 

u=u1e-cxz+i.c(z-ct>, v=v1e-czz+i.c(z-ct>, w=wle-cxz+i.c(z-ct),. (9) 

where Ot is a real and positive constant and UI , VI , WI are constants. Sub­
stituting in the equations of motion, (4), etc., gives 

- PICICIUI=iK{A+G)(il(UcOtWI)+G(OtI_ICI)UI , (10) 
-PIC2CIVI=GvI(OtI_ICI), (II) 

-PICICIWI=-Ot(A+G)(il(UcOtWI)+G(OtI_ICI)WI. (12) 
(10) and (12) give 

UI iICOt(A+G) 
WI pIC8CI+GOt8-ICO(A+2G) 

The second equation of (13) gives 

pIC1CI +OtI(A+2G)-GICI 

iICOt(A+G) 

{pIC1CI+G(0t1-1C1)} {pIC2C2+(A+2G)(0t1-1C1) }=o. 

This gives two values of Ot, namely, 
Ot I =lCt (I-CI /VS2), 
Ot'= IC'( I-CO / V p2). 

(IS) 
(16) 

Since ot must be real, C must be less than Vs. Writing Ot, for the value 
of Ot in (IS), and substituting this in the first of (13), gives one type of 
wave with 

Ot=Ot,=IC(I-CI/V S2)., and u';wI=-iOt,/ IC. • (17) 
Writing Otp for the value of Ot in (16), and substituting this in the second 

of (13), gives another type of wave with 
Ot=Otp=K(I-CI/Vpl)., and u';wl--ilC/OtP.. • (18) 

Since VI enters only in (II) we may take it to be zero (if this is not 
done the boundary condition '7" .. =0 requires it to vanish), so the simplest 
general solution is 

u=-iAOt, exp {-Ot,z+iK{x-ct) }-iICB exp {-OtpZ+iK(X-Ct)}, (19) 
v=o, 
w=ICA exp {-Ot,%+iK{x-ct) }+BOtp exp {-OtP%+iK(X-Ct)}, (20) 

where A and B are constants and c is as yet undetermined. The displace­
ments (19) and (20) have to satisfy the boundary conditions in the plane 
%=0, namely, 

(au Ow) 
'7".,,=G a;+ox =0, (21) 

Ow au ow 
a,=A~+2~=~+(A+2G)oz =0. (22) 
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Substituting (19) and (20) in these gives 

A(K1+CX.I )+2KBcxp=0, (23) 
A {.\Kcx.-(M2G)KCX. }+B {AKI_(M2G)CXpl }=o. (24) 

Eliminating A and B gives 

(2_;:.)1"4( I-;:.)I(I-;;.t, 

which is the equation for the velocity of the waves. On squaring and 
multiplying out it becomes 

c· c' c· ( V.I) ( V.I) 
V •• -SV.'+V.I 24-I6Vp' -16 I- Vp' =0.. • (25) 

This has a real root between 0 and V. which makes a:. and CXp in (17) and 
(IS) real, as they should be, and so all conditions are satisfied. 

In the important case v=I/4, so that, by (2), Vp-V.V3, the roots of 
(25) are C2=4V.I and CI =2V.I(I::I::II V3). The value of c less than V. gives 

C=0·9I9V., cxp=0'S4SK, CX.=0·393K. • (26) 
Then from (23) B=-0'6SA, and (I9) and (20) become 

U= [ -iAKX 0'393e-O'39S""+iKX 0·6SAe-o·84IIICZJeiK(:Z:-cC), 

W= [KAe-O'39S""-0'6Sx 0,S4SKAe-O·848"z]eiK(:Z:-cC). 

Taking the real parts and writing C for -0'6SKA gives the complete 
displacement 

"=C(e-O'8481CZ-0'57Se-O'39S4 sin K(X-0·9I9V,t},. • (27) 

W-C(o'S4Se-O'8481CZ-I'46Se-O'3934 cos K(x-0·9I9V,t). • (2S) 

Rayleigh waves are not the only simple type of surface wave which can 
be predicted and identified. If the solid is stratified so that the regions 
o<z<a and z>a are of different materials, another type, called Looe 
waves, appears. The study of waves in a stratified region is of considerable 
importance because there appears to be a fairly sharp change in properties 
in the Earth at a depth of abopt 33 km. (the base of the crust). It should 
be remarked that while in the cases of P, S, and Rayleigh waves the speed 
of propagation is independent of the wave-length 21T I K, this is not always 
the case and is not so for Love waves. This is the phenomenon of 
dispersion well known in connexion with water waves and electromagnetic 
waves. 

Seismology is the study of earthquake waves and the deduction 
of the properties of the Earth's material at depth from their 
records. From what has been said above it appears that P waves 
will arrive first, followed by S waves, the Rayleigh and Love 
waves, and a great many multiply reflected waves. From the times 
of arrival of these the position of any shock. may be determined; 
and from the totality of information on all shocks. the speed of 
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propagation of P and S waves at any depth below the Earth's 
surface can be calculated (cf. Bullen, loco cit.). Since by (I) and (2) 

Vp 2=2(I-'V) Vp 2-4V "/3=K/p. • (29) 
V,2 1-2'V ' • , 

it follows that 'V is known at any depth, and, since the density 
can be calculated independently, all the elastic constants can be 
determined. 

The object of seismic prospecting is the determination of the 
position of sub-surface changes in geological structure by the 
study of waves reflected from (or refracted into) them. The source 
of the waves is an explosion at the shot point S, and in the simplest 
situation the times of arrival of the waves at a string of detectors 

r\7D~' 
o 

(a) 

N 
> -N 
'0 
V 

D1 , D2 , ••• , Fig. 48 (a), are recorded. From an analysis of the 
records, the time of arrival T of the P wave may be determined as 
a function of distance x from the shot point. 

Suppose, for example, that the reflecting layer is horizontal and 
at distance d below the surface, Fig. 48 (a), the speed of the waves 
in the region above it being V. The wave which reaches Dafter 
reflection from the lower layer will have traversed the path SOD 
of length (4d2+X2)i and its time of arrival T will be 

T-(4d2+x2)I/V. • (30 ) 

Plotting T2 against Xl as in Fig. 48 (b) gives a straight line of 
slope I/P and intercept 4d2/V2 on the T2 axis and so, in prin­
ciple, both d and V can be determined. The case in which the bed 
is not horizontal may be treated similarly, the geometry being 
slightly more complicated. This reflection method is the most com­
monly used: it has thl! disadvantage that a direct wave from S to D 
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always arrives before the reflected wave so that the latter may be 
difficult to identify. 

The older refraction method avoids this difficulty, but it is 
applicable only to the (very common) case in which the lower bed 
has a higher-speed of propagation. 

Suppose that a bed of thickness d in which the speed of pro­
pagation is VI lies on material in which the speed is V2> VI , the 
surface of separation being horizontal, Fig. 49 (a). In this case a 

s 0 .. 
I )( 

I 

v, Ie : -.-. 
~ 

, 
A B )( 

V2 
(al ( b) 

FIC·49 

wave may travel from S to D by a path SABD as well as by the 
path SD, and if x is sufficiently large the former may arrive first. 
The time T taken to traverse the path SABD may be calculated as 
follows: if SA and DB are inclined at angles (J to the vertical 

T=(2d sec (J)/VI +(X-2d tan (J)/V2 • (31) 
Here (J is known from the laws of refraction or, alternatively, it 

may be found from the principle of least time which states that (J 
must be such as to make the time in this path a minimum, that is, 

dT 2d sin (J 2d sec2 (J 
- ==0. 

d(J VI cos2 (J V2 
This gives sin (J= VI /V2 , and using this in (3 I) gives 

T=2d(V22_VI 2)i/VI V2+X/V2 • • (32) 
The wave by the direct path SD arrives at time X/VI' This is 

equal to (32) if x has the critical value Xc given by 
xc=2d[(V2+ V I )/(V2- VI)]i, (33) 

so that if x<xc the direct wave arrives first and 

T=x/VI • 

Thus if T is plotted against X as in Fig. 49 (b), a straight line of 
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slope I/VI is obtained for X<Xe , and a straight line of slope I/V. 
and intercept 2d(Vsll_VIIl)1/VIVII on the T axis for x>xG• It 
follows that, in principle, VI' Va and d can be determined . 

• 39. THE EQUATIONS OF MOTION OF A VISCOUS FLUID 

Let (U, V, W) be the components of the velocity of the fluid at 
the point (x, y, z) at time t. Each of these is a function of :Ie, y, z 
and t. To find the equations of motion we proceed as in § 33, 
taking a small rectangular parallelepiped of sides ~x, ~y, ~z parallel 
to the axes with its centre at (x, y, z) and equating the force on this 
to its mass times its acceleration. 

In calculating the acceleration a point arises which was slurred 
over in § 33 and is of great theoretical importance, but of no prac­
tical importance for the case of slow motion which is the only one 
which will be considered here. The particle whose acceleration is 
being calculated is at x, y, z at time t; at time t+~t it will be at 
x+ U ~t, y+ V ~t, z+ W ~t, so that its component of velocity in the 
x-direction at this time will be U+6U given by 

U(x+ U 6t, y+ V 6t, z+ W 6t, t+6t) 

( aU au __ 1JU a~ 
-U+ U ax +V ay +W"az +Tt /t, 

neglecting terms in (~t)lI, and its component of acceleration in the 
x-direction will be 

. ~U au au au __ 1JU 
~~o Tt-Tt+ U ax +Vay +W~z· . (I) 

This quantity is written DU /Dt, and this process of calculation 
is referred to as differentiation following the motion of the fluid. 
Clearly, the above discussion was quite general, and, if f is any 
property associated with the particle of the fluid which was at :Ie, y, 
z at time t, 

Df af af --0/ ---0/ 
Dt-at+Uax+V~+~z· (2) 

If U, V, Ware small, this reduces to af/at. This is the justification 
for taking alu/atS for the x-component of acceleration in deducing 
the elastic equations § 33 (6}-{8). 

The remainder of the derivation of the equations of motion is 
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precisely the same as that of § 33 for the elastic equations. Suppose 
(X, Y, Z) are the components of body force per unit mass at 
(x, y, z) and that <lz , <11/ , <lz , 1'1/. , T.z , 1'''1/ are the components of 
stress in the fluid, then the x-component of force on the parallele­
piped is given by § 33 (5), and equating this to the mass times the 
component of acceleration in the x-direction gives 

and, similarly, 

DU a<l .. aTII .. aT... x 
P Dt = ax +ay+az-+P , 

(5) 

(3) to (5) are the equations of motion in terms of the stresses. 
They may be expressed in terms of the velocities by using § 19 (8), 
(II) (replacing u, V, oW in these equations by U, V, W) which give 

DU ap 1 aA 
p Dt =pX-ax+31Jax +1J\l2U, (6) 

DV ap 1 a~ 
'7fj=pY-ay +31Jay +1J\l2V, (7) 

DW ap 1 aA 
Pj'jt=pZ-az + 31Jay +1J'V 2W, (8) 

where 

A=au+av+aw (9) 
ax ay az' 

and if the fluid is incompressible Ll=o. 
For relatively slow motion DU IDt, etc., may be replaced by 

au lat as in the equations of elasticity. This is allowable in many 
important problems: if it cannot be done the equations are non­
linear (since by (I) squares and products of the components of 
velocity are involved) and they become extremely difficult to 
handle. In many problems the motion is so slow that inertia effects, 
that is, the accelerations DUIDt, can be neglected altogether. 
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40. SPECIAL PROBLEMS IN VISCOSITY 

The simple standard problems of motion of viscous fluid through a tube 
and between rotating cylinders have been solved in § 32. In this section 
some problems on slow viscous motion of incompressible fluid in two 
dimensions will be studied: the methods and results may be compared 
with those of §§ 36, 41. Only cases in which there are no body forces will 
be considered. 

Suppose that the plane of motion is the xy-plane so that all quantities 
are independent of z. The equation of continuity § 19 (14) is 

. ou av 
!:J.= ox + oy =0. (I) 

Using this result and assuming that the motion is so slow that the 
accelerations DU/Dt, etc., are negligible, and putting X= Y=o, the 
equations of motion § 39 (6), (7) become 

lOp OIU OIU 
---+-+-=0 TJ ox ox! oyl , 

lOp 02V OIV 
---+-+--=0 TJ oy oxt oyl . 

It follows from (1)-(3) that 
Olp Olp 
ox2+oy·=0. 

Now suppose that there exists a function", such that 

U=_o", V=o", 
oy' ox' 

(2) 

(5) 

so that (I) is satisfied automatically. Differentiating (2) and (3) partially 
with respect to y and x, respectively, subtracting and using (5) gives 

0'", oC'P 0''1' 
ox,+2 ox1oys+oy'=0. (6) 

The method is analogous to that of § 35; '" is called a stream/unction, and 
if a solution of the biharmonic equation (6) can be found with suitable 
boundary conditions the complete solution follows. 

(i) The Case of Two Plann approaching One Another 
Suppose that there is incompressible fluid of viscosity TJ between two 

parallel strips -l<x<l, y-:h, and that these are pressed together by 
equal and oppositely directed forces parallel to the y-axis, Fig. So. It is 
assumed that there is no slip of the fluid across the boundaries y=:h. 

The equations (I) to (4) have to be satisfied with boundary conditions 

U=o, -l<x<l, when y-:h, (7) 

V='FV., -l<x<l, when y"":h. (8) 
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where Vo is the speed with which the strips move. In addition to these U 
must, by symmetry, be an odd function of x, that is, U(-x)=-U(x). 

The method of solution which will be used consists of building up a 
simple polynomial solution of the equations. Firstly we notice that the 
second degree polynomial 

p=ikyl_ikxl+C, (9) 
where k and C are constants, satisfies (4). No first-degree terms have been 
included since the pressure must be the same if the signs of x or yare 

B ~Vo y ~ Vo A 

FIG. SO 

changed. Also, since U is to be an odd function of x, it cannot contain a 
term in Xl so we &eek a solution of (z) with oau/oxl=o. Using this and (9), 
(z) becomes 

The solution of (10) is 
U=-ikxyl/'f/+yf(x)+g(x), 

(10) 

• (II) 

where f(x) and g(x) are unknown functions of x. The conditions (7) 
requiref(x)=o, g(x)=kxhl/z'f/, and so (II) becomes finally 

Using (12) in (I) gives 

and integrating this, 

U=kx(hl-yl)/Z'f/. • (12) 

av 
-=-k(h'-yl)/Z'f/ oy , (13) 

where F(x) is an unknown function of x. The conditions (8) give F(x)=o 
and 

• (IS) 
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and therefore 
U=3 VoX(h 2- y 2)/zh3, V= VoY(y2-3h2)/zh3, • (16) 

P=3TJVO(y2_X2)/zh3+C. • (17) 

(16) and (17) satisfy all the equations and boundary conditions but do 
not involve the length of the plates. For the practical case of fluid being 
squeezed from between parallel plates, we may assume p=o when x=:!:.l, 
y=:!:.h, that is at the points ABCD, Fig. 50. This gives C in (17), and we 
get finally 

• (IS) 

(IS) does not vanish over the whole of the lines x=:!:.l so the solution is 
only strictly accurate if it is assumed that a (small) pressure given by (IS) 
is applied over these lines. 

The stresses in the fluid follow from § 19 (13) which give 

Uz=3TJ Vo[3(h2-y2)+x2-12]/zh3, (19) 
u,=3TJ Vo[y2-h2+X2_12]jzh3, (zo) 

Tzw=-3 VoTJxy/h3. (ZI) 

The force Pan either plate is given by 

P=-zJ: u,dx=zTJVo13/h3• • (zz) 

This arrangement is used in some viscometers, P being known and Vo 
measured. The stream lines (that is, curves whose tangents are in the 
direction of the velocity) are shown in Fig. 50. 

(ii) Motion in the Semi-infinite Region y<o due to a Surface-Disturbance 
As in § 36 (34) 

tp=AetD1l sin wx • (Z3) 

satisfies (6) and so is a stream function which vanishes exponentially for 
large negative y and thus is appropriate for the study of surface motions 
in the region y<o. By (5) the velocities are given by 

U=-A wetD1l sin wx, V=AwetD1l cos wx, 

and by § 19 (13) the stresses are (taking p=o) 

uz=-2TJw2A e"'ll cos wx, (zS) 

u,=27Jw"AeWU cos wx, • (z6) 

Tzw=-2TJw 2AetD1l sin wx. (27) 

Suppose, now, that the surface y=o is distorted into the harmonic shape 
y=h cos wx, • (2S) 

so that, if the material is of density p, the stress over the plane y=o is 
u,=- pgh cos wx, . (29) 

that is, the constant A in (24) is -pgh/z7Jw". Also the value of V when 
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x=y=o will be dh/dt, the rate of subsidence of the surface, and therefore 

dh=Aw=_pgh. 
dt 21jW 

It follows that if ho is the height of the distUrbance when t=o, its value 
at t will be 

h=ho exp (-pgt/21jW). • (30) 
This solution is only approximate since the value of "'''1/ in the surface 

has not been discussed, but it is correct in order of magnitude. Calcu­
lations of this type have been used to estimate a viscosity for the Earth's 
interior from the observed rate of rise of the surface after the melting of 
a large ice-cap. 

41. PLASTIC FLOW IN TWO DIMENSIONS 

In this section two-dimensional plastic flow will be discussed on 
the assumption of § 29 that the elastic strains may be neglected. 
It will be assumed that there is no motion in the z-direction, so 
that e.=o and so by § 29 (4) s.=o, and thus by § 27 (4) the principal 
stress in the z-direction will be HCi1+Ci2), where Ci1 and Ci2 are the 
principal stresses in the xy-plane. In this case both Tresca's and 
von Mises's criteria of yield take the same form, namely, 

Ci1-Ci2=2k, (1) 
where, by § 27 (16), (25), k has the value lCio in the former case and 
Cio/v'3 in the latter. 

If ci" , Ci1/ , 7:"1/ are the components of stress referred to the xy­
axes, (1) becomes by § 3 (18) 

HCi,,-CiI/)2+7:,,1/2=k2• (2) 
The stresses in the material are determined by (2) in conjunc­

tion with the equations of equilibrium, § 35, (6), (7), namely 

Oci,,+ 07:"'11=0 (3) 
ox oy , 

07:,,1/+ OCiI/=O (4) 
ox oy . 

027:ZI/ 02-r:ZI/ 
ox2 oy2 

and using this m (2) gives 

02(Ci,,-CiI/) 
ox oy , 

027:,,11 02-r:ZI/ 02 (k2 2)1 
OJC2 - oy2 =:l:20x oy -7:"11 • 
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Alternatively, if the stress function <I> defined in § 35 is used, 
substituting § 35 (9) in (2) gives 

( 02<1> 02<1» 2 ( 02<1> ) 2 
oy2 - ox2 +4 ox oy =4k2. (6) 

(5) is a partial differential equation for T"'II: if the boundary con­
ditions of the problem involve stresses only, the solution is par­
ticularly simple since (5) and the boundary conditions determine 
the stresses immediately: on the other hand, if the boundary con­
ditions involve displacements the situation is more complicated as 
the stress-strain relations also have to be used. The same remarks 
apply to (6). 

Assuming that the stresses have been found, the stress-strain 
relations § 29 (4) 

give the rates of strain, and from these the velocity it, v may be 
determined. 

In most problems, however, the greatest interest centres on the 
determination of the slip lines. By the assumptions of § 29, which 
led to the stress-strain relations (7), the principal axes of stress and 
rate of strain coincide. Now it was shown in § 3 (14) that the direc­
tions of maximum shear stress bisect the angles between the 
principal axes of stress, and in § 10 (15) that for infinitesimal strain 
the directions of maximum shear strain bisect the angles between 
the principal axes of strain (and also that for an incompressible 
material the extension vanishes in these directions). In these shear 
directions the relative movement between, neighbouring parallel 
planes is a maximum, so they may be regarded as the directions of 
slip at the point. A curve whose tangent at every point is one of the 
shear directions at that point is called a slip line or shear line. 
Clearly in general there are two orthogonal slip lines through every 
point. 

For example, in the case of radially symmetrical stress in two 
dimensions, the principal stresses at every point are radial and 
tangential, so that the slip lines are inclined at 45° to these direc­
tions. Therefore, by the geometry of Fig. 51 (a), 

dr 
rd()=:H, (8) 
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and these are the differential equations of the two systems of slip 
lines. Solving (8) gives the two families of equiangular spirals. 

r=ae±B, (9) 
where a is an arbitrary constant; these are shown in Fig. 51 (b). 

oc...._~----

Ca) (b) 

FIG. 51 

In the general case, suppose that the principal axes are inclined 
at angles IX and 1X+!n to the x-axis, then the shear directions 
will be inclined to it at fJ and fJ+!n, where fJ=oc+n/4, Fig. 52. 

... ....... 
.............. 

y 

......... . O;C:;; ___ ...L.--" __ 

x 
FIG. 52 

Writing U for t(u1+ug) and zk for (ucuz) by (I), it follows from 
§ 3 (5), (6), (7) that 

u,,=u+k cos ZIX, ull=u-k cos 20:)(, T",,=k sin 2X. 



ELASTICITY, FRACTURE AND FLOW 

Replacing (X by P-'Jl/4, these become 
(j~=(j+k sin 2P, (jll=(j-k sin 2P, T~II=- k cos 2P . (10) 

The differential equations of the two systems of slip lines are 
thus 

dy pI-COS 2P 2(k+T~II) -=tan 
dx sin 2P (j~-(jll' 

(II) 

dy P (j~-(jll 
dx=-cot 2(k+T~)" (12) 

When the stresses are known, the slip lines can be found by 
solving (II) and (12). 

As a simple and important example, the case of a plastic material com­
pressed between the planes y=:l:a parallel to the x-axis will be considered 
in detail. First, the equation (5) has to be solved and, as usual, we take 
a simple solution of this equation and (3) and (4) and see what conditions 
it satisfies. If it is assumed that the planes are rough, and that the material 
is slipping over them, the boundary conditions at y=:l:a will be h •• I=k, 
which is independent of x. This suggests that we seek a solution of (5) in 
which Tr, is a function of y only. In this case (5) becomes 

O·T ... _ O oy' - , 
which is satisfied by the linear function 

Tr,=-ky/a, . (13) 
and this gives Tr,=~k wheny=:l:a, corresponding to the material moving 
over the planes to the right. Putting (13) in (3) and (4) gives 

uz=f(y)+kx/a, u.=g(x), . (14) 
where fey) and g(x) are unknown functions subject to the condition (z). 
This requires 

f(y)-g(x)+kx/ a=:l:zk(l-y 2/ a2)1, 
and it follows that ' 

f(y)=-P:l:zk(1 -Y' / as)I, g(x)=-P+kx/ a, 
where -P is an arbitrary constant. 

It appears that two systems of stresses of this type satisfy the equations, 
of these, the set with the positive sign in (15) will be discussed in detail; 
this gives 

uz=-P+(kx/a)+zk(I-y2/a")l, (16) 
u,=-P+(kx/a), . (17) 

Tr,=-ky/a. • (18) 
Putting (16) to (18) in (II) gives for the differential equation of one 

system of slip lines 



EQUATIONS OF MOTION AND EQUILIBRIUM 147 

The integral of (19) is 

x= f(at_yl)ldY 
a-y , 

or, putting 
y=a cos 0, 

x=-a f (1+ cos O)dO=-a(O+ sin O)+C. 

(20) and (21) are the equations of a family of cycloids, in which, since 
by (19) dy/dx is always positive, only the portions in which y increases 
with x must be taken. Similarly, the second system of slip lines given by 
(12) is the cycloids 

y=a cos 0, x=a(O- sin O)+D, • (22) 

of which only the portions with y decreasing must be taken. The two 
systems of slip lines are shown in Fig. 53. 

FIG. 53 

To see the physical significance of this solution, suppose the plastic 
mass is in the region ABCD, Fig. 53, bounded by the lines y=:l:a, x-o, 
and x=l. 

On AB and CD, (T,=-P+(kx/a); on AD, az=-P+2k(l-yl/al )l; on BC, 
(T,.=-P+(kl/a)+2k(l-y t/a,)l; these normal pressures are indicated by the 
lengths of the arrows pointing inwards towards the surfaces in Fig. 53. 
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Like most simple exact solutions it is valid only if this precise system of 
stresses is applied: its physical interpretation will be discussed later. 

To find the velocity distribution corresponding to the stresses (16) to 
(18), it follows from (16) and (17) that 

sz=-S.=k(I _y2 I a')I, 

and, using this and (18) in (7) gives, writing U and V for it, and V, 

sz=k(I _yO I a2)1=2"'€~=2tif., 

(25) 

where", ill an unknown function involving the strain rate. We seek a 
solution of these corresponding to the plates approaching with speed Va. 
Clearly 

V=-yVo/a 
satisfies this condition, and it satisfies (24) if we choose 

t/>=k(a2-yt)1/2Vo. 

With this value of t/>, (23) gives 
U= V filCla+j(y), 

(26) 

(28) 

where j(y) is to be determined from the fact that U and V must satisfy 
(25). This requires 

Therefore, finally 

j'(y)=-2VoYIIl(a 2-y2)!, 
j(y)=2Vo(I-.r2Ia t )!. 

U=(V filCla)+zVo(I-y 2I a2)l. 

(26) and (29) satisfy all the required conditions. They correspond to the 

P Q 

~ 
R s 

FIG. 54 

plastic material being squeezed to the right as the planes approach, its 
speed past the planes being V o-~/a. 

(26) and (29) illustrate the important result mentioned in § 29, namely, 
that U and V are proportional to the externally prescribed speed V~, 
while the stresses are unaffected if this is changed. This is in striking 
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contrast to the results for the corresponding problem for viscous flow 
discussed in § 40. 

The other solution, corresponding to choosing the negative sign in (IS), 
represents a situation in which material is forced in over BC, causing AB 
and CD to move outwards. 

In the practical case of a plastic material compressed between rough 
parallel plates PQ and RS, a more refined analysis shows that there are 
regions towards the centre, shown shaded in Fig. 54, in which the yield 
stress is not exceeded so that they remain undistorted: in the region 
beyond these the material is extruded in a manner well represented by the 
preceding discussion. 



CHAPTER IV 

APPLICATIONS 

42. INTRODUCTORY 

IN this chapter some applications and extensions of the preceding 
theory will be made which will refer mainly to geological matters 
such as faulting and stresses in the Earth's crust, and to engineer­
ing problems on rock mechanics.1 Such problems are essentially 
those of fracture and of the behaviour of fractured material, and 
the relevant criteria will be studied in some detail. The more 
mathematical problems are those of the stresses around bore­
holes, tunnels and cracks. 

Y' • , , 
Y' , , 

FIG. 55 

I 
Y, 
• Ie 

The conditions are such that the stresses are so frequently 
compressive that it is an advantage to use a convention in which 
compressive stresseS' are reckoned positive. This will be done 
throughout this chapter. This implies that the convention of 
Fig. 2 is replaced by that of Fig. 55. 

1 The most complete discussion of this subject is given by J. Talobre, 
La Mecanique des Roches (Dunod, 1957). 

ISO 
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With this change, the whole of the results of §§ z-S remain 
unchanged in form. 0'1,0'2' O'a with O'i>O'yO'a will be the principal 
stresses, 0'1 being the greatest compressive stress. Similar modi­
fications apply to strains. 

43. EXPERIMENTAL RESULTS ON 
THE MECHANICAL PROPERTIES OF ROCKS 

In the past few years many series of experiments on the 
mechanical properties of rocks have been made. Some of these 
have been for engineering purposes to determine the elastic 
moduli and compressive strengths of rocks for design purposes. 
Others, from the geophysical point of view, have been intended 
to study the brittle-ductile transition and the plastic behaviour 
of rocks at as high temperatures and pressures as possible. 

d Isplicement : tneh" 

CG} (b) 

FIG. 56. (a) Stress-strain curve for an altered granite: OABC longitudinal 
strain, OA'OC' lateral strain. (6) Load-displacement curve for a 12' 
circular disk pressed into unsound rock 

(i) Elastic Moduli and their Variation with Stress 
In practice, curves of stress 0' as a function of strain 8 depart 

from simple proportionality, and the elastic modulus correspond­
ing to stress 0' can be defined either as the tangent modulus tJq / tis 
or the secant modulus 0'/8. 

Several different effects contribute to this non-linearity. In some 
cases, such as basalt, the typical behaviour of Fig. 19 (c) occurs. 
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In many others, however. the stress-strain curves are concave 
upwards for low stresses. This effect, which is probably caused 
by the presence of pores or minute cracks in the rock, is shown 
in the curve OA, Fig. 56 (a), which represents longitudinal strain 
for the first loading of a specimen of an altered granite in uncon­
fined compression. In this case the tangent modulus is approxi­
mately linear in the stress, so that the early part of the stress­
strain curve can be represented approximately by the formula 

G=A[exp (ke)-I]. (I) 
If in Fig. 56 (a) the stress is reduced from its value at A, the 

unloading curve AB is traced out, leading to strain OB at zero 
stress. Reloading gives BC, and further cycles of unloading and 
reloading to the same maximum stress give loops similar to ABC 
but moving slightly to the right. These effects may be associated 
with anelasticity (involving no permanent set) or transient creep. 
They can be represented reasonably well1 by the rheological 
models of § 30. 

When giving values of elastic moduli, it is necessary to specify 
the conditions under which they were obtained, in particular the 
rate of strain, and whether they were measured from a first 
loading curve, such as OA of Fig. 56 (a), or a reloading curve 
such as BC. As an extreme case of very rapid straining, 'dyna­
mic' values of the elastic moduli can be found from the velocities 
of propagation of elastic waves § 38 (7), (8), (29). These are 
measured \I by setting a specimen in vibration by an electro­
mechanical transducer. A small difference is theoretically to be 
expected between the 'dynamic' and 'static' moduli, since they 
are measured under adiabatic and isothermal conditions, respec­
tively, but the observed differences are much larger than this, 
the dynamic moduli usually being higher. This effect may be 
associated with the existence of pores and minute cracks. 

The variation of the elastic 'constants' with stress is large 
enough to be of importance in engineering and mining contexts 
and measurements have been made on rocks of practical interest. 3 

1 M. Nishihara, Doshida Engng Rev., 8 (1958), 32, 85. 
a F. Birch, J. Geophys. Res., 66 (1961), 2199. 
aN. J. Price, Mechanical Properties of Brittle Materials (ed. Walton, 

Butterworths, London, 1958), p. 106; D. W. Phillips, Colliery Engineering, 
25 (1948),199; U.S. Bureau of Reclamation, Concrete Laboratory Report 
SP-39 (1953)· 
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Phillips found that for sandstones and siltstones in unconfined 
compression the values of '/I and E increased considerably with 
stress over the range 0-10,000 p.s.i. (by a factor of two or more). 
Price made triaxial tests on a number of sedimentary rocks. In 
such tests the specimen is cylindrical and subjected to axial stress 
0' 1 as well as radial stress 0'2=0'3 provided by oil pressure. The 
specimen is enclosed in a rubber or copper jacket to exclude the 
oil. He studied the influence of 0' a on '/I and E. '/I was found always 
to increase with the stress-difference O'C0'3; at the higher con­
fining pressures (>4,000 p.s.i.) it depended only on O'CO'a' E in­
creased with O'C0'3, and, for a given value of O'C0'3' increased 
slowly with 0'3' 

(ii) Unsound Rock and Measurements in situ 
Laboratory measurements are usually made on selected speci­

mens of sound rock. In practice, values for the overall elastic 
properties of a mass of rock are often needed, and this mass may 
contain joints and broken and unsound rock. Many attempts have 
been made to measure elastic properties of rock in situ. One such 
method consists of applying a force P normal to a circular pad 
of radius a cemented to a rock face, and measuring the displace­
ment u of this pad: the situation is the three-dimensional analogue 
of that of Fig. 4S (b) and the elastic theory is well known, the 
average displacement being given byl 

U=0·S{P(I-'/I2)!aE. (2) 
Fig. S6 (b) shows a load-displacement curve for poor rock taken 

under such conditions. The general behaviour is similar to, but 
more extreme than that of Fig. S6 (a) and figures deduced from 
it probably provide a reasonable approximation to the actual be­
haviour of the rock. Thus, knowing a=6", and assuming '/1=0'2, 
the portion Be of the curve gives a secant modulus of 

E=I'2xI06 p.s.i. 
1 Timoshenko, loco cit., p. 339. He also gives the result for a rigid 

circular disk pressed into the surface of a semi-infinite elastic solid; in 
this case the displacement is again given by (2) except that the numerical 
factor 0'54 is replaced by 0'5. The theory of uniform loading along a 
strip on the surface of a semi-infinite solid is considered by Prager and 
Hodge, loco cit., for the case of a perfectly plastic solid, and by K. von 
Terzaghi, Theoretical Soil Mechanics (Wiley, 1943), for the case of a solid 
obeying the laws of soil mechanics: these solutions give the forces cor­
responding to flow or slip but no information about the displacement. 
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(iii) Fracture and Ductility 

The general nature of the phenomena and the pioneer work of 
von Karman and Griggs were referred to in § 12. Recently, 
several series of experiments l have been made to determine the 
behaviour of various types of rock under a wide range of values 
of confining pressure, temperature, rate of strain, and pressure 
of pore fluid. 2 Most of these have been triaxial tests in which 
a stress-strain curve is obtained which connects differential stress 
with longitudinal strain. 

In uniaxial compression at room temperature, many rocks fail 
suddenly by slabbing outwards. This is probably a subsidiary 
effect due to tensile stresses caused by a wedging action. It disap­
pears at quite small confining pressures. 

At moderate confining pressures and room temperature, failure 
is almost invariably by shearing across a single plane and the 
results can be reasonably well expressed in terms of the Coulomb­
Navier theory, or, better, by a slightly curved Mohr envelope. 
Some typical values of So and the angle of internal friction <fo for 
various rock types taken from the Bureau of Reclamation Report 
(loc. cit.) are shown in Table IV. It should be emphasized that 
the variation between different rocks of the same general type 
can be very large. 

As the confining pressure is increased, there is a great increase 
in strength and, at higher pressures, in ductility. In most cases, 
shear failure at low confining pressures occurs across a we\l­
defined plane; as the confining pressure is increased this broadens 
into a shear zone; at still higher confining pressures deformation 
takes place throughout most of the volume of the specimen and 
considerable plastic strain can be introduced with little increase 
of load. In this condition the rock is said to be ductile. This 
brittle-ductile transition for limestone has been illustrated in 
Fig. 20 and has been studied in great detail by Heard.3 The effect 
of raising the temperature is, in general, to lower the strength 

1 J. Handin and R. V. Hager, Bull. Amer. All. Petroleum Geol., 41 
(1957), I, and 4Z (1958), 2892, also R. O. Bredthauer, Trans. Amer. Soc. 
Meeh. Engrs, 79 (1957), 695, have studied a wide range of sedimentary 
rocks at moderate temperatures and pressures up to 5,000 bars. 

I In this case fluid is supplied at a known pressure to the ends of the 
(slightly porous) specimen. It is, of course, separated from the oil which 
provides the confining pressure by the jacket around the specimen. 

• H. C. Heard, Geol. Soc. Amer. Memoir 79 (1960), 193. 
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and increase the ductility. Some typical results for sediments, 
taken from Handin and Hager, loco cit., are given in Table V. 

Since the temperature below the Earth's surface increases with 
depth, temperature and pressure there are related. Measure­
ments such as those of Table V allow the differential stress which 
can be withstood by rocks at various depths below the surface to 
be computed: for example, with the normal geothermal gradient 
this is 4,400, 3,500, and 9,200 bars, respectively, at 25,000 feet 

TABLE IV 

Shear strength So (bars) and angles of internal friction for some typical 
rocks. Under each heading two values are given corresponding to speci­
mens with extreme values of So. 

I~~;-- ---{~ _. J:-
Granite ,220 58° 

I 140 56° 
Greywacke i 110 45° 

I 60 50° 
Limestone '350 35° 

140 58° 
Sandstone 160 48° 

110 48° 
Schist 140 27° 

20 54° 

for the three rocks listed in Table V. The behaviour of halite is 
anomalous and is important in connexion with the formation of 
salt domes: at depths of about 20,000 feet it may be expected to 
behave like a perfectly plastic solid with a yield stress of only 
100 bars (cf. Handin and Hager, loco cit.). 

It should be understood that the figures above do not include 
the effect of pressure of pore-water; also they are for rapid 
straining, and in general slow straining raises the strength. 

At relatively high temperatures, l many rocks become extremely 
ductile and very considerable distortions of the individual crystal., 

1 Cf. D. T. Griggs, F. J. Turner and H. C. Heard, 'Deformation of 
rocks at 500° C to 800° C', Geol. Soc. Amer. Memoir 79 (1960), 39. 
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TABLE V 

[§ 43 

Triaxial tests on some typical rocks: L, limestone; Ss, a rather soft 
sandstone; Sq., sandstone with a silicious cement. 'Max. stress' and 'Max. 
strain' indicate the maxima attained in the experiment (at which the 
specimen mayor may not have failed). In the last column N.B. indicates 
that the specimen has not been broken; Sh. indicates explosive shattering; 
when failure took place across a single shear plane the angle of this to 
the u3-direction is given. 

Confining Max. Stress Max. 
Rock Pressure U3 

Tempera- Difference Strain Angle 
(bars) tUTe at-US (per cent) (baTs) 

I 
.,. ~ , .. --- .----... --~. --"--------- -_.---,. 

L 0 24 830 1·0 Sh. 
1,000 24 4,190 26·5 ' steep 
1,000 300 3,860 27·2 N.B. 
2,000 24 6,200 30 N.B. 
2,000 300 4,700 27·3 N.B. 

Ss 0 24 400 0·6 cone 
1,000 24 2,650 21"8 70° 
1,000 300 2,400 28·4 54° 
2,000 24 4,750 24·2 N.B. 
2,000 300 3,980 19·6 N.B. 

Sq. 0 24 1,000 0·5 cone 
1,000 24 6,000 2·5 
1,000 300 7,050 1·4 74° 
2,000 24 10,300 3·8 61° ' 
2,000 300 9,300 2·4 58° 

take place. This mechanism of plastic deformation at high tem­
peratures may well be different from that at low temperatures. 
When rocks such as marble are plastically deformed at room 
temperature, it was pointed out by von Karman and Orowan1 

that they are in effect broken up into a granular mass which then 
deforms as such, cf. § 44. 

(iv) Criteria for Failure 
When observations on fracture are represented by Mohr en­

velopes, these may vary from nearly linear, Fig. 57 (a), to those 

1 E. Orowan, Geol. Soc. Amer. Memoir 79 (1960), 323. 
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for more ductile rocks such as Fig. 57 (b) which show consider­
able curvature. There is, in general, reasonably good agreement 
between observed directions of fracture and those deduced from 
the Mohr envelope. Of the two available theories with a simple 
physical interpretation, the Coulomb-Navier theory predicts a 

(a) (b) 

ecl 

FIG. 57. Some typical Mohr envelopes. (0) Silicious sandstone. (b) 
Dolomite. (c) Yule marble: upper curve torsion, lower curve 
compression 

linear Mohr envelope and the Griffith theory a parabolic one, cf. 
§ 46. Triaxial tests may be carried out either in compression or 
extension (in which case the longitudinal stress is less than the 
confining pressure) and the results should lie on the same Mohr 
envelope: this is not the case, though there is no very serious 
discrepancy. On the Griffith theory, the same values of the 
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Griffith constant To, § 24 (5), should be given by all experiments 
on the same rock, whether in compression or extension, but ob­
served values differ by up to 30 per cent, cf. Heard, loco cit. 

The behaviour of rocks in the triaxial test may be regarded as 
reasonably well known and reasonably well represented by the 
two-dimensional theories of failure. Unfortunately this test is not 
adequate for the general study of criteria of failure since two 
principal stresses in it are equal, and the influence of the inter­
mediate principal stress, which is so fundamental in geological 
interpretation, cannot be assessed. 

As in the study of metals, resort must be had to more compli­
cated systems of combined stresses in order to discriminate be­
tween various criteria of failure, and working with rocks under 
these conditions is difficult. Robertsonl has made punching tests, 
as well as triaxial tests on hollow cylinders. What is probably 
the most satisfactory system, torsion under confining pressure 
combined with axial loading, was used by Boker and later by 
Handin.2 

Suppose a cylindrical specimen of radius a is subjected to 
confining pressure P, a total axial stress P+Pb and a couple M 
about its axis. Taking the y-axis to be a generator of the cylinder 
and the x-axis perpendicular to it in the tangent plane, it follows 
from § 32 (29), (30) that the shear stress -c"'11 due to the couple M 
is given by -c"'1I=2M/na3 and this is the maximum shear stress in 
the specimen. The normal and shear stresses across a plane 
making an angle () with the y-axis and passing through a radius 
of the cylinder are by § 3 (4), (5), 

G=P+!Pl(I-COS 2()+(2M/na3) sin 2(), . (3) 
-c=lpl sin 2()+(2M/na3) cos 2() • (4) 

If Pl=O, the principal stresses are p:!:.(2M/na3) in directions at 
45° to the axes. If M is large enough, one principal stress will be 
tensile, and tensile fracture may be expected (and is observed) 
along a helix inclined at 45° to the axis. If Pl is not zero, the 
situation is more complicated, but it follows from (4) that the 
directions of maximum shearing stress are given by 

tan 2()=na3Pl/4M. (5) 

1 E. C. Robertson, Bull. Geol. Soc. Amer., 66 (1955), 1275. 
I J. Handin, D. V. Higgs and J. K. O'Brien, Geol. Soc. Amer. Memoir 

79 (1960), 245· 
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The principal stresses at failure can be calculated from (3) and 
(4) and a Mohr envelope drawn. In general this differs from the 
Mohr envelope derived from triaxial tests and shows a higher 
value for the shear strength (cf. Fig. 57 (c) for Yule marble in 
which the full curve refers to the compression-torsion and the 
dotted curve to the triaxial test). Also the directions of shear 
failure appear to agree better with the directions of m:ncimum 
shear stress calculated from (5) than with the Coulomb-Navier 
directions. However, the Yule marble on which most experiments 
have been made is highly anisotropic so that no definite con­
clusions can yet be drawn. 

44. SYSTEMS HAVING ONE OR MORE PLANES OF WEAKNESS 

(i) The General Formulae in Two Dimensions for Slip on a Plane 
of Weakness 

0', 

(a) (b) 

FIG. 58. The Mohr representation for failure in a plane of weakness 

In many cases, relatively homogeneous rock is intersected by 
a plane of weakness which on a small scale might be a joint plane 
or on a larger scale might be an old fault plane. It is important 
to find conditions under which failure will take place in such 
a plane. If (J and l' are the normal and shear stresses across the 
plane, the assumption of Coulomb-Navier type is that failure 
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will take place when 
1 T 1=80+0' tan cfo, . (I) 

where 8 0 is the shear strength of the material in the plane (e.g., 
joint-filling material) and 11-= tan cfo is a coefficient of internal 
friction for it. 

Considering first the two-dimensional case, suppose that the 
plane is inclined at {1 to the direction of the greatest principal 
stress, Fig. 58 (a), then putting (1=ln-O in § 3 (13), (14) gives 

O'=O'm-Tm cos 2{1, T= -Tm sin 2{1, (2) 
where O'm=1(0'1+0'2) and Tm=1(O'c0'2) (3) 
are, respectively, the mean normal stress and the maximum shear 
stress. 

Substituting (2) in (I) gives for the criterion of failure 
Tm=(O'm+So cot cfo) tan ~, (4) 

where tan ~= sin cfo cosec (2{1+cfo)· (5) 
Alternatively, using the values (3) of O'm and Tm, (4) may be 

written in the form 
O'J[sin (2{1+cfo)-sin cfo]-0'2[sin (2{1+cfo)+sin cfo]=280 cos cfo. (6) 

(I), (4) and (6) are the fundamental formulae and it should be 
understood that they apply both to failure in the plane as des­
cribed above, and, with different constants, to sliding in it after 
failure. This latter point will be discussed in detail later . 

It will be noted that the condition for failure can be repre­
sented at choice in terms of 0', T across the plane, as in (I); in 
terms of the mean normal stress and maximum shear stress, as 
in (4); or in terms of the principal stresses, as in (6). The relation­
ship between some of these can be made clear by an alternative 
treatment, based on the Mohr diagram, which will now be given. 

For any system of stresses, failure will take place in the plane 
when I T I and 0' are related by (I) which is the line PQR in 
Fig. 58 (b) inclined at cfo to OC and making an intercept 
OP~ -So cot cfo on the O'-axis. Now suppose the principal stresses 
are 0'1 and 0'2' corresponding to the Mohrcircle on AC as diameter. 
For any inclination {1 of the plane, the values of 0' and IT 1 across 
it will be the coordinates of the point D on the Mohr circle. If D 
lies in either of the arcs AQ or RC, these stresses will not cause 
failure in the plane, but if D lies in the arc Q8R they will. From 
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either of the triangles PQB or PRB it follows that at the limiting 
condition for failure 

(am+So cot cp) cosec (cp+2{J)=Tm cosec rp 
which is the condition (4). This relationship between am and Om 

is represented by the line PT in Fig. 58 (b), where BT is perpen­
dicular to OB. 

Finally, the envelope of all Mohr circles corresponding to 
failure in a plane at {J is PS whose slope is sin-1 (tan 0), but this 
envelope has little physical significance since failure takes place 
at points such as Q, R within it. 

a, ''-, 
00 • 

FIG. 59. (a) An assumed system of stresses and criterion for failure in 
a plane. (b) Directions (shaded) of the normal to the plane for 
which failure will not occur . .p is the angle between the planes 
EOx and zOx in Fig. 7 

(ii) Extension to Three Dimensions 
This theory may be extended to three dimensions with the aid of the 

Mohr representation of Fig. 8. The problem now is: given a set of 
principal stresses ah aI, as, it is required to find the direction cosines 
of the normals to planes in which slip cannot take place. Suppose that 
the Mohr circles for the stresses are as shown in Fig. 59 (a), and that 
PA is the line (I), then each point in this line gives values of the angles 
8 and '" defined in § 5 which lie on a curve separating regions in which 
slip in the plane can or cannot occur. For example, the point Q is 8=60°, 
<1>=55°, and failure cannot occur on QR for which 8=60°, 90°></»55°. 
For any system of stresses and assumed properties of the plane of weak­
ness, regions in which slip cannot occur can be plotted on a stereographic 
projection. The shaded area in Fig. 59 (b) shows this region for the system 
of Fig. 59 (a). 

If there are several planes of weakness, corresponding, for example, 
to different joint systems, one such curve can be drawn for each set. 
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FIG. 60. Failure and sliding in 
a triaxial test. Shear fail­
ure takes place at A, and 
BC corresponds to sliding 
along the sheared surface 

(iii) Sliding Friction 
If two surfaces are sliding over each 

other, Amonton's law of solid friction 
should hold, so that I T 1=1'-(7, where T 

and (7 are the shear stress and nonnal 
stress across the surface and I'- is now 
a coefficient of ordinary sliding friction. 
If sliding takes place between two rough 
rock surfaces such as joint or shear sur­
faces, it is reasonable to generalize this 
to the fonn (I) where the constant So 
allows for the roughness of the sliding 
surfaces. Thus the whole of the preced­
ing theory applies also to simple sliding 
across a plane surface . 

Effects of this sort appear in the shear 
failure of rocks in the triaxial test and 
allow values of So and the coefficient of 
friction to be measured. For example. 
Fig. 60 shows stress-difference plotted 
against displacement in a triaxial test. 
OA corresponds to loading the specimen 
which failed at A with considerable 
energy release, the stress-difference fall­
ing to B. BC is the stress-difference 
corresponding to sliding across this 
fracture plane. Values of I'- ranging from 
0·47 to 0·86 have been measured in this 
way. 1 

(iv) Solid Material with a Plane of Weakness: Fracture Cutting across 
the Plane 

Suppose that solid rock with shear strength So' and angle of internal 
friction ,p' is intersected by a single plane of weakness with shear strength 
So and angle of internal friction (or ordinary sliding friction) ,p. It may 
be expected that So' will be much larger than So, and ,p' probably slightly 
larger than ,p, so that if DE, Fig. 61, is the curve (I) for the solid material 
and PS is that for the plane of weakness, the relationship of the curves will 
be as shown in Fig. 61. Now suppose that (73 is held constant and (71 

increased. For lower values of (7" corresponding to the dotted circle AW, 
slip in the plane of weakness will be possible for some orientations of this 
plane but failure in the solid material is not possible. When (71 is so large 
that the Mohr circle for (71 and (73 touches DE at F, failure may take place 
in the plane of weakness as in Fig. 58 if 2{3 lies in the arc QFR: if 2{3 lies 
in the arcs AQ or RC, failure in the plane of weakness is not possible, but 
failure will take place through the solid material at the Coulomb-Navier 
angle of (17/ 4}-!,p' and this plane will intersect the plane of weakness. 

1 J. C. Jaeger, Geofis. pura e app/., 43 (1959), 148. 
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a 

FIG. 61. Failure through solid material across a plane of weakness 

(v) The Case of Rock with Random Fracturing in All Directions 
If the rock has fractures in all directions so that the weakest 

direction can be selected, this weakest direction will correspond 
to the case Q=R in Fig. 58 (b) so that {3=(n/4)-t,p. In this case (4) 
becomes 

"rm=So cos ,p+am sin,p, (7) 

or, in a general coordinate system, by § 3 (19) 

{(a,,-ay )2+4"r2:w }t=2So cos ,p+(a,,+ay ) sin,p. (8) 

Also (6) becomes 

where (10) 

Here we have regained, by a different method, the Coulomb­
Navier theory of § 21 and also (with Pl=a2 and P2=(1) the soil 
mechanics theory of § 23 (6). The formulae (7), (8), (9) are useful 
alternatives to § 21 (7). 

The position then is this: a 'solid' rock according to the theory 
of § 21 will select its own plane of fracture; a mass of rock with 
a single plane of weakness will fail along this plane of weakness 
if the principal stresses satisfy (6); a rock with many planes of 
weakness such as a shattered or brecciated rock will also select 
its plane of failure and behave according to the laws of soil 
mechanics. This provides the justification for treating many en­
gineering problems on rock mechanics which involve grossly 
jointed or shattered rock on the basis of the methods of soil 
mechanics. 
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Orowan has suggested that the ductile behaviour of marble 

at normal temperatures is due to slip of this sort over many 
fracture planes. For example curves for marble similar to Fig. 20 

suggest that an almost indefinite amount of slip can take place for 
G1=3,565, Ga=685 bars. Neglecting So, (9) gives the reasonable 
value CP=4Zo in this case. 

45. POROUS MEDIA 

An ideally porous material is regarded as being traversed by a system 
of minute, interconnected pores and as being homogeneous in the sense 
that the surface porosity e, defined as the ratio of the area of voids to 
total area for an arbitrary element of surface of the region, is inde­
pendent of the position of the surface. It follows that the volume porosity, 
the ratio of pore space to total volume for any element of volume, is also 
equal to e. It varies from 0'01 or 0'02 for 'solid' rocks to as much as 0'5 
for sand. The general theory has to cover all cases from sand, which is 
an aggregate of particles touching at a few points, to materials such as 
concrete and rocks, which may be regarded as solid material traversed 
by a network of fine capillaries or cracks. Since it is assumed that the 
pores are interconnected, it follows that the pressure p of pore-fluid in 
them varies continuously with P9sition. For simplicity, it will be assumed 
that the pore-fluid is incompressible and completely fills the pores. 

(i) The Equations of Equilibrium and Consolidation 
The components of stress are defined precisely as in § 3 for the system 

as a whole. The element of area IlA in Fig. I is assumed to be large 
enough to be intersected by a large number of pores and the force IlF 
across it is in fact compounded of the force across the solid part and a 
normal force ep IlA across the pores. Similarly the components of strain 
are defined for the whole medium as in § II by considering the distortion 
of surfaces in it. To complete the specification of the system, the pore­
pressure p at every point is needed, and also a quantity (J to specify 
the change in pore volume. 8 will be defined as the increment of pore 
volume per unit volume, by analogy with the dilatation ~ which is the 
fractional change in total volume, cf. § I I (17). 

Just as in § 13, linear stress-strain relations can be assumed connecting 
p and the six components of stress with (J and the six components of 
strain. These may be written 

0'",=2G'£",+A'~+A"8, Tyz=G'i'YZ, etc. 

p=k~+k'8, 

(I) 

(2) 
where G', A', A", k, k' are constants. In addition, it follows 1 from a 
relation of type § 16 (8) that A"=k. The physical significance of the 
constants in (I) and (2) has to be determined as in § 13 by consideration 
of simple stress-systems. For example, (A'-kA"jk') and G' are Lame's 

1 For the argument see R. V. Southwell, loco cit., p. 10. 
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parameters for the material at zero pore-pressure. A full discussion is 
given by Biot. 1 

The equations of equilibrium in terms of stresses, § 34 (1)-(3), hold 
as before. 

Finally, a relation specifying the movement of fluid through the pores 
is needed. This is provided by Darcy's law 

V",= -b op/'ox, V y= -b 'Op/'Oy, V.= -b 'Op/'Oz, (3) 
where b is a constant and V." V y, V. are the components of the velocity 
of the fluid. For incompressible fluid, the equation of continuity, obtained 
by equating the rate of flow of fluid into a small rectangular parallelepiped 
to the rate of increase of pore volume in that region, is 

~=_'OV,,_oVy_'OV'=b\72p (4) 
at ax 'Oy cz . 

These are the equations of the problem, and their solution has been 
discussed by Biot, loco cit. They are of the greatest importance, particu­
larly in connexion with the consolidation of soils. As a simple illustration 
the problem of one-dimensional consolidation along the z-axis will be 
considered. In this case, all quantities are independent of x and y so 
that (I) and (z) give 

a.=('\' +zG')~+kO, 
p=k~+k'O, 

(5) 
(6) 

using k='\" and ~=£.='Ow/az. The stress-equations of equilibrium re­
duce to oa./az=o so that a.=C, constant, and, from (5) and (6), 

[k'('\' +zG')_k2]O=('\' +zG')p-kC. (7) 
Finally, using (7) in (4) gives 

a2p I 'Op 
'Oz·=;; at,· (8) 

where c=b[k'('\'+zG')-k"J/('\'+zG'), (9) 
so that p, and hence also ~ and 0, satisfy the equation of diffusion. 

Considering, as a specific case, the consolidation of the region 
o<z<h under applied stress Po in the z-direction applied for times t>o, 
with no flow of pore-fluid at z=h and free flow at z=o, the boundary 
conditions derived from (3) are 

p=o, z=o, t>o, 
'Op/'Oz=o, z=h, t>o. 

(10) 
(II) 

The initial condition is that the material is undisturbed, so that 
0-0, o<z<h, for t<o. When t=o, a. is suddenly raised to Po and main­
tained constant so that 

a.=po, t>o.. • (IZ) 
Putting 0=0 and az=po in (5) and (6) gives for the initial value of p 

p=kpo/('\'+zG'), O<z<1I, t=o. . • (13) 

1 M. A. Biot, J. Appl. Phys., 1:1 (1941), 155; J. Appl. Mech., :13 (1956) 
91. See also K. von Terzaghi, loco cit. 
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The solution of (8) subject to the initial condition (13) and boundary 

conditions (10) and (II) is well known: it is l 

00 

=_ 4kpo .. '" __ I_e-(2n+l)''''ct/4h' sin (2n+I)1Tz. (14) 
P 1T(.\'+2C') ~ (2n+I) 2h 

n=O 
From this all other quantities, such as the settling of the surface z=o 

under the load, are readily calculated. 

(ii) Criteria for Failure for Materials with Pore-pressure 
This is a matter of considerable geological importance. At depth 

z below the Earth's surface in material of density p the vertical stress is 
pgz and the pressure p of a column of liquid of density p' and height z 
would be p'gz. Many instances have been encountered in which the fluid 
pressure is greater than this, and in some cases it has been observed to 
be as large as the over-burden pressure pgz, cf. Hubbert and Rubey, 
lac. cit. Another case in which pore-pressure is of geological importance 
is that in which the pores are filled with volatiles from igneous intrusions. 

The criterion for failure of material containing pore-water under 
pressure may be considered in the following way.2 For a porous medium 
consisting of small spherical grains under no stress except hydrostatic 
pressure p, the stress in those grains would be just the hydrostatic 
pressure p. This suggests that, in a general porous medium, the pore­
pressure p produces an approximately hydrostatic pressure p in the sur­
rounding solid material, and that this base state of pressure will have no 
effect on its mechanical properties. This in turn suggests that failure 
will be determined by the effective stress Cll-P, Cl2-P, Cls-P, and, in 
particular, that the Coulomb-Navier criterion § 21 (I) is to be replaced by 

IT I=So+p.(CI-p). (IS) 
This may be regarded, like the Coulomb-Navier criterion itself, as 

an hypothesis to be tested experimentally, and, in general, the results of 
triaxial tests in which pore-water is supplied to the specimen under 
pressure are in agreement with it. 

Fig. 62 shows some results by Handin on sandstone reported by 
Hubbert (lac. cit.). They represent triaxial tests at pore-pressures of 
between zero and 2,000 bars, and when plotted as suggested by (IS) in 
terms of Cll-P and Cl2-P they are seen all to fit the same Mohr envelope 
extremely well, irrespective of the value of p. Other experiments on 
concrete also agree well with (IS). 

The way in which pore-pressure contributes to failure is shown in 
Fig. 62. Curve I, for P=Soo bars, corresponds to failure at Cll=S,400, 
Cl2=2,000 bars. For zero pore-pressure, the Mohr circle for these stresses 
would be the dotted circle II which lies well within the Mohr envelope 
so that failure could not occur. As the pore-pressure is increased, this 

1 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford, 
Ed. 2, 1959), § 3.4· 

• A full discussion is given by M. King Hubbert and W. W. Rubey, 
Bull. Ceo!. Soc. Amer., 70 (1959), IIS, 167; ibid., 71 (1960), 6II. 
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a-p: bars 

FIG. 62. Mohr envelope for failure of sandstone under triaxial conditions 
including pore-pressure p 

circle is moved to the left until it touches the Mohr envelope and failure 
takes place. 

For tensile failure, the assumption corresponding to (IS) is that, if 
To is the tensile strength for zero pore-pressure, the criterion for failure is 

a3-p+ To=o. . • (16) 
It will be shown in § 46 that this result follows from the Griffith theory. 

46. FURTHER DISCUSSION OF CRITERIA FOR FAILURE 

(I) The Griffith Criterion 
A brief discussion of the Griffith criterion has already been given in 

§ 24. In view of its increasing importance and the fact that the basic 
theory is given in § 51, some further discussion is given here. There are 
two aspects of the theory: (i) the energetics of the situation and the condi­
tion that the crack will propagate, and (ii) the detailed study of stresses 
around the crack leading to the criterion § 24 (4), (5). It is the latter ques­
tion which will be studied here. 

Using the elliptic coordinates and notation of § 5 I (23), suppose the 
crack to be the ellipse ~=~o, where ~o is small, and that the principal 
stresses at infinity are a1 and a., inclined, respectively, at tn+fl and fl 
to the major axis. The tangential stress a'l in the surface of the ellipse is by 
§ 51 (28) 

(U1+a.) sinh 2~o+(a1-a.)[e2<. cos 2(fl-"I)-cos 2fl] 
a'l= cosh 2~o- cos 2"1 

(I) 

To find the positions of the extreme values of a'l in the surface we 
differentiate with respect to "I. Since ~o is small, it is found that maxima 
or minima of a'l occur at "I and n+ "I, where "I is small and to the first 
order in ~o is given by 
"1= -~O[a1 cos! fl+a. sin" fl±(u1' cost fl+u.1 sinS fl)i] 

[(U1-a.) sin fl cos fl] -1, (2) 
provided ad'a •. The extreme values a. of a'l at these points are found 
to be 

~Oa.=a1 cos' fl+a. sin" fl±(a12 cos' fl+a. 8 sin 2 fl)i. (3) 
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Since (ai' cos· p+a,s sins p)t>al cos' p+a. sin' P, choosing the negative 
sign gives a tensile value of a •. 

It is now desired to study the variation of a. with P and to find its 
maximum value. From (3) 

dO'. { a I2-a.2 } • ~Od'R = 20'2-20'1+(. • P •.• R)' sm fJ cos fJ, 
I' 0'1 cos +0'. sm 1" 

and is zero if either fJ=o, fJ=I1r, or 
cos 2fJ= -l{a1-a.)/(a1+a.). 

The inclined position (5) only exists if 1 cos 2fJ 1<1, or 
0'1+30'.>0, • 

and the corresponding value of a. is 
(ai-a.)· 

Ue= -4(~~+a2)tO. 

(5) 

(6) 

For the inclined positions, it follows from (5) that as a ....... 0'1> fJ ...... 4So. 
If 0'.=0, fJ=600, and the plane of the most dangerous crack is inclined 
at 30° to the direction of the compression 0'1' As a ....... -at/3, fJ ...... 90., 
and the plane of the most dangerous crack becomes perpendicular to the 
tensile direction. 

If a.<-at/3, the inequality (6) is not satisfied and there is no inclined 
solution of (4). The maximum value of a. occurs when fJ=900. In this 
case the maximum tangential stress occurs when 7]=0 and by (I) it is 

(0'1+0'2) sinh 2~O-(al-0'.)(eZ;'-I) 20's 
O"=--~--cosh Zg;::"I - - =To' (8) 

since ~o is small. If To is the tensile strength, so that 0'.= -To in (8), the 
maximum stress in the crack at failure is in this case 

0',= -2To/~o •• 
If it is assumed that under all conditions failure occurs when the 

maximum tangential tension in the most dangerous crack reaches this 
value, O',~o may be eliminated between (7) and (9), and the criterion for 
failure is 

(0'1-0'.)2_8To(0'1+a.)=0, if 0'1+30'.>0, . (10) 
0'.+ To =0, if 0'1+30'.<0. • (II) 

This is the result quoted in § 24 and represented in Fig. 30, with the 
change that in that section stresses were taken positive when tensile. 

Introducing am=l{al+a.), 1'm=I(O'l-O'.)' the am, Tm curve for failure-is 

Tm 2=4ToO'm, ~f 20'm>Tm '} • (12) 
Tm=O'm+To, If 2am<Tm. 

This consists of the line AB of slope 45° for - To<O'm<To, and portion 
Be of a parabola for O'm>To, Fig. 63. The Mohr circles for all points 
of the line AB touch at the point A. The Mohr envelope for points on 
the parabola is the envelope of the circles 

!(O'm)=T2+(0'-O'm)S-4am To=o, . (13) 
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and so is obtained by eliminating Um between (13) and 'Of/'Oum=o, or 
u-um+zTo=o. 

Thus the equation of the Mohr envelope is 
T2=4 T o(u+To), 

which is a parabola AD passing through the point A, Fig. 63. 

A~--~----~--------~---------

FIG. 63. The Griffith criterion. ABC is the Um, Tm curve for failure and 
APD its Mohr envelope. APQ is the modified Mohr envelope for 
compressional conditions 

It is easy to show that the direction of fracture derived from this Mohr 
envelope is also the direction of the major axis of the crack in which 
fracture occurs. This cannot be taken as an argument for propagation 
of the crack in this direction since the maximum tensile stress in the 
crack is not in general at the ends of the crack. 

A parabolic form of the Mohr envelope has been advocated by Leon 
(cf. Nadai, loco cit.). It has the advantage of allowing continuous variation 
of the directions of fracture between the 'tensile' and shear directions 
which is consistent with some field observations. l The parabolic form is 
also in many cases a nearer representation of the actual Mohr envelope 
for high Um, cf. Fig. 57 (b). Finally, it is shown in § 48 that the parabolic 
form has some theoretical status as being derived from the simple yield 
condition § 48 (9). 

(ii) The Case of Fluid Pressure in a Griffith Crack 
Suppose that, in addition to the external stresses Ull U2 there is an 

internal fluid pressure p in the crack. The solution § SO (13) for this 
case has to be added to (1) which is replaced by 

(u 1+U2-ZP) sinh 2~O+(Ul-u2)[e2<. cos 2(f3-"1)- cos 2,8] (15) 
~~+ . cosh z~o- cos 2"1 

1 W. R. Muehlberger, J. Geol., 69 (1961), 211 
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The essential change is that a1 and al are replaced by a1-p and al-p, 
and most of the previous work can be taken over immediately. In particu­
lar, (6) and (7) are replaced by 

(a1- a .)1 . 6) 
a.=p- ( )~' If a1+30'.>4P. • (I 40'1+0'1-2P 0 

Combining this with (9) gives 
(O'l-O'I)I_S To( 0'1 +0'2-2p)-4P~0(0'1 +O'c2p)=0. 

Since ~o is small, the last term can be neglected and the criterion for 
failure becomes 

(0'1-0'.)S-STo(0'1+O's-2p)=0, 0'1+30's>4P, (17) 

az-p+To=o, a1+30'.<4P. (IS) 
That is, the effect of pore-pressure on the criterion for failure is 

equivalent to reducing all principal stresses by p. 

(iii) The Griffith Criterion under Compressive Conditions 
Brace,1 McClintock and Walsh have suggested that under compres­

sive conditions the surfaces of Griffith cracks should be forced together 
and that friction between these surfaces should be taken into account. If 
a. is the stress required to close the crack and p. the coefficient of friction 
across it, the stress-strain relation is found to be 

a1[(I +p.2)t-p.]-a.[(I +p.I)t+P.]=4To(I +0'./To)t-2P.0'0, • (19) 
which is a linear relationship of form § 44 (7). For the case ao=o it 
reduces to § 44 (7) with So=2To, and its Mohr envelope for a>o will be 
the straight line PQ of slope p., Fig. 63, which joins the Griffith parabola 
at P. 

(iv) Anisotropic Materials 
Since many rocks are highly anisotropic it is desirable to have some 

simple criterion for failure which takes this into account. A simple 
generalization of the Coulomb-Navier theory can be made if it is assumed 
that the shear strength of the rock in a plane, instead of being constant, 
contains a term in cos 28 where 8 specifies the direction of the plane. 
Thus, with axes as in Fig. sS (a), suppose the shear strength of the rock 
in a plane inclined at fJ to the greatest principal stress is 

S1-S. cos 2 (w-fJ), • (20) 
gO that it has a minimum value of Sl-SI in a plane inclined at w to the 
greatest principal stress and a maximum S1+SI in the perpendicular 
direction. Replacing So by (20) in § 44 (I) and using § 44 (2), the condition 
for failure in a plane inclined at fJ beComes 

'rm sin (2fJ+</»+S. cos 2(W-fJ) cos </>=S1 cos q,+am sin </>. (21) 
For fixed 'rm, the left-hand side of (21) has a maximum when 

'Tm+S. sin 2W 
tan 2fJ • (22) 

'rm tan </>+S. cos 2W' 

1 W. F. Brace, J. Geophys. Res., 65 (1960), 3477. 
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The value of this maximum is 

[(-Tm+Sz sin :ZW)z+(Tm tan r/>+S! cos :zw)!]t cos r/>,. 
and at failure this must be equal to S1 cos r/>+um sin r/>. This leads to 
the criterion 

(Um+S1 cot r/»2-(Tm+b)2 cosec! r/>=S2! cotS r/> cos! (:zw+r/», • (:Z4) 

where b=Sz sin (:zw+r/» cos r/>. • (:Z5) 

The curve (24) is an hyperbola in the (um, Tm) plane with centre at 
(-S1 cot r/>, -b) and asymptotes inclined to the urn-axis at tan-1 (sin r/». 

To determine the directions of failure for any system of stresses it is 
necessary to substitute Tm from (24) into (22). When this is done, it is 
found that, instead of the two possible directions of failure on the 
Coulomb-Navier theory, there is only one, which lies between the plane 
of minimum shear strength and the nearest to it of the two Coulomb­
Navier directions. 

The criterion (24) has been found to be in reasonable agreement with 
laboratory experiments. 1 

47. STRESSES AND FAULTING IN THE CRUST 

(i) The Assumption of No Horizontal Displacement 
I t was shown in § 34 that, on the assumption that there is no 

horizontal displacement, the principal stresses at depth z below 
the surface are 

a.=pgz, a",=a'll=(v/I-v)az , (I) 

and these values, which have a simple mathematical status, are 
sometimes regarded as the normal state of stress. An additional 
horizontal tectonic stress c'" along the x-axis may be taken into 
account2 approximately by superposing on (I) the stress-state 
§ 14 (10), a",=c"" e,,=o, a.=o, for which a"=vc,,, so that the combined 
stresses are 

a",=[v I( I -v)]pgz+c"" a'll=[v I( I -v)]pgz+vc"" a.=pgz.. (2) 

Certain deductions can be drawn from this. For example, for 
transcurrent faulting, it is necessary that a.,>az>all and this leads 
to limits for Cx, namely 

V(I-2v)a.<v(I-V)Cx«1-2v)a, , (3) 

1 F. A. Donath, Bull. Geol. Soc. Amer., 73 (1961), 985; J. C. Jaeger, 
Geol. Mag., 97 (1960), 65. 

IN. J. Price, Geol. Mag., 96 (1959), 149. 
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and using this condition it follows that 

(]:r:/(]v«I-V)/V. . (4) 

Price (loc. cit.) has carried this hypothesis further by assuming 
that if a rock mass is uplifted by an amount u, VeO during this 
uplift, so that by § 14 (IS) there is a tangential strain eo=u/R, 
where R is the Earth's radius. This gives rise to a horizontal ten­
sion -Eu/R which may be added to (]:r: and (]v in (2). The effect 
of this is to make the horizontal stresses tensile at some levels, 
and provides a possible explanation of some types of jointing. 

(ii) The Hydrostatic Hypothesis and the Experimental Results 
The validity of the assumption that all horizontal displacements 

are zero which was made in (i) is open to question. An alternative 
assumption, known as Heim's rule (cf. Talobre, loco cit.), is that 
the stresses at any depth will tend to become hydrostatic due to 
the action of creep over long periods of time so that at depth z 

(]:r:=(]v=(].""pgz. • (S) 
While this hypothesis has no particular justification it is the 

simplest possible and has the advantage that calculations of 
stresses in underground excavations based on it are especially 
simple. Anderson, loco cit., regards it as a standard reference 
state and speaks of increase or relief of pressure relative to it. 

A few experimental measurements of underground stresses 
have been made from engineering works at relatively shallow 
depths. Some of these results are shown by Talobre (loc. cit.), 
p. S6. In general, such measurements yield values of the horizontal 
stresses which are of the same size as, and occasionally greater 
than the vertical stresses and so they may be regarded as giving 
some support for the rule (S). However, it must be emphasized 
that such measurements are usually made in irregular terrain, 
which is often tectonically active. 

The assumption that one principal stress is vertical also needs 
examination. Near a horizontal free surface this must be the case, 
but any horizontal forces would cause inclination of the principal 
stresses such as those shown in Fig. 66. When stresses are 
measured in engineering structures underground, the. principal 
stresses usually show considerable inclination, but such measure­
ments are not typical, usually being in irregular terrain. 
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(iii) Deductions from the Coulomb-Navier-Mohr Theory 
According to this theory in three dimensions the criterion of 

failure § 44 (9) is 
al=280 tan (X+aa tan2(X, (6) 

where (X=(n/4)+~"', and failure takes place in a plane through the 
a z-axis at an angle (X to the a a-direction. 

Laboratory experiments on rocks, referred to in § 43, give values 
of 8 0 ranging, usually, between 100 and 300 bars, and values of 
cP between 30° and 55°, corresponding to (X between 60° and 72°. 

Alternatively, the theory of shear faulting 1 given in § 21 may 
be regarded as providing a value of (X and hence '" for rock on 
a large scale. For example 1,650 normal faults in the Netherlands 
coal measures are reported by Hubbert2 as having an average dip 
of 63°, that is (X=63°, "'=36°, while 450 thrust faults have an 
average dip of 22°, cotresponding to (X=68° or CP=46°. For trans­
current faults "'=30° is commonly measured, and taken as a 
reasonable average value.3 These values, which are typical, are 
well within the range quoted above for laboratory experiments. 

(iv) The Use of the Mohr Diagrams in Discussing Faulting 
A very instructive treatment of shear faulting on the basis of 

the Mohr representation has been given by Hubbert, loco cit. 
As a numerical illustration, suppose 80=150 bars and "'=40°, 

the Mohr envelope for failure being PQ in Fig. 64. In this case 
the criterion (6) for failure in terms of principal stresses becomes 

0'1=640+4.003. • (7) 
For normal faulting to occur at depth z, O'I=pgz is fixed and 

a3 has to be reduced until the Mohr circle on 0'1 and 0'3 touches 
PQ, Fig. 64 (a). In the present case 0'3 would have to fall to 
(0'1-640)/4.6. If O'I=pgz is less than the strength of the rock in 
unconfined compression (for which the Mohr circle passes 
through the origin) 0'3 must be tensile. Because of the uncertainty 

1 The nomenclature of faults is very varied. Transcurrent faults are 
frequently called wrench faults or strike-slip faults. The descriptive 
terms strike-slip, dip-slip and oblique-slip define themselves. The terms 
'normal' and 'reverse' are also used to denote downward and upward 
relative motion of the hanging wall, respectively. 

• M. King Hubbert, Bull. Geol. Soc. Amer., ~ (1951), 355. 
• J. D. Moody and M. J. Hill, Bull. Geol. Soc. Amer., 67 (1956), 1207: 

A. Williams, Trans. Roy. Soc. Edin., 6a (1959), 629. 
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of the numerical values and their variation with depth, much 
stress cannot be placed on quantitative determinations, but the 
results strongly suggest that horizontal stresses will be small in 
regions in which normal faulting occurs. 

Q 

pgz p 

Q 

(c) 

109: 
(T 

(b) 

A 

FIG. 64. Positions of the Mohr circles for faulting at depth z. (a) Normal 
faulting. (b) Thrust faulting. (c) Transcurrent faulting 

For thrust faulting, Fig. 64 (b), (J3=pgz is fixed and failure 
takes place when the horizontal stress (Jl has built up to a value 
such that the circle for (J3 and (Jl touches PQ. 

For transcurrent faulting, pgz is to be the intermediate principal 
stress (J2' and the other principal stresses must lie between the 
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extreme values A and B in Fig. 64 (c). These correspond to the 
cases; (i), 0"2=0"3' 0"1=640+4.60"2, for A, and (ii) 0"1=0"2' 
0"3=(0"2-640)/4'6, for B. In all cases 0"1>0"3 tan2 1X and if both this 
criterion and (4) are to be satisfied only restricted ranges of v 
and IX are possible. This may account for the comparative rarity 
of transcurrent faults, or it may imply that the assumptions 
leading to (4) are untenable. 

Hubbert, loco cit. has shown that the phenomena of normal 
and thrust faulting can be elegantly illustrated by experiments on 
sand for which the theoretical predictions are verified with an 
angle of friction of about 30°, cf. Fig. 66. 

(v) Oblique Slip and Tectonic Regimes 
In § 4 and elsewhere, only the magnitude 7' of the shear stress across a 

general plane has been discussed. In connexion with oblique slip faulting 

(b) 

FIG. 65. Determination of the direction of the shear stress in a plane 
1, m, n. (a) Coordinate system. (b) Mohr representation 

and some problems in rock mechanics it is necessary also to know the 
direction of the shear stress. This may be found by a simple extension 1 

of the graphical or analytical methods of §§ 4, 5. 
Let the normal to the plane have direction cosines (I, m, n) specified 

in terms of 8 and rp as in Fig. 7 (b) and Fig. 65 (a) relative to principal 

1 C. A. Zizicas, J. Appl. Mech., 22 (1955), 273: M. H. A. Bott, Geol. 
Mag., 96 (1959), 109. Note that in the present discussion rp is the angle 
defined in Fig. 7 (b) and not the angle of friction. 
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stresses a"" a", a •• Suppose a right-handed system of axes is defined by 
(I, m, n), (I', m', n'), (I", m", n") where (I', m' n') is in the plane EOH, 
Fig. 65 (a). Then, if A is the longitude of OH, 

I=sin 4> cos A, m=sin ", sin A, n=cos 4>, } 
l' =cos 4> cos A, m' -cos'" sin A, ,,' = -sin 4>, 

1"= -sin A, m"==cos A, n"=o. 
(8) 

Using these values in § 4 (7) the components T' and T" of the shear 
stress in the directions I', m', n' and I", m", n" are found to be 

T'= sin 4> cos 4>[(a", cos l A+a" sin l A)-a.] • (9) 
=n{ml(a,,-az)-(I-nl)(a.-az)}(I-n2)-I, . (10) 

T"-sin 4> sin A cos A(a,,-az)=ml(a,,-az)(I-n2)-I. . (II) 
With the present convention of sign, T' and T" will be positive in the 
directions EM and EN, respectively, Fig. 65 (a). The angle w which the 
resultant shear stress T makes with EN is given by 

tan w=- ml -(I-n2)-- • n{ az-az} 
1m az-a" 

• (12) 

If a"" a", at, are taken to be principal stresses in the crust, az being 
supposed to be vertical, the shear stress acting in any plane can be 
classified according to the angle w. This makes possible a much more 
exact specification of the state of stress than the crude division into three 
cases given in Fig. 26. 

Considering only positive values of I, m, n, it follows from (II) that 
T">o if a/l>az and the system is called 'dextral', while if aU<az, T"<O 
and the system is called 'sinistral'. From (12): if a,,>aZ>az, tan-1 (nm/I) 
<w<goo, and the system is called 'dextral thrust'; if a,,>at>az, 
tan-1 (nm/I»w>- tan-1 (In/m), and the system is 'dextral wrench'; if 
at>a/l>az, -tan -1 (In/m)>w>-goo, and the system is 'dextral gravity'. 
Similarly there are three sinistral cases, and, allowing for the six cases 
in which two stresses are equal, Bott (loc. cit.) distinguishes twelve 
'tectonic regimes'. 

T' can also be found from the Mohr diagram of Fig. 7 (a) which is 
reproduced dotted in Fig. 65 (b). The new result needed, which follows 
from § 5 (4), (6), is that for planes whose normals have the same longi­
tude A, so that II=(I-nl) cos l A, a and T lie on the circle REH, Fig. 65 (b), 
where the angle HAP is 2A. Any two of 8, 4>, A determine the third, 
and OL and LE are the normal and shear stresses across the plane so 
specified. Also OK is the normal stress across the plane whose normal 
is OH, Fig. 65 (a). Thus the circle on RK as diameter is the Mohr 
circle for the plane OEH and the shear stress T' in this plane correspond­
ing to the normal stress OL will be SL. 

(vi) Stress and Fracture Patterns in the Crust 
Hitherto only the simplest systems of stress, and directions 

of fracture at a point, have been considered. It is obviously neces­
sary next to consider typical two-dimensional situations likely to 
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arise in the crust. A number of these have been studied in detail 
by Hafner 1 and Sandford.2 

As an example, consider the two-dimensional system of stresses 
a",=pgx, alJ=p-ky+pgx, -r"'II=kx,. • (13) 

acting on the block OABC of Fig. 66. Here the x-axis is vertically 
downwards and the y-axis is in the Earth's surface. The stresses 
(13) satisfy the equations of equilibrium §'34 (1), (2), with the 
modification that compressive stresses are now reckoned positive. 
They may be regarded as the stresses in a crustal block OABC of 
depth d acted on by horizontal pressure p from an active area to 

" ,/ 
.. I' I .. • ... ··it' .......... ,/ 

..... . /·.~~~j:~-~~~Z~~:/~···:.;/· ... _//·~.~~/ .. :</ ~ 
I TC T T 

FIG. 66. Stress-trajectories (dotted) in a rectangle subjected to the stresses 
shown. The full lines intersect the stress-trajectories at 30° 

the left. This is resisted by the shear stress kd over the surface 
BC. The forces on the block are shown in Fig. 66, and, of course, 
keep it in static equilibrium. The length I of the block is chosen 
to be p/k so that the excess horizontal pressure has disappeared 
at the face AB. By § 3 (11), the directions of the principal axes at 
x, yare given by 

2kx 2X 
tan 2()=----. . (14) 

ky-p y-l 
When X=O, ()=o, and the principal axes are horizontal and ver­
tical. At depth, they are rotated by a variable amount in a clock­
wise direction. The stress-trajectories (curves whose directions at 
any point are the directions of the principal axes there, cf. § 49) 
are shown dotted in Fig. 66. 

If the stresses at any point are sufficient to cause failure, this 

1 Bull. Geol. Soc. Amer., 62 (1951), 373. I Ibid., 70 (1959), 19. 
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will occur in a direction at (37:/4)-¥P to the greatest principal 
stress and shear failure might be expected to take place along a 
family of curves which cut the stress-trajectories at this angle. 
Such a family, drawn for q,=30o, is shown by the full lines in 
Fig. 66. As remarked by Hubbert, loe. cit., such curves show a 
striking resemblance both to the pattern of failure of sand in 
compression in sand-box experiments and also to the phenomena 
of thrust faulting on a geological scale. However, this simple 
argument must not be pushed too far, since in practice when 
failure takes place at a point there will be a redistribution of the 
stress-system before further fracture occurs and it is this redis­
tributed stress-system which determines the direction of the next 
failure. A complete theory must begin with a criterion of failure 
and equation of flow such as those of § 48 and use an extension 
of the methods developed for the perfectly plastic solid.1 

(vii) Dyke Formation 
The association of vertical dykes with normal faulting is well 

known, so it may be assumed that they have usually been formed 
under conditions in which a horizontal principal stress GA is 
considerably less than the vertical one pgz, cf. (iv). 

It is generally supposed that dykes are opened by the pressure 
P of the magma, so the theory of the elliptical crack with internal 
pressures can be applied immediately. The criterion for failure 
§ 46 (18) becomes 

GA-p+To=o, • (IS) 
provided 3GA+pgZ<4P, which should be satisfied since p may be 
expected to be of the same order as pgz, and (fA is relatively small. 
As shown in § 46 (ii) the crack will open in the direction perpen­
dicular to the least principal stress, that is, in a vertical plane. 

For sill formation, it is necessary to have a horizontal crack 
propagating. On the present theory this implies that the horizontal 
stress G1i>pgz and the condition for failure becomes 

pgz-p+To=o, provided 3Pgh+(fA<4P.. . (16) 
The mechanics of the feeding of a sill by a dyke presumably is 

a complicated process connected with the raising of.the horizontal 
stress by the intrusion. 

1 Cf. H. Ode, Geol. Soc. Amer. Memoir 79 (1960), 293. 
IE. M. Anderson, Proc. Roy. Soc. Edin., 58 (1938), 242. 
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The effect of pressure of pore-water, as well as volatiles from the 
intrusion, in the country rock may be important and can be 
allowed for as in § 45. 

Other cases of the formation of dykes are attributed to tensile 
failures caused by magma pressure. Dykes are sometimes observed 
running radially from a vertical neck. In this case the theory is 
that of the opening of cracks radially from a circular cylinder 
with internal pressure which is studied in § 50 in connexion with 
hydraulic fracturing. The theory of dykes running from a vertical 
neck in the presence of a parallel impervious barrier is discussed 
by Ode.1 Pressure of magma (or uplift due to a low magma 
density) in a magma chamber of approximately paraboloidal 
shape with its roof some miles below the surface will give rise 
to a system of principal stresses of which the least lie in approxi­
mately conical surfaces intersecting the paraboloid. Tensile failure 
across these is believed to give rise to cone sheets.2 

(viii) Overthrust Faulting 

If a block of material OABC is to be moved across a horizontal 
fault surface BC by stress 
applied over a vertical face 
ac, this stress at any depth 
is limited by the strength 
of the rock, and hence the 
length I of the block which 
can be so moved is limited 

-o.O ... ___ ---''--___ ...,A __ •• y 

- d 

---+ C B 

by the strength of its mat- " 
erial. Hubbert and Rubey3 6 
have shown that the great FIG. 7 
lengths which appear to have been moved can be accounted for 
if due allowance is made for the effects of fluid pressure in the 
pores. 

Consider the sliding of the block OABC, of length I and 
thickness d, Fig. 67, over the horizontal surface BC, there being 
no stress across AB. It is assumed that the vertical stress at depth 
x is a.,=pgx and that the pore-pressure p,..J..pgx where J.. is a 

1 H. Ode, Bull. Geol. Soc. Amer., 68 (1957), 567. 
IE. M. Anderson, Proc. Roy. Soc. Edin., 56 (1936), 128. 
a M. King Hubbert and W. W. Rubey, Bull. Geol. Soc. Amer., 70 

(1959), II5. 167· 
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constant. The maximum stress (11/ which can be applied at depth x 
in the surface OC is, using the criterion § 44 (9) and allowing for 
pore-pressure as in § 45, 

(11/-ApgX=(I-A)pgx tan! CX+2So tan cx.. • (17) 
If the block is to slide along its base CB, the shear stress 

across this must be, by § 44 (I), again allowing for pore-pressure, 

T=To+pgd(I-A) tan q,', . (IS) 
where To is the shear strength (if any) in the plane BC, and 
tan q,' is the coefficient of sliding friction over it. For the block 
just to slide it is necessary that 

J:(11/ dx= J> dy, . . (19) 

and substituting (17) and (IS) in (19) gives for the length of the 
block 

1 pgd2[M(I-A) tan! cx]+¢So tan cx 
zTo+zpgd(I-A) tan q,' • . (20) 

Hubbert and Rubey show that for reasonable values of A the 
values of 1 are several times those for the case A=O. They also 
discuss the sliding of blocks down slopes, and show that the 
effect of pore-pressure is to decrease substantially the inclination 
of the limiting slopes down which sliding is just possible. 

4S. THE COULOMB-NAVIER THEORY IN TERMS OF INVARIANTS 

For a complete mathematical discussion of flow in a material obeying 
the Coulomb-Navier criterion, a development of the subject similar to 
that for the perfectly plastic solid is needed. Here only the beginnings of 
this theory will be given and it will be shown that, for the case of plane 
flow, the Coulomb-Navier theory can be expressed in tenns of the invari­
ants oft 27. 

It was shown in § 27 that any yield criterion should be expressible in 
terma of the invariants I of the stress or I of the stress-deviation, so that 
it may be written 

1(110 12, ••• ,11' I., ... )=0. (I) 

Von Mises and later Drucker and Prager1 have proposed a formulation 
of the relations connecting rate of strain with stress in which the yield 
function (I) is regarded as a 'plsstic potential' and rates of strain are 

1 D. C. Drucker and W .. Prager, Quart. Appl. Math., 10 (1952), 157. 
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obtained by differentiating it with respect to the appropriate stress, 
that is, 

. of 
£",=,,~, 

OU", 

. of 
ElI="~' 

UUg 

. of 
YZll="-~-' 

UTxy 
etc. (2) 

where " may be a function of position. This generalizes the assumption 
§ 29 (3), and reduces to it in the case f= J .-k previously considered. In 
other cases it has slightly different properties, and provides a more satis­
factory formulation mathematically. 

The yield function 

will now be considered, and will be shown to be equivalent to the 
Coulomb-Navier criterion for the case of plane flows. If the system is 
referred to principal axes, the yield surface (3) is a circular cone whose 
axis is equally inclined to the Ul> U., Us axes. In the case a=o, this becomes 
the cylinder of Fig. 34 (b). 

Using the values § 4 (18) and § 27 (21) for 11 and J. in (3), (2) gives 

£1="{a-H .-i~~:}='\{a-~J .-i(2UCU2-US)} (4) 

with similar equations for £, and is. 
In the case of plane flow in the Ul> u, plane, £s=o, so, by the equation 

for £a of type (4), 
6aJ .i=2Ua-U1-U., . 

Squaring (5) and subtracting the value § 27 (21) of I2J. gives 
J ,=!(U1-U.)'(1-3a')-1. 

Using (5) and (6) in (3), the yield condition becomes 
3a(U1+u.) k 

l(ucu.)= 2(1-3a2)i+(1-3a2)1' 

(5) 

(6) 

which is identical with the form § 44 (7) of the Coulomb-Navier criterion 
if 

''/' 3a (I -12a')i k sm r- cos r/>= --- S . 
-(1-3a2)1' 1-3a2 ' 0 (I-I2a')1 

(8) 

In the same way it may be shown that the yield criterion 
f(Il> J .)=J .-AIcB=o 

leads to the parabolic relation of Griffith type 
Tm2=3Aum+B+3A2/4. . (10) 

It follows from (2), and the form (7) of the yield condition, that the 
ratio of the principal strain rates is 

_~= I +s~n r/> =tan2 (~+p.). 
£1 I-sm r/> 4 2 

(II) 

Also, adding the three equations of type (4), 
£1+£,+£a=3'\a, . (12) 

so that there is a change of volume on straining. This is a well-known 
property of granular materials. 
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This change of volume implies that, if faulting is restricted to a thin 
shear zone with a discontinuity of velocity 8u along it, there must also 
be a discontinuity of velocity 8v normal to it. To- see this, suppose that 
the shear zone is of amall thickness t; then the strain rate normal to it will 
be i= -OO/t and the rate of shear across it will be y=8u/t. If a and T 

are the normal and shear stresses, the yield criterion can be written in 
the form § 44 (I) as/=T-a tan .p-80=0, and using (z) gives 

8v i al/aa -au =~= aI/aT = -tan .p, 
so that 8v=8u tan .p. . (13) 

It follows, for example, that rigid body sliding around a circular arc 
is not possible: the circle has to be replaced by an equiangular spiral 
with the direction of sliding at t1l'+.p to the radius vector. 

49. THE REPRESENTATION OF 
TWO-DIMENSIONAL STRESS FIELDS 

A complete specification of the field requires a knowledge of 
G1> G2 and the principal directions at all points and, clearly, 
would be very complicated. However, certain simple combinations 
of these quantities appear, either mathematically or experiment­
ally through photoelasticity, which give useful representations of 
some aspects of the situation. These are: 

(i) Isochromatics which are curves along which the principal 
stress-difference is constant. They are the most directly obtained, 
and the most commonly reproduced, photoelastic results. 

(ii) Isoclinics are curves on which the principal axes make a 
constant angle with a reference direction. They, also, are obtained 
immediately by photoelastic observations. 

(iii) Stress-trajectories or isostatics are an orthogonal system of 
curves whose directions at any point are the directions of the 
principal axes. They intersect a free boundary at right angles. 
They can be calculated from photoelastic results but are not 
obtained directly. 

(iv) Isopachs are curves of constant mean stress Gl+G2' The 
quantity G1+G2 satisfies Laplace's equation [cf. § 3S (8)] and may 
be found by a subsidiary photoelastic measurement (of the thick­
ness of the plate). It may be noted that Gl+Gll is readily deter­
mined at a free boundary since one principal stress vanishes at 
such a boundary and GI-Gll can be found photoelastically. 

(v) Slip lines, or lines of maximum shear stress, are an ortho-
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gonal family of curves which at all points bisect the angles 
between the directions of the principal stresses. 

(vi) Isobars are lines of constant principal stress: there will be 
one set for a 1 and another for a 2' 

Systems with complicated boundaries, such as underground 
excavations with irregular shapes, are commonly studied photo­
elastically; photographs of the isochromatics, together with cal­
culated stress-trajectories, give a very good indication of the 
stress-situation, and, in particular, show stress concentrations 
very clearly. Many calculated isochromatics and stress-trajectories 
for rectangular openings under various conditions are shown by 
Savin (loc. cit.). 

A 

Q 

(0) (b) 

FIG. 68 

Special Cases 
In a few simple cases the curves mentioned above have simple mathe­

matical fOIms so that the relationship between them can be clearly seen. 
As an example, the problem of stress p over a strip of width aa in the 
surface of the semi-infinite solid will be discussed. 

The principal stresses alJ a. have been found in § 36 (16), and it follows 
that 

al+a.=ap(81-8.)/1r, al-a.=(ap/1r) sin (81-8.),. (1) 
80 that both the isopachs al+aS=Const., and the isochromatics 
al-a2=Const., are circles through AB, cf. Fig. 68 (a). For example on 
the semi-circle 81-82=i1r, al+aS=p, al-al=zpi1r. To find the angle 8 
which the principal axes at P make with Ox, the values § 36 (14), (IS) of 
a:r;, a", Tz" are used in § 3 (II) which gives 

X(Y21- Yl 1) 
tanz8=(-+-)--Z ( ) 1=-tan(81+8z). (a) y a Yl - y-a Y. 

It follows that one principal axis PQ makes an angle U1r-8.-8J with 
Ox and thus bisects the angle APB Fig. 68 (b). Now it is a property of 
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the ellipse of foci A and B that the nonnal PN at P bisects the angle 
between the lines PA and PB joining P to the foci. It follows that the 
directions of the principal axes at any point are the tangent and nonnal 
to an ellipse of foci A and B, and thus that the stress-trajectories are a 
system of confocal ellipses and the orthogonal system of confocal hyper­
bolae. This system is shown in Fig. 69. 

FIG. 69. Stress-trajectories for unifonn loading over a strip AB in the 
surface of the semi-infinite solid 

For the isoclinics, in which one principal direction, say PQ, is inclined 
at a constant angle cx to Oy we have in Fig. 68 (b) 

81 +8.=2CX, 
or tan 81+ tan 8t =(I-tan 81 tan 8.) tan 2cx, 
or (y!-x'-a 2) tan 2CX=2XY, (3) 
which is an hyperbola through A and B with asymptotes inclined at 
-cx and !1T-CX to AB. 

Photoelastic Observations 1 

The way in which the isochromatics and isoclinics appear as photo­
elastic patterns may be seen by considering the simple case of plane 
polarization. Suppose a beam of plane-polarized light is incident nonnally 
on a sheet of material cut to the shape of the body to be studied and 
suitably stressed. Under the influence of stress the material becomes 
doubly refracting, and at each point there are two principal directions of 
vibration, coinciding with the directions of the principal stresses 01> 02, 

in which the indices of refraction are nl and n., where it is known 
experimentally that 

n1-n.=C(01-0.), 
where C is a constant of the material. 

1 For fuller accounts see E. G. Coker and L. N. G. Filon, Photo­
elasticity (Cambridge, Ed. 2, 1957); M. Hetenyi, Handbook of Experi­
mental Stress Analysis (Wiley, 1950); A. J. Durelli, E. A. Phillips and 
C. H. Tsao, Introduction to the Theoretical and Experimental Analysis 
of Stress and Strain (McGraw-Hili, 1958). 
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Now suppose that Ox and Oy are the directions of the principal axes 

at a point 0 of the sheet, and that a ray of monochromatic plane­
polarized light is incident normally on the sheet and that its vibration is 
OF=a sin wt in the plane OP inclined at IX to Ox, Fig. 70. This vibration 
will be resolved into components OG=a sin wt cos IX and OH=a sin wt 
sin IX along the principal directions Ox and Oy, and these will be propa­
gated with refractive indices n l and n2' If the emergent beam is observed 
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through an analyser which only accepts vibrations in the plane OA per­
pendicular to OP ('crossed Nicols') the vibration seen through this will be 
a cos IX sin w(t-nll/c) sin IX-a sin IX sin w(t-n21/c) cos IX 

=a sin 21X sin [wl(ncn2)/2c] sin [w(t-(nl+n2)1/2c)-!1T], (5) 
where I is the thickness of the plate and c is the speed of light in vacuo. 

If the material is unstressed, (5) is zero. For the stressed material, the 
amplitude of the vibration (5) is zero if either 

sin 201: =0, (6) 

or wl(nl-n 2)/c=2m1T, m=r, 2, • • • (7) 
The condition (6) implies that no light is transmitted when 01:=0 or 

OI:=!1T, that is, at all points at which the directions of the principal axes 
coincide with the directions OP and OA of the polarizer and analyser. 
Such points thus lie on a curve which is an isoclinic, and by rotating the 
polarizer (with the analyser remaining perpendicular to it) all isoclinics 
may be obtained. 

Using (4), the second condition (7) may be written in the form 
ul-u2=m>./IC, m=r, 2, ••• , (8) 

where >. is the wavelength of the light. Thus curves on which the stress 
difference is constant and an integral multiple of >'/IC will appear dark. 
By knowing this constant and counting the number of curves, the stress 
difference can be determined absolutely. If white light is used instead of 
monochromatic, different wavelengths will be extinguished in different 
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positions and the curves will exhibit a regular gradation of colours: hence 
the name isochromatics. 

With this simple arrangement both the isoclinics and the isochromatics 
appear at the same time. A simple modification, using circular polariza­
tion, allows the isochromatics to be observed alone. 

50. STRESSES AROUND OPENINGS 

In many practical problems, such as the design of support for 
underground excavations, it is necessary to estimate the stresses 
in the neighbourhood of the openings. Assuming that the prin­
cipal stresses in the absence of any excavation are known, cf. 
§ 47, it is desired to calculate the modification caused by the 
excavation, or conversely, if stresses are measured in the walls of 
an opening, to calculate the principal stresses in undisturbed rock. 

There are many exact solutions in the theory of elasticity which 
give a detailed knowledge of the stresses around openings of 
simple mathematical shapes, and, in particular, indicate the posi­
tion and amount of stress concentrations which might cause 
failure. A description of some of the most important of these is 
given in this section and the next. It should be pointed out that 
such solutions are of importance, not merely for sound rock, but 
to some extent also for unsound material, since, as remarked in 
§ 43, such material also shows a rough proportionality between 
stress and strain (with different constants). For extensively frac­
tured rock the Coulomb-Navier criterion for slip may be used 
in the form § 44 (9), and a few simple solutions for this law are 
also available. 

In this section some exact solutions for the stresses around 
cylindrical openings of various shapes will be given. The z-axis 
and one principal stress will be assumed to be along the axis of 
the cylinder. Two-dimensional theory in the xy-plane will be used 
which includes plane stress and strain, discussed in § 14, as well 
as the case in which the displacements u, !I are functions of x, y 
only while w is independent of x and y. In this case § 13 (10) can 
be written in the form 

&z .. ( I-"*)o-z-"( 1 +")CTv-E,,e., 
Eev-(I-"I)C1v-v(I+")CTz-E"e., (I) 

CT.-"(CTz+CTv)+Es.. (2) 
These replace § 14 (8), (5) and provide a reasonable approxima­

tion to conditions in underground tunnels. 
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(i) The Circular Hole of Radius a in an Infinite Elastic Region 
If the principal stresses at a great distance from the hole are 

PI in the direction of the x-axis and zero in the perpendicular 
direction, the stress-components in polar coordinates follow from 
§ 3S (IS) and the stress function § 36 (39). They are 

( a2) (3a4) (jo=iPI 1+ r2 -iPI I +7 cos z(), 

( zaz 3a4) "'o=_l_p 1+--- sinz() <r 2 I r2 y4 • (S) 

When r=a, (3) and (S) give (jr=O=TrO as they should, and as 
r-'»oo 

(jr-'»iPI( I+ cos z(), (jo-""ipb -cos z(), i"ro-""-iPI sin z(), 
so that, by § 3 (13), (14), the principal stresses at infinity are PI 
in the direction ()=o and zero in the direction ()=!n as required. 
The stress function § 36 (39) is in fact found by assuming the form 
§ 36 (36), (38) and determining the constants to satisfy the condi­
tions at r=a and r-'»oo. An alternative derivation of (3) to (S) will 
be given in § SI. 

lt follows from (3) to (S) that the disturbance of the stress field 
caused by the hole dies away like (a/r)z. The stress trajectories 
are shown in Fig. 7I. 

The tangential stress at the surface r=a is by (4) 
(jO=PI(I-Z cos z(), (6) 

and so varies from a tension -PI at ()=o to a compression 3PI 
at ()=tn. 

It follows from (3) and (4) that 
(jr+(jo=PI[I-z(az/rZ) cos z()], 

and thus that the mean stress is tensile within the region bounded 
by the curve rZ=zaz cos z(). 

If the principal stresses at a great distance from the hole are 
PI and Pz, results are obtained by superposing two solutions of 
types (3)-(S). If PZ=PI=P, we regain the result § 36 (9) for a uni­
form all-round stress at infinity. Subtracting this from P. gives 
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for the stresses due to an internal pressure P with no stress at 
infinity 

Gr=pa2/r2, G6=-pa2/r2• • (7) 

If the principal stresses at great distances are PI' Pa, and there 
is an internal pressure P in the hole, combining (4) and (7) gives 

G6=!(PI+P2)+=S<PI+P2-2P)-t(PCP2} 1+. cos 2(). (8) a2 
( 3a') 

2r r 
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o 

FIG. 7 I. Stress-trajectories near a circular hole in an infinite solid subjected 
to uniaxial stress 

At the surface r=a this becomes 

Ge=Pl+P2-P-2(PcP2} cos 2(), (9) 

which varies from 3P.-PcP at ()=o to 3PCP2-P at ()=!n. If 
PI>P. and the internal pressure P in the hole is increased, Ge 
becomes negative when P=3Pa-PI and a tension fracture in the 
plane ()=o becomes possible. This mechanism has been assumed 
by Hubbert and Willisl in a study of hydraulic fracturing of 
boreholes by internal pressure. 

1 M. King Hubbert and D. G. Willis, Trans Amer. [nst. Min. Met. 
and Petroleum Engrs, ZIO (1957), 153. In porous rocks the effect of the 
pressure of pore-water also has to be considered. cf. § 45. 
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(ii) Stress Concentrations around Openings of Various Shapes on 

Elastic Theory 
For the circular opening in a region with principal stresses 

Pl and 0 at infinity, the tangential stress has been shown in (6) 
to vary from 3Pl to -Pl around the periphery. Similar and more 
extreme variations occur in openings of variable curvature. 

For the elliptical hole 

x=a cos 1], y=b sin 1] . (10) 

in a medium in which the stress at great distances is Pl in a direc­
tion making an angle {J with the major axis, the tangential stress 
(1t in the surface is shown in § 51 (29) to be 

(1t jl[2ab+(a2-b2) cos 2{J-(a+b)2 cos 2(fJ-1])]. • (II) 
a2+b2-(aC b2) cos 21] 

If {J=90o, so that the stress Pl is perpendicular to the major 
axis, (1t varies from -PI at the ends of the minor axis to Pl(I+2a/b) 
at the ends of the major axis, so that if b/a is small the stresses 
there theoretically become very large. If {J=o, the stresses at the 

90' 
9 

0" 

45' 

FIG. 72. Tangential stress (1, as a function of polar angle (J around an 
elliptical hole a=2b in an infinite solid with uniaxial stress PI in 
a direction inclined at fJ to the major axis. The numbers on the 
curves are the values of fJ. The dotted curve shows (1t for the case 
of internal pressure PI in the hole with no stress at infinity 
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ends of the major and minor axes are -Pl and Pl(I+2b/a), re­
spectively. The variation of at with the polar angle () defined by 
tan ()=y/x=(b/a) tan'f) is shown in Fig. 72 for the case a=2b and 
various values of p. 

For the case of an all-round pressure Pl at infinity, the tan­
gential stress is obtained by adding the value of (II) with P=o 
to that with P=90o. This gives 

at=4Plab[a2+b2_(a2-b2) cos 2'f)]-1. . (12) 

The solution for an elliptic hole with internal pressure PI and 
no stress at infinity is obtained by subtracting a hydrostatic 
stress Pl at all points from (12) and changing the sign of Pl 
which gives 

at=Pl-4Plab[a2+b2_(a2-b2) cos 21}]-l. . (13) 

Holes of more complicated shapes can be treated by the 
methods of conformal representation sketched in § 51. In par-

CD 

'" 45' 

FIG. 73. Tangential stress CJt as a function of polar angle 8 in a nearly 
square hole (section shown inset) in an infinite solid with uniaxial 
stress PI at infinity in a direction inclined at fJ to a 'side'. The 
numbers on the curves are the values of fJ 
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ticular, SavinI develops transformations for regions whose shapes 
are approximately those of squares, rectangles and triangles with 
slightly rounded corners and gives formulae from which the 
stresses can be found. Fig. 73 shows the tangential stresses cal­
culated from § 51 (39) for a hole of shape § 51 (37) with pressure 
PI at infinity in a direction inclined at f3 to Ox. 

These calculations are of importance as indicating the varia­
tions of stress which may occur around openings: they are in 
good agreement with photoelastic measurements. For still more 
complicated shapes photoelastic measurements have to be used. 
It may be mentioned that when stresses are measured in under­
ground openings it is the tangential stresses a, which are 
measured, and a knowledge of the stress concentration around 
the opening is necessary before the stresses in undisturbed rock 
can be inferred. 

(iii) The Stresses around a Circular Opening in Fractured Material l 

The material around an opening may often be regarded as being in a 
fractured state in which the stresses at each point are related by the 
Coulomb-Navier relation, cf. § 44. 00, Or will be the principal stresses 
with 0o>or, so by § 44 (9) this condition becomes 

00=2Sot+ort2, • (14) 

where t=tan a:, a:=('IT/4)+ lcf>, • (IS) 
and cf> is the angle of friction and So the shear strength of the material in 
the joints. Suppose a is the radius of the opening, PI the internal pressure 
applied there to support it, and p the all-round pressure at infinity. The 
situation is supposed to be symmetrical, corresponding to a vertical shaft 
or borehole (in which case the radial pressure p is usually taken to be the 
load pressure) or a horizontal tunnel in which the effects of gravity are 
ignored. It is assumed that the material in the annulus a<r<R, where 

1 G. N. Savin, Stress Concentration around Holes (Pergamon Press 
1961). The case of aeolotropic media is discussed by Savin and also by 
A. E. Green, Proc. Roy. Soc., Ax84 (1945), 181, 231, 289, 301. These 
authors also discuss a number of problems relating to two circular 
openings. Bipolar coordinates are used for this latter problem by G. B. 
Jeffery, Phil. Trans. Roy. Soc., Az:u (1921), 265. The effects of gravity 
are discussed by R. D. Mindlin, Proc. Amer. Soc. Civil Engrs, 65 (1939), 
619, and Yi-Yuan Yu, J. Appl. Mech., x9 (1952),537. Hyperbolic boun­
daries are discussed by H. Neuber, Zeits. fur. appl. Math. Mech., x3 
(1933), 439· 

I The results given here are essentially solutions of well-known 
problems in soil mechanics, cf. K. von Terzaghi, lac. cit. j R. G. K. 
Morrison and D. F. Coates, Canad. Min. Met. Bull., 48 (1955), 701; 
Talobre, loco cit., Chap. 10. 
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R is as yet unknown, is of the type described by (14) and that for r>R 
the material is elastic. 

For a<r<R, the stress-equation § 35 (13), namely 

d(Jr + (Jr-(Je =0 
dr r ' 

still holds, and substituting (14) it becomes 

d(Jr dr 
(t"- 1)(Jr+2Sot T' 

the solution of which is 

2Sot C (1'-1) 
(Jr= I-t'+ r . 

The condition (Jr=P!, when r=a, gives C, so that 

(Jr= 2Sot +(pi- 2S0~) (!.)I'-l 
I-t' I-tO a 

and by (16) 

2Sot ( 2Sot) "(,)(1'-1) 
(Je= I-t'+ Pi- I-t' t a . 

For r>R, by § 36 (5), the solution has the form 

(Jr=p-A/r', (Je=p+A/,·. 

Equating the values (19), (20), (21) of (Jr and (J9 at r=R gives 

~={ 2[p(t 2 -1)+2Sot] }I/(t'-I) 
a [Pi(t 2-1)+2tSo](1+t 2) , 

A=R'[p(t 2- 1)+2tSo]/(t 2+ I), 

so that R is determined if p and Pi are known. 

· (16) 

· (18) 

· (20) 

(22) 

(23) 

As a simple illustration, suppose </>=300 so that oc=60° and t=,,/3, then 

R/a=[l(p+Sov3)/(Pi+Sov3)]l } 
(Jr=(Pi+Sov3)(r/a)"-S.v3, a<r<R, . (24) 

(Jr=P-I(p+Sov3)(R/r)', r>R. 

In the region a<r<R the directions of slip are inclined at oc to the 
direction of least compression which is radial. Thus the equations of 
the slip lines are 

dr 
,dO=±cot oc, . · (25) 

so that they are the equiangular spirals 

r=a exp (±8 cot oc). · (26) 

Perfectly Plastic Material 
This is the case </>=0, OC=1T/4, tan 0(=1, and (14) becomes Tresea's 
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criterion § 41 (I) for yielding in the perfectly plastic solid. (19) is replaced 
by 

aT=2S0 In (T /a)+p;, 
and (22) by 

(iv) The Effect of Gravity fOT a Horizontal Tunnel 
A very crude approximation for the effect of the weight of the fractured 

material above the roof of a tunnel may be obtained by adding a radial 
body force pg in the left-hand side of (16), cf. § 34 (I). The solution cor­
responding to (18) is then 

a,=Ar!'-l- zSot + pgr . 
t'- 1 t'-2 . (29) 

If the radius of the sound rock around the tunnel is b, and if it is 
assumed that the sound and unsound rock tend to separate at this level 
so that a,=o there, the value of A is determined by (29) and so 

This gives, approximately, the radial stress aT necessary to support an 
opening of radius T under these conditions. 

(v) The Alteration of Stresses Caused by Excavation. Rock Bolting 
Considering only the two-dimensional case, the stresses at depth h 

may be assumed to be known and a Mohr circle may be drawn for them. 
The circle AB, Fig. 74 (a), is drawn for vertical and horizontal stresses 
of pgh and pghl3, respectively. It may be assumed to lie well within the 
Mohr envelope for failure. 

Q 

p 

FIG. 74. The normal stress needed to prevent failure in an opening. 
(a) if the tangential stress in the wall is compressive, (b) if it is 
tensile 

Now suppose that a tunnel is excavated at this depth. The principal 
stresses in its walls will be zero normal to the surface and kpgh tangen­
tially, where k is a numerical factor which can be estimated from the 
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calculations of this section or detennined photoelastically. It varies 
around the cross-section and may be negative. For a circular tunnel 
with the external stresses mentioned above, its greatest value, by (6), is 
813. The corresponding Mohr circle is shown as OC in Fig. 74 (a). This 
may well cut the Mohr envelope PQ, so that failure would occur. This 
Mohr envelope is not necessarily that for sound rock, but more probably 
a lower one corresponding to the disturbed rock in the immediate 
neighbourhood of the excavation. If a normal stress 0'2 could be applied 
to the surface of the excavation so that the Mohr circle becomes DC, 
this failure would be inhibited. Assuming, for simplicity, that 0'1 does 
not affect the tangential stress, its value is found by § 44 (9) to be given by 

kpgh=O'I tan· at+2So tan at. • (31) 

A normal stress of this average magnitude can be applied by a regular 
pattern of long bolts, running normal to the surface of the excavation, 
securely anchored in the sound rock beyond the disturbed zone, and 
tightened. In the same way, the normal stress required in (19) and (30) 
can be supplied. 

A second case arises if k is negative, say k= -k', so that the Mohr 
circle after excavation is OF, Fig. 74 (b). A pattern of bolts arranged at an 
angle fJ to the surface will increase the tangential stress by p cos fJ and 
the normal stress by p sin fJ, where p is a constant. The principal stresses 
will then be -k' pgh+p cos fJ and p sin fJ, and § 44 (9) gives for equilibrium 

P sin fJ=(p cos fJ-k'pgh) tan· at+2So tan at, • (32) 

which detennines p, and from this the number and spacing of the bolts 
can be found. The new Mohr circle is GH. 

Finally, similar methods may be applied in other cases. For example, 
if an average stress P is applied by rock bolts normal to the plane of 
weakness in § 44 (i), the only change is to add a term P tan t/> in the 
right-hand side of § 44 (I) so that the whole of the theory of that section 
may be taken over with So replaced by So+P tan t/>. 

5 I. THE USE OF THE COMPLEX VARIABLE 

The use of the complex vllriable has very great advantages in 
the solution of plane problems on elasticity.l Firstly, it greatly 
simplifies the formulae for transformation of stress and strain; 
secondly, it extends the theory of the stress function; thirdly, it 
allows regions with complicated boundaries to be studied by the 
use of conformal representation. 

1 N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory 
of Elasticity (translated, J. M. Radok, Noordhoff, 1953); a good introduc­
tory account is given by I. S. Sokolnikoff,Mathematical Theory of Elasticity 
(McGraw-Hill, 1956), Chap. 5. 
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(i) Changes of Axes 

It follows from § 3 (5), (6), (7) that the formulae for change of 
axes can be put in the form 

U,,'+Uy'=U,,+UI/ , 

uy'-U;e+2i7:;e'y'=(UI/-U.,+2Z7:ZI/)e2i6• 

Subtracting (I) and (2) gives 

(1) 

(2) 

2( G".-i-r"'11 ) =G.,+GI/-(GI/-Go:+2i7:ZI/)e2i6 • (3) 
This may be used immediately to give the boundary conditions 

at an element of surface whose normal is inclined at () to the 
x-axis; if Nand T are the normal and shear stresses across this 
surface, the boundary condition is 

2(N-iT)=Go:+GI/-(UI/-Go:+2i7:O:II)e2t6. (4) 

(ii) General Solutions for the Stresses 
It will now be shown that the general solutions of the equations of 

equilibrium can be expressed in terms of analytic1 functions of the 
complex variable z=x+iy. 

Firstly, since by § 3S (8), 'V I(U",+UII)=O, it follows that u",+ulI is the 
real part of some function of the complex variable z which will be written I 
4.p'(z), the 'dash' denoting differentiation with respect to z, so that 

u,,+ul/=2[.p'(z)+,fo'(i)] =4l\[ .p'(z)], • (5) 

where the 'bar' denotes the conjugate complex' and R stands for 'the 
real part of'. 

Next, it follows from § 3S (6) and (7) that 

iJuz .iJulI iJ7"1I .iJ7"'1I --1- +--1-=0 iJx iJy iJy iJx • 
(6) 

1 Analytic functions have the following properties: (i) they are finite 
and single valued in any closed, simply connected region in the z-plane, 
(ii) they have differential coefficients of all orders, (iii) if u and v are 
the real and imaginary parts of an analytic function of z, they satisfy the 
Cauchy-Riemann equations iJu/iJx=iJv/iJy, iJu/iJy= -iJv/iJx, from which 
it follows that 'V 2U= 'V IV=O, (iv) they can be represented by series of 
powers of z. The theory of functions of a complex variable will not be 
needed here, but it is of great value in the higher developments of the 
subject. 

S This form is chosen since the integral of .p'(z) appears in some 
formulae such as (8) and (9). The factor 4 is introduced to conform with 
Savin (loc. cit.). 

S Note that if .p(z)=u(z)+iv(z) where u and v are real, ,fo(z)=u(z)-;v(z), 
.p(i)=u(i)+;v(.i) and the conjugate of .p(z) is ,fo(i)=u(i)-;v(i). 
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Using z=x+iy and z=x-iy as independent variables in place of x 

and y, this becomes 

o~{UIJ-U"+2iT"Y}= o~( u,,+Uy)=2q,"(Z), 

where (5) has been used. Integrating gives 

Uy-uz+2iTzlJ=2 {zq,"(z) + x"(z)}, • 

where x"(z) is an unknown function of z. 
(5) and (7) are the fundamental expressions for the stresses in terms 

of two analytic functions </>(z) and x(z). It may be verified that they 
correspond by § 35 (9) to the stress function 

! {zq,(z)+z.p(z) + X(z)+X(z)} , (8) 

which is the general solution of the biharmonic equation § 35 (I I). 
Displacements wiIl not be studied here, but it may be noted that they, 

also, can be represented conveniently in complex form and the result 
obtained by integrating the stress-strain relations for plane strain is 

2G(u+iv)=(3-4v)q,(Z)-z.p'(z)-X'(z). (9) 

(iii) The Infi7lite Region Bounded Internally by a Circle of Radius a 

The preceding theory applies immediately to the case of a circular 
hole in infinite material (or, with obvious modifications, to the region 
within a circle). Since the stresses must be finite at infinity, we assume 
for the functions q,'(z) and X"(z) which appear in (5) and (7) power 
series of the forms 

00 

</>'(z)= L cnz - n, 

11=0 

00 

X"(z)= .2 dnz-fl, • 

11=0 

where Cn and dn are complex constants. 

• (10) 

As z-+oo, </>'(z)-+co and X"(z)-+do so that these can be determined 
from the prescribed principal stresses at infinity. Suppose that these are 
PI and P2' the direction of PI being inclined at f3 to the x-axis, then (I), 
(2), (5), (7) and (10) give 

· (II) 

Considering next the boundary condition at the internal boundary 
r=a, the normal and tangential stresses Nand T can be represented in 
the most general case by the complex Fourier series 

00 

N-iT= L AneillO, • (12) 
ft=- 00 
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so that, using (12), (5) and (7) in (4), with the values (10) of If/(Z) and x"(z), 
gives on the circle z=aeiO 

00 00 00 00 L AneinO= L (n+I)c"a-ne- inO+ L cna-neinO- L d"a- ne(2-n)iO. (13) 

n=-C() n=O n=O 11=0 

Equating coefficients of einO for all n gives 

An=cna - n, n>3 

A2=C2a-'-dO; A , =c,a-' - d ,a-' ; Ao=co+co-d.a- t , • (14) 

A_n=(n+I)Cna-n-dnHa-n-., n>I 

As an example consider the case P2=0, {3=0 with no applied stress at the 
illterior of the hole so that all the An are zero. In this case (I I) and (14) 
give 

(co+CO)=!P" c.= -!a2pl' do= -!P" d 2=!a2pl , d,= -la'p" • (IS) 

and the other Cn and dn are zero with the exception of d ,=C, and d 3=za'c, 
which also are zero. 1 

Also, since Co only occurs in the stresses in the fonn co+co, it may be 
taken to be real. With these values, we get finally 

( Za2) ( a 2 3a') </>'(z)=lp, I-ZT' X"(z)= -lp, I-Zi+ z' . • (16) 

To find the stress components in polar coordinates we use (I) and (3) 
which give 

O"r+O"o=O"x+O"y=Z {</>'(z)+.p'(z)} , • • (17) 

O"o-O"r+zi7",o=( O"y-0" .. +zi7"xy)e2iO=z[z</>"(z)+ X"(z )]e2iO• • (18) 

Substituting the values (16) of </>'(z) and X"(z) in these gives O"r, 0"0 and 
7"'0 in the fonn § 50 (3)-(5). It appears that the present method is more 
direct and much more general. 

(iv) Conformal Representation: Curvilinear Coordinates 
Suppose the transfonnation z=w(n relates a point z=x+iy on the 

z-plane to a point ~=g+i7] on the ~-plane. The values of z for which 
g=go, Constant, and 7]=7]0' Constant, will be orthogonal curves in the 
z-plane specified by the curvilinear coordinates go, 7]0. At every point P 
in the z-plane, Fig. 75, there will be two directions at right angles, Pg, 
that of constant 7], and P7], that for constant g. These may be taken as 
new axes at P, and the inclination 1) of Pg to Ox is given by arg [w'(m 

1 By (9), the tenns C,Z-1 and d ,z-1 in </>'(z) and X"(z) contribute 
a tenn (3-4v)c, In z-d, In z= {(3-4v)c,-d,} In r+i {(3-4V)c,+d,} 11 to 
zG(u+iv). Now the displacements must remain unchanged when 11 is 
increased by 27T so (3-4v)C,+d, must be zero. This illustrates a point of 
some importance: it is possible to derive a great deal of infonnation by 
fairly elementary considerations involving stresses only, but to obtain 
an unambiguous solution it is often necessary to refer to the displacements. 
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since dx+idy=w'mde for d'l)=o. This may be written more conveniently 
in the form 

With this value of 8, the stress-components ae, a'l, T<'l relative to the 
curvilinear coordinates msy be obtained from those in the x, y system by 
the transformation formulae (I), (2) which give 

a;+a'l=a,,+all=2 {~'(.11')+~'(z)}, • 

a'1-aH2iTE'I=(all-a,,+2iTZ/I)e2ib=2[z~"(.II')+X"(.II')]w'(iJ/w'<O, 
• (20) 

• (21) 
where ~(.II') and X(.II') may be expressed as functions of , but it must be 
understood that the differentiations are with respect to .II' so that 

.LI( )=d~ d, 
'1'.11' d,d.ll" 

--+-----~~~~----L------4--x 

, , , , . 
\ 

FIG. 75. Curvilinear coordinates 

• (22) 

As an example, some results in elliptic coordinates will be sketched. 
The transformation is 

.II'=x+iy=c cosh C=c cosh (e+i'l) • (23) 
so that 

x=c cosh e cos 'I). y=c sinh e sin 'I). 
If e has the constant value eo, the point (24) traces out the ellipse 

Xl yl 
I oshl.e + I sinhl .e - I C C iii C ~o 

• (25) 

as 'I) varies from 0 to 21T. If eo=o, the ellipse degenerates into a crack of 
length 2C. The lines 'I)=Constant are confocal hyperbolae. The situation 
is as shown in Fig. 75. 
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The problem of the infinite region bounded internally by the elliptic 

hole €=€o of major axis a=c cosh €o and minor axis b=c sinh €o and with 
stress PI at infinity in a direction inclined at 13 to Ox is solved byl 

qS{Z)=!Plce2<. cos 213 cosh C+!Plc{l-e2<.+2i/l) sinh C, • (26) 
x{z)= -!Plc2{cosh 2€o-COS 2f3g-iPlcBe2e. cosh 2(C-€o-if3). • (27) 

Substituting these expressions in (20) and (21) rather complicated 
formulae for the stresses may be obtained, and it is found that the 
boundary conditions at infinity and at €=€o are satisfied. Actually expres­
sions involving sinh C, cosh , which have period 2" in "I are assumed, 
and their coefficients chosen in order to satisfy these boundary conditions. 
One simple and important result, the tangential stress at at the boundary 
€=€o, can be found immediately from (20) since a<=o on the boundary. 
By (26), (20) and (22) 

.p'(Z)=!Ple2<. cos 2f3+!Pl{1 -e2e.+2i/l) coth " 
so when '=€o+i1J, 

at=2[.p'(Z)+~'(z)] 
=Ple2;. cos 2f3+lpl(1 -e2<.+2i/l) coth (€o+i1J) 

+tPl(l-e2<.-2i/l) coth (€o-i1J) 
sinh 2€o+COS 2f3-exp (2€o) cos 2{f3-1J) (28) 

=Pl cosh 2€o- cos 2"1 • 

2ab+{a2-bl ) cos 2f3-(a+b)1 cos 2(13-"1) (29) 
=Pl a 2+b2-(al -b2) cos 2"1 • 

This result and some consequences have been discussed in § 50. 
Finally, results for the crack €o=o are of considerable interest' both 

in connexion with the theory of Griffith cracks and energy release in 
earthquakes. For the crack in pure shear with principal stresses PI at 
13="/4 and -PI at -"/4 the results take a relatively simple form, namely 

ae==Pl(cosh 2€-I)(ot-ot l ) sin 2"1, (30) 
afj=Pl sin 21J[otl(cosh 2€-I)-ot(cosh 2€+1)], (31) 

T<fj=Pl sinh 2€[ot cos 21J-otS(1 -cos 2"1)], • (32) 
where ot=[cosh 2€-COS 2"1] -1. (33) 

1 These results are given by A. C. Stevenson, Proc. Roy. Soc., Ax84 
(1945), 129, who derives many others for the circle and ellipse by this 
method. Another method is used by C. E. Inglis, Trans.lnst. Naval Arch., 
55 (1913), 219. Alternatively, again, transformation on to the unit circle 
may be used, cf. Savin (loc. cit.). 

I A full treatment of the crack in pure shear including a discussion 
of displacements and strain energy is given by A. T. Starr, Proc. Camb. 
Phil. Soc., 24 (1928), 489. 'Penny-shaped' cracks are discussed by I. N. 
Sneddon, Proc. Roy. Soc., Ax87 (1946), 229, and R. A. Sack, Proc. 
PhYI. Soc., 58 (1946),729, in connexion with the Griffith criterion. The 
case of a crack I x l<c, - co<z<co, y=o, subjected to shear Til> is con­
sidered by L. Knopoff, Geophys. y., x (1958), 44, in connexion with strike­
slip faulting. 
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The shear stress in the plane of the crack '1]=0 is 
t PIX 

PI coth • = (X2-C I)t 
and tends to infinity as x--'>-c. 

The mean stre.;s 20'm=0'1+0'2=0'~+0'~ is 

[§ 51 

O'm= -PI sin 2'1][cosh 2~-COS 2'1]] -1. • (35) 
I t is negative, tensile. in the first and third quadrants, and positive, 

compressive, in the second and fourth. These results give an indication 
of the way in which stress is redistributed after shear failure over a crack. 
Starr, loe. cit., shows details of the distortion of the stress trajectories. 

For the general case of uniaxial stress PI at infinity in a direction 
inclined at fJ to the major axis of the crack, the results are 
aHO'Tj=Pl cos 2fJ+OCPl[(I-COS 2fJ) sinh 2~-sin 2fJ sin 2'1]], 
ae-O'Tj=ocPl cosh 2~ cos 2('1]-fJ) 
+ oc1p {(I-COS 2fJ)(COS 2'1]-1) sinh 2~-cosh 2~ cos 2fJ} 

1 + cos 2( '1]-fJ)-cosh 2~ sin 2fJ sin 2"1 , 
T<~=!PIOC sinh 2~ sin 2(fJ-'1]) 

+!PIOC2[Sinh 2~ sin 2fJ(COS 2"1- 1)+(1 - cos 2fJ)(cosh 2~-1) sin 2'1]], (38) 
where IX is defined in (33). 

The case in which the stress PI is perPendicular to the crack is of 
special interest. On the x-axis "1=0, so that, by (24), cosh f,=x/c=X, 
where X is a dimensionless ratio, and (36)-(38) give 
O'X/Pl =a~/Pl =X(X2- I)-!- I, ay/Pl =O'Tj/Pl=X(X2- I)-t 
so that both Ux and O'y tend to infinity as X --'>- I. 

On the y-axis, Tj=!1T and sinh ~=y/c= Y, and (36)-(38) give 
aX/Pl=O't)/PI = Y(2+ y2)(I + y2)-S/2_I, O'y/Pl=U;/P,= YS(I + y")-m.(40) 
The variation of O'x and O'y with Y=y/cfor this case is shown in Fig. 76(a). 
It appears that ax is tensile if Y<0·8. 

These results are often used 1 to discuss the stresses about long thin 
plane ('tabular') excavations. Suppose that such an excavation of width 2e 
is made horizontally at a depth of kc in material of density p. As in 
§§ 34, 47 the vertical stress at depth z may be expected to be of the order 
of pgz so that at depth ke it will be pgke. The effect of mining is to reduce 
the normal stress at the surface of the slit to zero, that is, by (40) to 
superimpose a 'mining-induced stress' {-pgke[I - YS(I + y2)-S/2]} on the 
stress pgz=pgc(k- Y) which existed before mining. Adding these gives 
for the vertical stress 

O'y=pgkC[Y3(I+ y2)-S/2_(Y/k)]. (4 1 ) 

This vertical stress is tensile if Y<Yo where Yo is given by 
Yo2(I+ Yo2)-S/2=(I/k) (42) 

Values of Yo as a function of k calculated from (42) are shown in Fig. 

1 J. C. Jaeger and N. G. \V. Cook, Fundamentals of Rock Mechanics 
(Methuen, 1969). 
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76 (b). This gives a useful indication of the region in which tensile 
stresses exist, but it is approximate only, since the calculation does not 
accurately take the effects of gravity into account. 

1 

(a) (b) 
FIG. 76. (a) Stresses Oz and 011 on the y-axis of a flat crack with stress P at 

infinity in the y-direction 
(b) The distance cYo above a flat horizontal crack of width zc at 
depth ck below the surface for which vertical stresses are tensile. 

(v) Conformal Representation: Transformation on to the Unit Circle 
The most powerful method which the use of the complex variable 

makes possible is the transformation of the region outside some curve on 
to the interior (or the exterior) of the unit circle. As an example consider 
the transformation 

z=x+iy=,.,m=a(C-l_iCa), (43) 
which transforms the circle C=exp il/l into the curve 

x=a(cos I/I-i cos 31/1), y= -a(sin 1/1+1- sin 31/1) • (44) 
and maps the region outside this curve on the interior of the unit circle. 
The curve (44) is shown in Fig. 73 and resembles a square with rounded 
comers. Problems on this region may be solved by a slight extension 
of the previous theory: for example it is found that for the region bounded 
internally by the cylindrical opening (44) with stress PI at infinity in 
a direction inclined at p to the x-axis, the function </>(z) is given by 

</>(z)=Pla [~+(.; cos zP+ii sin zP)C+nC' J. . (4S) 

so that the tangential stress in the boundary at the point corresponding 
to C .. exp il/l is 
01-4P l aR[ </>'<0/ (d'm] 

=Pl {IOS-360 cos z{1 cos 21/1+168 sin 2fJ sin zl/l} /3S(S+4 cos 41/1). (46) 
Values of 01 for fJ=o and P="/4 have been given in Fig. 73. They are 

plotted against the polar angle 8- -tan- l (y/x) where x and yare given 
by (44). 
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The result (45) is taken from Savin's book (loc. cit.) where many similar 
results, including better approximations for square and rectangular 
openings, are given. 
(vi) The Circular Cylinder with Stress Applied to its Surface 

The solution is very similar to that given in (iii) for the circular hole. 
I t will be assumed that the stress applied to the surface is given by the com­
plex Fourier series (12). Since the stresses must be finite at the origin, 
power series in z are assumed for the functions 4>'(z) and X"(z), namely, 

co co 

4>'(z)=L enz", x"(z) = L dnz", 
n=O n=O 

y 

(0) (b) 
FIG. 77. (a) Diametral compression by radial stress p over arcs of 21X 

(b) Stresses ax and ay on the diameter y=o 

and the solution then proceeds precisely as in (iii). As a specific example 
of great importance, we consider the case of pressure p applied to a 
cylinder of radius a over the arcs -IX<B<IX, 1T-IX<B<1T+ot, Fig. 77 (a). In 
this case the coefficients An of (12) are given by 

A o=2IXP/1T, A tm=A_.m=(p/m1T) sin 2mot, m=l, 2, ... , (48) 
and A2m+l=A-2m-l=0. The quantities 4>'(z) ana x"(z) are found to be 

co co 

otp p"" sin 2mot(z)2m 2P"" (z)'''' 4>'(z)=-:;+; L --m- a ' x"(z)=--:; L a sin 2(m+l)ot·(49) 
m=1 m=O 

Then from (17) and (18) the stress-components in polar coordinates 
are found to be 

co 

ar =2;+; L (~).m-·{I_(I_;)(~)) sin 2mIX cos 2mB, 

m=1 
co 

2rt.jJ 2P"" (r).m-2{ ( I )(r)2} a8 =-;;.---:; L a 1- I+;n a sin 2mot cos 2mB, 

m=1 

(50) 
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co 

2P"", {(r)"m (r)''''-I} "rO=-:; L a - a sin 2mO[ sin 2m9 . 
111=1 

(52) 

On the loaded diameter 9=0, "rO=O, and the series (so) and (51) can be 
summed1 to give 

2P{ (l-p2)sin20[ _1[(I+P') ]} (53) aX=(ar)4~=- + tan --- tan 0[ , 
~ 1T (1-2p' cos 20[+p') (l-p') 

all = (ae) -= - tan --- tan 0[ 2P{ (I-pI) sin 20[ _1[(I+pl) ]} (54) 
8=0 1T (1-2p' cos 20[+p') (I-pi) , 

where p=rla. The variation of ax and all with p for the case 20[=15° is 
shown in Fig. 77 (b). If 0[ is small, (53) and (54) tend to 

W(3+p·) W 
ax 1Ta(l-p')' all=-1Ta' (55) 

where W=2paO[ is the load applied per unit length of the cylinder. (55) 
implies that there is a constant tensile stress - WI 1Ta across the loaded dia­
meter, and Fig. 77 (b) shows that this is nearly true if the load is applied 
over a small finite angle. This is the theory of the 'diametral compression' 
or 'Brazilian' test which is discussed from the practical point of view in 
§ 54· 

(vii) A Cylindrical Inclusion in an Infinite Medium with Different Pro­
perties 

This problem I may be studied by combining solutions of types given 
in (iii) and (vi). As in (iii), only terms involving cos 29 and sin 29 appear. 
The simplest result, which illustrates the effects which appear, is that 
for the case of uniaxial stress a1 at infinity, in which the stress ai' in the 
inclusion is found to be homogeneous and to have the value 

• (56) 

for the case of plane strain and ,,=vo=1-, where G and Go are the moduli 
of rigidity of the outside material and the inclusion, and v and "0 are their 
Poisson's ratios. The ratio al'lat varies from zero for a very 'soft' in­
clusion for which Go/G-+o, to t for a very 'hard' inclusion for which 
Go/G-+co. 

1 G. Hondros, Aust, J. Appl. Sci., 10 (1959), 243-64, gives a full dis­
cussion of these formulae and their applications. See also J. C. Jaeger 
and N. G. W. Cook, lac. cit. Stresses in rings loaded in the same way are 
discussed by L. N. G. Filon, Sel. Engng Pap. Inst. Civ. Engrs, No. 12, 
1924, and J. C. Jaeger and E. R. Hoskins, Brit. J. Appl. Phys., 17 (1966), 
685-92. 

• Muskhelishvili,loc. cit., and Wilson, Proc. Fourth Symp. Rock Meeks. 
Penn. State, 1961, 185-95. Goodier, Trans. Amer. Soc. Mech. Engrs, 55 
(1933), 39-44, discusses spherical inclusions, and Edwards, J. Appl. 
Mech., 18 (1951), 19-30, studies spheroidal inclusions. 
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52. DISPLACEMENTS 

[§ 52 

Throughout this work, the emphasis has been mainly on the calcula­
tion of stresses, largely because of their importance in connexion with 
failure. Nevertheless, direct measurement of stress is difficult, so that in 
practice stresses are determined from the displacements associated with 
them, and moduli of elasticity are calculated by measuring the displace­
ments caused by a known applied stress. 

In some problems, such as § 36 (i), the displacements are found in the 
course of the solution. More frequently, as in § 36 (iii), the stresses are 
calculated first, the strains are then found from stress-strain relations such 
as § 13 (2.3), and integration, together with a careful discussion of the 
arbitrary functions introduced, gives the displacements. If the complex 
variable is used, displacements are given by § 51 (9) which may be 
generalized to 

2oG(U+iV)=K.p(Z)-z{/(i)-X'(i), 

K=3-4V, for plane strain, } 
K=(3-v)/(I+V), for plane stress. 

where (z) 

The formula for rotation of axes is also needed. It follows from § 7 (5) 
that if u', v' are displacements referred to axes inclined at B to those for 
fI, v, then 

u' +iv'==(u+iv)e-ill • 
Some examples of practical importance will now be given. 

(i) The Hollow Cylinder a<r<b with Surface Pressures PI and PI 

For the case of plane strain, the displacement u radially inwards (the 
positive sense of this chapter) follows immediately from § 36 (4). It is 

U= (b lp.-a1pl)r + (pZ-Pl)a1bl • 

2o(~+G)(bl-al) 2oG(b'-al)r (4) 

If b-+ 00 and PI=O, the displacement at r=-a is -apd2oG. This 
provides a method for measuring G in situ, cf. Talobre, loco cit. 

If PI =0, the displacement at r=-a is 

abtPI(~+2oG)/2oG(~+G)(bl-al). (5) 

If the solution of a problem in plane strain is known, that of the corre­
sponding problem in plane stress may be obtained by. replacing ~ by 
2o~G/(~+2oG). This statement, which is equivalent to (20), follows from 
the fact that if this substitution is made in the equations § 14 (4) for plane 
strain they take the form corresponding to § 14 (20) for plane stress. 
Using this result and § 13 (18) in (5), the displacement at r=a for the 
case of plane stress is found to be 

2oab'PtlE(bl-a' ). • (6) 

(6) has been used for laboratory measurements of E on hollow cylin­
drical cores. 
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(ii) Plane Strain or Stress in the Region around the Circular Hole r=a with 

Principal Stresses P" P. along the x, y Axes at Infinity. 

The stresses in polar coordinates are given by § 50 (3)-(5), the strains 
can then be calculated, and the radial and transverse displacements IIr 
and uo obtained by integration. However, it is simpler to insert the values 
of 4>(z) and X'(z) from § 51 (14) into (I), using (3) to convert from dis­
placements II, v in the directions of P, and P. to the more useful radial 
and transverse displacements IIr, 110 in polar coordinates. This gives 

{ (K-I)r at} 
Ur=(P,+P.) ga+ 4Gr 

{ r (K+I)at a'} 
+(PCP2) 4G+ 4Gr - 4,3G cos zl), 

{ r (I-K)a' a'}' UO=(P2-P,) -----+- sm zl) 4G 4G, 8G,3 , 
where K is defined in (z) 

(8) 

The terms proportional to r in (7) and (8) are the displacements which 
would be produced in an infinite solid by the stresses Ph p, at infinity. 
The terms in r- l and ,-3 are the additional displacement caused by the 
existence of the hole. 

These results may easily be generalized to the important case in which 
there is an additional constant axial strain along the hole and conditions 
in the perpendicular direction are those of plane strain. In this case, 
using (z), (7) is replaced by 

{ (I -zv)r a'} 
Ur=(P,+P2) 4G+ 4Gr 

{ r ( a 2
) a 2 

} +(P,-P2) 4G+ 4-4v-Ti 4Gr cos Zl)-VE'. 

(iii) The Region Olltside the Circular Hole r=a with Pressllre P Applied over 
the Arcs -a.<I)<a. and 71-a.<1)<71+a. of the sll~face 

This is an example of the theory of § 5 I (iii). The solution is deter­
mined from the functions 

00 00 

p '" sin zma.(a)'m za.pa' zp '" (a)'mH .p'(z)=;;, ~ -m- z ,X"(z)=- 71Z' +-:;;-~ z sin zma.. (10) 
m=l vz=l 

The tangential stress a8 in the surface r=a is found to be P-(4Pa./71) in 
the loaded regions and (-4Pa./71) outside them. 

The radial displacement u, at r=a is given by 
00 

---=-za.- - --+-- smz11la.coszml). Z71Gllr 2 I {K I} . 
ap m zm-I Z11l+1 

",=1 

. (II) 

The series in (II) can be summed if 1)=0 or 1)=!71, and if 1)=!71 and a. is 
sJrlall the displacement is 

(12) 
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. Either (II) or (12) may be used to detennine G if K is assumed to be 
known. 

(iv) The Solid Cylinder of Radius a with Pressure p Applied over the Arcs 
-01.<6<01. and ".-01.<6<".+01. of its Surface 

The displacements follow from (I) and § 51 (49). The radial displace­
ment at r=a is given by 

0() 

2".GU r L hl K I} . --=IX(K-I)+ --+-- cos2m6sffi2mor.. 
ap m 2m+I 2m-I 

m=l 
If IX is small, the displacement at 6=1". is 

-[2(K+ 1)-"'(K-I)]or.pa/4".G. 

(v) Pressure p in a Crack of Width 2C in an Infinite Solid 
This has been discussed by Anderson, loco cit. The solution can be 

obtained by the methods of § 5 I by adding the results .p(z)=lpz, X(z)=o, 
for unifonn hydrostatic pressure p to the values of .p(z) and x(z) deduced 
from § 51 (26) and (27) for an all-round tension, -p, at infinity. This 
gives 

.p(z)=lpce-C, x(z)=lPc!'. (IS) 
The displacements ue and U7j in elliptic coordinates, § 5 I (23), are by 

(I) and (3) 
ue+iu1}=(u+iv)e-w 

={K.p(z)-z.p'(z)-X'(z)}{sinh 'cosech ,}l/2G, . (16) 
where 8 is defined in Fig. 75, and its value § 51 (19) has been used. It 
follows that, using the notation § 5 I (33), 

ue=(pC/SG)(2or.)l{(I-K)e-2~+(I+K)C0S2"1-2}, • (17) 
U1}=(pC/SG)(2or.)l(I-K) sin 2"1. (IS) 

If "1=1"., that is, along the y-axis perpendicular to the crack, 
ulI=ue=(pC/4G)(2 cosh 2,+2)-l{(I -K)e-I ;-K-3}, (19) 
where 

sinh '=y/c. (20) 
For the case of plane stress in which K=(3 -V)/(I +v) this may be put 

in the fonn 
Uy=-PC{(I-V)[(I+ yl)l_ Y]+(I+V)(I+ Y2)-l}/E, • (21) 

where Y = y/c. • (22) 
The displacement caused by uniaxial stress p in a direction nonnal to a 

flat crack may be found by subtracting (21) from the displacement yp/E 
in the absence of the crack, so that it is 

Uy=pc{v Y+(I -V)(I+ Y")l+(I+V)(I+ Y")-l}/E.. . (23) 
\Vhen Y ...... o, uy ...... 2pcE and the crack will close when this is equal to the 

small length ceo of its minor axis. Thus, the nonnal stress p necessary to 
close a flat crack of aspect ratio '0 under conditions of plane stress is 

p=lE,o' (24) 
This is not affected by a component of stress parallel to the crack. 
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(vi) The Slab - 00 <x <00, o<y<h with Sinusoidal Displacements 
It is easy to verify that 

207 

q,(z) =Aeiwz+Be-iwz, (25) 

X'(z)=(C-iwzA)eiwz+(D+iwzB)e-iwz, (26) 

where A, B, C, D are constants, leads to displacements of type 
Il=f(y) cos wx, v=g(y) sin wx. Using these, various problems in which 
the surface y=o is free and displacements at y=h are sinusoidal, or of any 
more general form, may be solved. Such problems correspond to uplift 
of an elastic region and have been studied in detail by Sanford. 1 

(viii) A Line Load, P per Unit Length, is Applied to the Surface of the 
Semi-infinite Solid x>o at the Origin in a Direction Making an 
Angle § with the Normal to the Surface. 

The solution is obtained from 
q,(z)=(Pj21T)ei {J In z, x'(z)=-(Pj21T)e-i{J In z. . (27) 

If /3=0, the previous results, § 36 (10), (I I), (12) follow from (27) using 
§ 51 (17), (IS), and the displacement is given by 

2G(u+iv)=(P/21T){(d I) In r- cos 28+i[(K- I)O-sin 28]} (2S) 

The displacement normal to the surface is 
2GU=(P/21T)(K+ I) In r-(x2_ y 2)r- 2 } • 

in the coordinates of Fig. 45. For a distributed load p(y) on the surface, 
the displacement is 

4 1TGu= J: 00 (HdI) In [X2+(y_'1)2]_[X2_(y_'1)2] 

[x2+(Y-'1']-1}p('1) d'1. . (30) 
The displacement in the plane x = ° is 

4 1TG[u1x=0=(K+I) J: ~n (Y-'1)p(,]) d'1. 

Now consider the function 

which is the logarithmic potential of a distribution (K+ I)P('1)j 41TG on the 
plane x=o, so that" 

"V2U =0, 

and [?UJ = (K+I)p(y) 
ox %=0 4G 

1 A. R. Sanford, Bull. Geol. Soc. Amer., 70 (1959), 19-5 I. 
2 A. G. Webster, Partial Differential Equations of Mathematical Physics, 

p. 200 (Teubner, 1927). 
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Since [uJx=o=[U]z=o it follows that the value of u in the plane x=o is 

known if U can be found, and since U is harmonic (although u is not) 
this is easily done by numerical or analogue methods if U or aU (ax in 
the plane x=o is known. A similar result holds in three dimensions. This 
method has been extensively used for studying surface displacements in 
extensive plane ('tabular' excavations: such as occur in coal and some 
gold mines). The effect of mining is to induce changes in normal stress 
over this surface and their effects can be calculated by the methods 
outlined above. l 

53. UNDERGROUND MEASUREMENTS AND THEIR RESULTS 

The object of this section is to indicate briefly the way 10 

which formulae which have previously been deduced apply in 
underground measurements, particularly of stresses. Fuller des­
criptions of the methods are given by various authors.2 

A. 

l~,,,,,,:tp ~~ .0 •• R A 

c .. ·c D D 

(a) (b) (e) 
FIG. 78 (a) Flat-jack method 

(b) Borehole deformation method 
(c) Strain.gauges on the flat end of a borehole 

A knowledge of the state of stress underground is of consider­
able geophysical interest and is essential for the design of under­
ground structures. Three different quantities may be measured or 
deduced from one another. These are: (a) VirJ:in rock stresses 
which are the stresses in a region in the absence of all excavation, 
(b) Field stresses which are the virgin rock stresses in a region as 
modified by all excavations in its vicinity, and (c) Practical stresses, 
which are those in or close to the wall of an excavation. If, for 
example, the stresses (c) are measured, a correction for the stress­
concentration around the excavation, derived theoretically, as in 

1 Jaeger and Cook, loco cit. 
I J. C. Jaeger and N. G. W. Cook, loco cit.; L. Obert and W. I. Duvall, 

Rock Mechanics and the Design of Structures in Rock .(Wiley, 1967); 
E. R. Leeman, J. S. Afr. [nst. Min. Metall., 65 (1964), 45-114, 254-84. 
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§ 50, or photoelastically, § 49, is made to deduce the stresses (a) 
or (b). Various methods of measurement are in use: 

(i) The Flat-jack Method 
This measures the stress in any direction parallel to a plane 

face AF of an excavation, Fig. 78 (a). In it, two measuring pins 
P, P' are cemented into the face and the distance between them is 
measured. A slot BCDE, usually about one foot square, is cut into 
the face in a plane perpendicular to the line PP' and the new 
distance between the pins P, P' is measured. From the change in 
length of PP', Young's modulus for the rock can be found from 
§ 52 (23). A flat hydraulic cell, shown dotted in Fig. 78 (a), is 
then cemented into the slot and pumped up. The pressure p in 
the cell at which the pins P, P' have returned to their original 
distance apart gives the normal stress in the rock in a direction 
perpendicular to the line PP'. The method is thus an absolute one, 
and its similarity to the definition of stress, § 2, is noteworthy. 
Measurements with jacks in three perpendicular directions give 
the components of normal stress in these directions. In practice, 
minor corrections have to be made; in particular, creep occurs 
and is usually allowed for by assuming a logarithmic law. As 
remarked earlier, this method only gives the stresses in the surface 
of an excavation and field or virgin rock stresses can only be 
deduced by allowing for the stress-concentration around the 
excavation. 

(ii) Overcoring Methods, Fig. 78 (b) 
In these, a borehole ABCD is drilled with diameter BC from a 

face AD and is continued centrally at EFGH in smaller diameter. 
Usually BC is of the order of six inches and FG of the order of 
one inch. In the borehole deformation methods, the diameter of 
the hole EFGH is measured in three or more directions by a 
sensitive, remote-reading device. Drilling at diameter BC is now 
continued to B'C' so that the region containing the hole EFGH is 
'overcored' and the stress in it is relieved. The changes in dia­
meter are given by § 52 (7) or (9), and from their values in three 
directions the magnitudes and directions of the subsidiary prin­
cipal stresses in the plane perpendicular to the borehole can be 
found by the methods of § 10. The elastic properties of the 
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material are found from measurements on the core. Measure­
ments in three inclined boreholes give the complete state of 
stress. In variants of the method a stress-measuring device can 
be installed in the hole EFGH or a plug containing a number of 
strain gauges can be cemented into it. These methods can be used 
to distances of some tens of feet from the face AD. 

(iii) Measurements at the End of a Borehole 
A simple method which has been· much used consists of drilling 

a hole ABeD, Fig. 78 (c), with a flat end and attaching a rosette 
of strain gauges R to this end. This is then overcored at the 
original diameter along BB', ee' so that the stresses on Rare 
relieved. As an alternative to the strain gauges a photoelastic disc 
may be attached to the end of the hole and observed optically. 
The difficulty with this method is that stress-concentrations exist 
at the end of the borehole ABeD and that the values of these are 
not well known. Galle and Wilhoit 1 by photo elastic methods 
found the stress-concentration factors to be approximately 1"5 
times the stresses perpendicular to the hole and - 1·0 times the 
stress parallel to it but there is not yet general agreement on the 
values to be used. These methods may be used in holes of the 
order of 100 feet in length. 

(iv) Hydraulic Fracturing 
The mechanical methods described above can only be used for 

limited distances from an excavation. The method of hydraulic 
fracturing gives less information but is available at all distances. 
In it, portion of a borehole is sealed off by packers and fluid pres­
sure in this region is increased until fracture takes place, as 
indicated by the fact that fluid can be forced into the hole. For 
radial fracture, this pressure is 3P2-Pl+ To by § 50 (9) where To is 
the tensile strength of the rock. The direction of fracture, which 
may be observed with a borehole camera, is that of the major 
principal stress PI . 

(v) Inclusion Stress-meters 
In these, a plug of material containing stress-measuring ele­

ments is inserted, with or without some pre-stressing, into the 

1 E. M. Galle and J. C. Wilhoit, Jr, J. Soc. Petrol. Errgrs, 225 (1962), 
145-60. 
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end of a borehole. The stress in the inclusion is related to the 
external stress by formulae such as § 5I (56). Inclusion stress­
meters can be made absolute but are more usually used for 
monitoring changes of stress. 

(vi) Measuring Bolts 
These are rock bolts anchored at some distance in the rock and 

otherwise free so that the relative movement between the anchor 
and the surface or other points of the rock can be measured. If 
such bolts are installed radially at a plane end of a circular tunnel 
and the tunnel is then extended, the principal stresses can be 
inferred from the changes in displacement by § 52 (7). 

(vii) Measurement of Rock Properties in situ 
Laboratory measurements on selected samples are not always 

a good guide to the behaviour of rock in the mass. Measurements 
of rock properties can frequently be made in conjunction with 
underground stress measurements. For example, hydrostatic pres­
sure in circular holes gives G by § 52 (4) and directed stress may 
also be used, § 52 (I2). Sonic measurements, § 38, give useful 
information. Displacement across a flat-jack on slot-cutting gives 
E by § 52 (23), or on pumping up by § 52 (2I). The method most 
used is the plate bearing test, § 43 (ii), and large direct shear tests 
are also frequently made. 

(viii) Results of Underground Measurements 
Much of the work done on stress measurement has been 

developmental so that sufficient measurements are not yet avail­
able to distinguish between the two simple formulae § 47 (I) and 
(5). A number of measurements favour the latter, and a rather 
lesser number, the former. However, a great many 'anomalous' 
cases have been found in most of which horizontal stresses are up 
to twice the vertical stresses, but occasionally vertical stresses 
considerably greater than the overburden pressure occur. A 
variety of causes has been suggested for these. First, they may be 
the effects of gravity in an irregular terrain. Secondly, there may 
be horizontal tectonic stresses whose effects would be enhanced 
by the stress-concentrations caused by surface irregularities. 
Other tectonic effects are possible; for example, high horizontal 
stresses have been measured in regions known to be undergoing 
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uplift, notably Scandinavia. Finally, in rheological materials 
undergoing erosion, there is a possibility of residual stresses 
'remembered' from a time when stresses were higher. 

54. MEASUREMENT OF ROCK PROPERTIES 

The measurement of uniaxial compressive strength and the 
triaxial test which determines Ul as a function of uz=ua at failure 
remain the most important measurements made of rock properties. 
Young's modulus and Poisson's ratio are most frequently measured 
during tests of these types, though less direct methods, e.g. those 
based on § 52 (4), (6), (12), (21), (23), § 36 (30), § 43 (2), etc., may 
be used. In general, it is found that Young's modulus when 
measured in tension is less than the value obtained under com­
pressive conditions. Elastic moduli may also be measured by sonic 
methods: Pwaves, § 38 (7), givd.+2G; Swaves, § 38 (8), give G; 
and longitudinal waves in a thin rod give E. All these waves may 
be excited and detected by suitable transducers. It has been known 
for some time that values of elastic moduli measured by sonic meth­
ods are higher (of the order of 20 per cent) than those measured 
by static methods. This effect is attributed to minute cracks in 
the material, cf. § 56, and disappears at high confining pressures. 

Direct measurement of the uniaxial tensile strength is not easy 
because of the difficulty of ensuring true axial loading. Extension 
failures are frequently studied by using shaped specimens in a 
triaxial apparatus so that the stress condition is Ul=U2>U3• This 
does not give a true uniaxial value since ua>O. The so-called 
Brazilian or diametral compression test in which a circular 
cylinder is compressed along a diameter is also very commonly 
used. The tensile strength is calculated from the formula W Ina, 
§ 51 (55), but since there is also a compressive stress in the per­
pendicular direction this does not give a true uniaxial value. 
However, tensile strengths measured in this way are in reasonable 
agreement with directly measured uniaxial values. This is not 
the case with the results of diametral compression of hollow 
cylinders or of exp«:riments on bending, both of which give 
values of the tensile strength which are too high by a factor of 
two or more. l In these cases, the stresses are inhomogeneous and 

1 The various methods of measuring tensile strength are compared by 
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the discrepancy may be due to the effect of stress gradients on 
failure (cf. § 55) or to the difference between Young's modulus in 
tension and compression, or to a combination of these effects. 

Measurements of the above types give no information about 
the effect of the intermediate principal stress, <12, on failure, and 
in view of the common occurrence in practice of polyaxial stress 
systems in which <11><12><1a it is desirable that this question be 
clarified. If <12 and <13 are fixed and <11 is increased until failure 
occurs, its value would define a surface. 

<11=f(<12, (13) (1) 
which will be called the failure surface. On the Mohr theory, § 22, 

in which the magnitude of <12 has no effect, this reduces to 

<11=F(<13)' (2) 
and on the Coulomb-Navier theory, § 21, it becomes the plane 

<11=CO+ka3 , (3) 
where Co is the uniaxial compressive strength, and k=tan2 

(in+!cp), § 44 (9)· 
A hypothetical failure surface is shown in Fig. 79: the informa­

tion readily available about it is the points Co and To correspond­
ing to uniaxial compression and tension, and the curve CoT cor­
responding to triaxial compression. On the basis of (3) or the 
modified Griffith theory, § 46 (iii), CoT would be a straight line: 
in fact, it is usually concave downwards and probably better 
represented by a power law. Failure under biaxial stresses on the 
basis of (I) should give a curve CoB, and, in general, the surface 
can be mapped experimentally. However, it is difficult to work 
with homogeneous polyaxial stresses because of friction at platens 
but such experiments' indicate an effect of <12 • 

By using thick-walled hollow cylinders with axial load and 
internal or external pressure a wide variety of stress-conditions 

R. Berenbaum and I. Brodie, Brit.]. Appl. Phys., 10 (1959), 281-6, and 
J. C. Jaeger and E. R. Hoskins, ibid., 17 (1966), 685-92. 

1 G. A. Wiebols, J. C. Jaeger and N. G. W. Cook, Tenth Rock Mechs. 
Symp. Houston (1968) have minimized friction by applying u. and u. by 
fiat-jacks. J. Handin, H. C. Heard and J. N. Magourk,]. Geophys. Res. 
72 (1967),611-40, obtain approximately homogeneous stresses by using 
thin-walled hollow cylinders as in the classical experiments on metals, 
§ 27· 
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may be obtained and the failure surface mapped. l These experi­
ments show an important influence of a2 , but since the stresses 
are inhomogeneous their results may also include the effects of 
stress gradients. 

The type of behaviour to be expected under polyaxial systems 
of stress may be seen most easily from an empirical generalization 
of Griffith theory due to Murrell (loc. cit.) in which the parabola 

FIG. 79. Portion TCoB of the failure surface under compressive conditions 
on Murrell's paraboloidal assumption 

§ 24 (5) with axis along al=a2 is replaced by a paraboloid with 
axis along a1=a2=aa, Fig. 79. The equation of the failure surface 
in this case under compressive conditions becomes 

(a2-aa)2+(aa-a1)2+(al-a2)2=24To(al +a2+aa), (4) 
where To is the uniaxial compressive strength. It follows from (4) 
that the uniaxial compressive strength Co=I2To • For biaxial 
stress, aa=o, (4) becomes 

a12-ala2+a22=Co(al+a2) . (5) 

1 J. C. Jaeger and N. G. W. Cook, loco cit.; J. C. Jaeger, Proc. Eighth 
Symp. Rock Mechs. Minnesota (1967), I-57; S. A. F. Murrell, Proc. Fifth 
Rock Mechs. Symp. Minnesota (1963), 563-77; J. C. Jaeger and E. R. 
Hoskins,]. Geophys. Res., 71 (1966), 265 I. 
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55. EFFECTS OF FLAWS, SIZE AND STRESS GRADIENT 

As remarked in § 52, the various methods of measuring tensile strength 
lead to different values, and this has been attributed to the statistical 
effect of flaws in the material. The following simple argument shows the 
sort of effects to be expected. Suppose that Po{a) is the probability that a 
specimen of unit volume will fail under tensile stress a so that I -Po{a) is 
the probability that it will not fail. If m such specimens are arranged in 
series, the probability 1-P( a) that none of them will fail under stress a is 
given by 

I -P{a)=[I -Po(a)]m=[I-Po{a)]V =exp {V In (I -Po{a»}, (I) 
where V is the total volume of the specimen. Since I-P{a)<I we may 
write 

In [I -Po{a)]=-n{a), . (2) 
and (I) becomes P{a)=I-exp (-Vn(a» which may be generalized to 

P(a)=I-exp {-f n{a) dv},. (3) 

if the stress varies over the volume V of the specimen and the integral is 
taken over this volume. The mean stress at failure is then 

fl foo d{I-P) [ Joo foo a= adP=- a--da= -a{I-P) + {I-P)da 
o 0 da 0 0 

= f: exp {-f n{a) dv} da. 

\Veibull l makes the simple assumption 

n{a)=kam , • (S) 
where k and m are constants. This assumption leads to integrals which are 
easy to evaluate and gives generally good agreement with observation. 

Using (5) in (4) gives for uniform stress a 

a = f: exp {-kVam} da={kV)- 1/m1m , (6) 

where 1m= f: exp (_zm) dz 

The value of 1m ranges from i,,1=0·SS6 when m=2 to 0.963 when 
m=I6, so that it is always near unity and its variation is not important. 
The important conclusion from (6) is that for homogeneous tensile 
stress a, the mean stress at failure decreases with specimen volume 
according to the power law V-11m. 

1 W. Weibull, 1ngvetensk. Akad. Hand!., No. 151 (1939). 
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The effect of inhomogeneous stresses may be illustrated by considering 

the simple case of a beam bent by couples M (four-point bending). If 
the depth of the beam is 2b and Uj is the extreme fibre stress when y=b, 
it follows from § 36 (22) (23) that the stress Ux at depth y is 

ux=(y/b)uj. (8) 
Here the stress is tensile (positive with the convention of § 32) and if 

y<o the stresses are compressive and assumed to have no effect. Using 
(8) and (5) in (3) it follows that for a beam of width a and length I and (5) 

P(u) =I-exp { -kal(Ut)mJ:(Y/b)m dY} 

=I-exp {-kVUjm/(2m+2)}, (9) 
where V is the volume of the beam. 

Using (9) in (4) it follows that the mean value Uj of the extreme fibre 
stress is 

Uf= J;xp {-kVUjm/(2m+z)} dUj } 

=[kV /(2m+2)]-1/mlm =(21n+2)lImu, 
(10) 

using (6), where U is the mean failure stress for the same volume in pure 
tension. The numerical factor is 1·78 for m=4 and 1·44 for m=8. Other 
cases of inhomogeneous stress may be studied in the same way. For 
m=8 the ratio of the mean value of the extreme stress to the mean value 
in pure tension is 1·89 for three-point bending of a rectangular beam, 
1.41 for internal pressure in a 2 : 1 hollow cylinder, and 1·28 in torsion. 
Results of this type provide a possible explanation for the difference 
between values of tensile strength measured by different methods using 
inhomogeneous stresses. Durelli and Parks l interpreted their results in 
terms of the volume V •• of the specimen subjected to 95 per cent of the 
maximum stress and showed that if experimental values of the stress at 
failure are plotted against In (V.5 ) a good straight line covering the results 
of all experimental systems is obtained. 

The simplified discussion above refers specifically to tensile condi­
tions. It is known experimentally that similar results hold under com­
pressive conditions. For example, it is found for coal" that the crushing 
strength Uc of cubes of side a is given by 

uc=pa-a. (I I) 
where p and a. are constants and a. varies between 0·2 and 0·5. For a 
specimen of height a and least diameter d this is generalized to 

uc=qa-Pdl', . (12) 
where q, f3 and yare constants. Relations of this sort are of great import­
ance in the design of pillars in mines. 

1 A. J. Durelli and V. Parks, Proc. Fourth U.S. Congo Appl. Math. 
(1962), 93 1- 8. 

• I. Evans and C. D. Pomeroy, in Mechanical Properties of NOIl­

metallic and Brittle Materials (Butterworths, London, 1958), 5-28. 
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An alternative approach due to Protodiakonov' leads to thc formula 

Ud/UT= 1 + C/[(d/b) + I], . . (13) 
where aT is the crushing strength of the rock mass as a whole, Ud is the 
crushing strength of a cylindrical specimen of diameter d, b is the average 
spacing between flaws in the rock, and C is a parameter depending on the 
nature of the rock. This formula is in good agreement with observations 
on coal. 

56. THE COMPLETE STRESS-STRAIN CURVE 

In § 12, it was stated that when brittle materials such as rocks 
are tested in uniaxial compression they show the behaviour of 
Fig. 19 (c) and fail suddenly with complete loss of cohesion. It 
has only recently been appreciated that such catastrophic failure 
is caused by instability of the whole system consisting of the 
specimen and the testing machine. When rock is stressed in a 
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FIG. 80 (a) The complete stress-strain curve 

(b) Load-displacement curve showing conditions for instability 

sufficiently stiff testing machine, sudden failure may not occur 
and rock which will be described as having failed can still sustain 
considerable load. This is of great practical importance. 

The stress-strain curve measured in a stiff testing machine is 
known as the complete stress-strain curve and its details give 
important information about the mechanism of failure. The curve, 
Fig. 80 (a), divides essentially into four regions: I, GA, in which 
it is concave upwards; II, an approximately linear region, AB; 

'M. N. Protodiakonov, Fourth Int. Conf. Strata Control and Rock 
Mechs. (1964). 
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III, a region BC in which it is concave downwards reaching a 
maximum at C; IV, a falling region CD. The maximum ordinate 
of the curve at C is the uniaxial compressive strength Co and the 
rock will be described as having failed at this point. The processes 
involved in the four regions will now be discussed in detail. l 

Region I. This region is associated with the closing of open 
cracks, cf. § 43. The effect of open cracks is to decrease the elastic 
moduli of the body. This may be seen most easily for the bulk 
modulus. Suppose that volume Vo of the body contains length 
L Vo of cracks which will be taken to be in plane stress so that the 
previous formula § 52 (23) can be used. This shows that an 
increase !1p in hydrostatic pressure, which gives an increase !1p in 
normal stress across the cracks, causes a decrease in volume 
2nc2LVo !1p/E of the cracks and a decrease in volume Vo!1p/K 
of the solid material. Adding these gives for the effective bulk 
modulus Kc of the cracked material 

~= __ !1Vo =~+ 2nLc2=~+n(K+I)Lc2 (I) 
Kc Vo!1p K E K 4G ,. 

where the last expression holds for either plane stress or plane 
strain, K being given by § 52 (2). A similar argument gives for the 
effective Young's modulus Ec 

~=~+n(K+I)Lc2 (2) 
Ec E uG . 

Region II. Suitably oriented cracks are regarded as having 
closed2 in Region I but sliding across their opposing surfaces is 
assumed to occur as in § 46 (iii). It follows that in this region 
Young's modulus is less than its value for the uncracked material. 
However, if the stress is lowered at any point P, reverse sliding 

1 The complete stress-strain curve for concrete and the effects associ­
ated with it was discussed very fully by P. R. Barnard, Mag. Concr. Res., 
16 (1964), 203. The study of rock properties in stiff machines is discussed 
by G. A. Wiebols, J. C. Jaeger and N. G. W. Cook, loco cit. 

2 W. F. Brace, J. Geophys. Res., 70 (1965), 391-8, and J. B. Walsh, 
ibid., 70 (1965), 399-411, 70 (1965), 5249-57, 71 (1966), 2591-9, have 
discussed in detail the effect of cracks on the elastic properties of rock. 
W. F. Brace, A. S. Orange and T. R. Madden, J. Geophys. Res., 70 
(1965), 5669-78, have shown that changes in the electrical conductivity 
of rocks (determined largely by fluid in cracks) may be related to the 
closing of cracks .. 



§ 56] APPLICATIONS 2 19 
will not begin immediately so that the slope of the unloading 
curve PQ should give E for the uncracked material. 

Region III. In this region it is believed that existing cracks 
begin to propagate stably so that the stress corresponding to the 
point B would correspond to criteria of the Griffith type which 
indicate when an existing crack would begin to grow. As the 
stress is increased, the network of cracks increases irreversibly 
and at C the material is regarded as having failed. 

Region IV. The failed material can still support considerable 
stress and if the sample is unloaded and reloaded as at RST there 
is permanent set OS and a maximum stress is attained at T. 

The way in which the stress-strain curve is affected by the 
stiffness of the testing machine will now be discussed. It is a 
little more convenient to work in terms of the load-displacement 
curve, Fig. 80 (b) in which P is the load applied to the specimen 
and x the relative displacement of its ends. Let the stiffness (force 
per unit displacement) of the testing machine be A.. In the falling 
region of the stress-strain curve, an increase of displacement flx 
leads to a fall flP in the load which the specimen can support, 
and for the system to be stable this must be less than the fall ).flx 
in the load applied by the machine. That is, the condition for 
stability is 

If this condition is not satisfied, sudden failure, usually very 
near the point C, results, the load-displacement curve following a 
path determined by the stiffness of the machine, which for many 
machines is of the order 106 lb./in. 

The behaviour described above is for uniaxial compression. 
Similar behaviour occurs for triaxial compression except that the 
curve CD tends asymptotically to a fixed value (the residual 
strength) corresponding to sliding across a plane of shear failure. 
For soft machines there is unstable failure, AB of Fig. 60, at the 
maximum stress. 

The fact that 'failed' material in the region CD can support 
considerable load is of the greatest practical importance: it 
implies that failed material can be useful, and that what has to be 
avoided is unstable failure. For example, failed pillars, or the ring 
of failed rock around a tunnel, may support considerable load. 
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The conditions for stable failure in the latter case may be found 
as follows. Suppose that there is a thin layer of failed rock of 
thickness t on the inside of a circular tunnel of radius a. Let aT 
and u .. be the radial stress and displacement inwards of the annulus 
at the boundary. The stiffness of the solid material which is 
stressing the annulus is 2G/a. by § 52 (4) so that. as in (3). the 
criterion for stability of the annulus is 

I dar 1<2G. (4) 
du.. a 

Let a and e be the tangential displacement and strain in the 
annulus: these are the quantities which appear in its stress-strain 
curve. From statical considerations they are related to ar and Ur by 

ta=oor. and e=ur/a. . (5) 
Using (5) in (4). the criterion for stability becomes 

I : 1<2~G. (6) 

The theory of § So (iii) may be extended to the case of solid 
material outside a region of fractured material whose complete 
stress-strain curve is known. 



CHAPTER V 

APPLICATIONS TO STRUCTURAL GEOLOGY 

57. INTRODUCTORY 

THE theory of finite strain developed in §§ 6-«) is fundamental for 
structural geology. In particular, the theory of finite homogeneous 
strain provides a means of describing large strains and following 
the processes involved: it is still extensively used. l While the 
strains occurring in geology are far from being homogeneous, 
sometimes even in quite small regions, it is impossible to treat 
practical types of inhomogeneous strain except by numerical or 
analogue methods! so that for a mathematical description it is 
essential to use simple types of finite homogeneous strain. 
Because of the importance of the subject, the object of this 
chapter is to extend the theory given in Chapter I with specifically 
geological examples and also to indicate applications of some of the 
theory of Chapters II and III to geological problems.3 Because 
this chapter is essentially a sequel to Chapter I, the convention of 
that chapter will be used; in particular, strains are reckoned 
positive when they are extensions. 

58. COMBINATION OF STRAINS 

The whole of the discussion of § 7 referred to a single finite 
strain, but it is only rarely that a single strain is in question, and 

1 The study of finite homogeneous strain in geology derives from 
Becker's work (loc. cit.) which was made fundamental by B. Sander in his 
Gefiigekunde de, Gesteine (Springer, 1930). However, many recent works 
give elementary discussions ab initio similar to those of Becker, e.g. 
H. Ramberg, Norsk Geol. Tids., 39 (1959), 99-151, and D. Flinn, Quort. 
J. Geol. Soc. Lond., uS (1962),385-433. The theory is made fundamental 
by J. G. Ramsay, Folding and Fracturing of Rocks (McGraw-Hill, 1967). 

8 For example, E. S. O'Driscoll, J. Alberta Soc. Petrol. Geol., 10 
(1962), 145-67, and Econ. Geol., S9 (1964), 1061-93 uses card models: 

a For structural geology in general, see L. U. de Sitter, Structural 
Geology, Ed. 2 (McGraw-Hill, 1964) F. J. Turner and L. E. Weiss, 
Structural Analysis of Metamorphic Tectonites (McGraw-Hill, 1963). 

221 



222 ELASTICITY, FRACTURE AND FLOW [§ 58 

in general a number of strains, finite or infinitesimal, are applied 
to the system successively. The combination of such strains be 
best handled in matrix notation. 

A matrix of m rows and n columns, which may be written 
symbolically (A) or (Am,n), consists of the array of numbers 

If m=n, the matrix is called square. In a square matrix, if 
ars=asr for all rand s, the matrix is symmetrical; if ars=-asr and so 
arr=o, the matrix is anti-symmetrical; if ar.=o if r#-s, it is diagonal; 
and if it is diagonal and all arr=I it is the unit matrix (I). Two 
matrices of the same number of rows and columns may be added 
or subtracted by adding or subtracting the corresponding ele­
ments. 

The simplification introduced by the use of matrices in the 
present context arises from the law of multiplication which states 
that the product (Am,n)x(Bn,p) of a matrix (Am,n) of m rows and 
n columns with a matrix (Bn,p) of n rows and p columns is a 
matrix (Cm,p) of m rows and p columns, whose r,s-th element 
cr,. is given by 

n 

Crs= L artbt.=arlbls+ar2b2s+ .. . +arnb"8' . (2) 
t=1 

and so is found by mUltiplying the elemehts of the r-th row of 
(Am,,,) in order by those of the s-th column of (B"'1» and adding. 
It has to be noted that in general matrix multiplication is not 
commutative, that is (A)x (B) #-(B) x (A) and in the present context 
this implies that in general, a finite strain (B) followed by a finite 
strain (A) gives a different result to a finite strain (A) followed by 
a finite strain (B). 

After these preliminaries, the results of § 7 may be set out in 
matrix notation; § 7 (7) becomes 
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and the equations for rotation of axes, §7 (5) (6), become! 

~:)=C~?~ g ~: g)~), ~)=(~?r: ~ -~: ~)~} (4) 

The two square matrices in (4) are in fact inverses, the inverse 
(A)-I of a matrix (A) being defined by 

(A) x (A)-I=(A)-I x (A)=( I). (5) 
The solution of a set of linear equations is equivalent to finding 

the inverse of a matrix and this, as well as all operations involving 
matrices, is very easily done on a computer. 

Finite strains may now be combined by using matrix multi­
plication, for example if 

G::)=(~~ ~~)G:), ~:)=(~ ~)~) 
it follows that 

(6) 

As a special case, if aI' bI , eI , d1 is an infinitesimal strain so that 
by § 10 (5) (6) the first of equations (6) is 

~::)=(i;!~ !~;~)~:), (7) 

(6) becomes 

(:r:")_(a(I+E1)+e(ly-w) b(I+El) +d(IY-w»)(X) (8) 
y" - a(ly+w)+e(I+E2) b(ly+w)+d(I+E2) \y 

The theory of § 7 was set out in what are now regarded as the 
components a, b, c, d of the transformation matrix (3) and, 
because of the importance of matrix theory in connection with the 
superposition of strains, this will continue to be the most im­
portant representation. However, for geological purposes the 
position and axes of the strain ellipse and the rotation are the 

1 These equations arise in two different contexts and should always be 
interpreted by reference to Fig. 10 (a). As set out in (4) and § 7 (5) (6) they 
refer to a change of axes from Oxy to Ox'y' inclined at 8 to them, and they 
are frequently used for this purpose, e.g. in (28) below. Alternatively, the 
effect of a finite rotation of the axes Oxy, carrying the point x, y with 
them, is often needed, and this is found by replacing x, y by x', y' in (4), 
or, what amounts to the same thing as may be seen from Fig. 10 (a), by 
replacing 8 by -8 in (4). 
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most obvious quantities, and it is useful to develop relations 
between all the quantities in use. 

The quadratic elongation A was defined in §§ 7 (40), 9 (3), and 
the principal quadratic elongations Al and A2 are just the squares 
of the semi-major and minor axes A and B, § 7 (26)-(29), of the 
strain ellipse, so that 

where, as usual, Al <;A2 • 

Using these and § 7 (14), equation § 7 (40) for the quadratic 
elongation A becomes l 

A=i(AI+A2)+i(AcA2) cos 2(O-IX), (10) 
and § 7 (13) for the shear strain y=tan 1p becomes 

y=-1(Ac~)(AIA2)-i sin 2(6-1X) (II) 

=-1(~+~-2y sin 2(6-1X), . (12) 

where IX is given by § 7 (14), The form (12) shows that y involves 
only the ratio Ad A2' 

y 'Y' 

( a) ( b) ( c) 
FIG. 81 

The situation is shown in Fig. 81 (a) (b). Here OX, OY are 
the initial positions of the principal axes of strain with OX 
inclined at IX to the reference direction Ox. OX' and OY' are the 
final positions of the principal axes of strain with OX' inclined at 

1 It is assumed, as usual, that .\1 ~.\2 and that .\1 is IIIIsociated with the 
direction or. and .\. with or.+!7T. Ambiguities in sign can be settled by con­
sidering the special case b=c=o. 
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a.' to the reference direction. A andy given by (10) and (II) refer to 
a direction inclined at ()-oc to OX corresponding to the point P on 
a unit circle. This transforms into a point P' on the strain ellipse 
in a direction inclined at ()'-oc' to OX', and the axes of the strain 
ellipse are All and it:, •. Relative to axes OX, OY, the point P has 
coordinates cos «()-oc), sin «()-oc) and this transforms to the point 
Al• cos «()-oc), ~. sin «()-oc) relative to axes OX', OY'; but this 
point is also, from Fig. SI (b), A· cos (O'-oc'), AI sin «()'-oc'), and 
therefore 

All cos «()-OC)=AI oos (O'-oc'), (13) 
A2~ sin «()-OC)=AI sin «()'-IX'). (14) 

It follows from (13) and (14) that 
(AlAa)1 sin 2«()-oc)=). sin 2«()'-IX'), (15) 

and ).-I=A1- l COsZ «()'-OC')+Az- 1 sinz «()'-oc') 
=l(Al-I+Az -I)+!(it1-LAz -1) cos 2«()'-oc'). (16) 

Using (15) in (II) gives 
yA -I--l(Aa -I-AI-I) sin 2{O' -oc'). (17) 

(16) and (17) give the quadratic elongation and shear strain in 
terms of the final position of the point concerned and thus are 
rather more useful than (10) and (II) which involve their initial 
positions. A-I is the reciprocal quadratic elongation and because of 
the common occurrence of this quantity it is convenient to adopt 
a special notation, namely 

A-1=it', Al-I=A/, Az-I-it:,', yit-I=y'. . (IS) 
With this notation, and writingtfo'=()'-oc', (16) and (17) become 

A'-AI ' cos2 tfo'+it:,' sin2tfo'=!(Al'+Az')-!(Az'-itI') cos ztfo', (19) 

y'--!(Az'-Al ') sin 2tfo', . . (20) 
here, since Al ;;;,it2 , As' ;;;,A1'. 

The variation of A' and 1" with tfo' is shown in Fig. SI (c); it is 
similar to the Mohr circle construction of Fig. 4 and many 
methods based on the use of this construction are available, cf. 
Ramsay, loco cit.; Brace, loco cit. Since, by definition, 

y'-A'y=A' tan 1jJ 

the angle poe, Fig. SI (c), is the angle 1jJ of the shear. 
Formulae for change of axes follow from (19) and (20). Suppose 
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that axes 0;, 01/ make angles cp' and cp' +tn with the principal 
direction OX', then if I.e', ~', rl refer to these, 

I.e' =1.1' cos2 cp' + 1.2' sin 2 cp, } 
1.'1'=1.1' sin2 cp'+A2 ' cos2 cp', . 

(21) 

r~' =-l(A2' -AI') sin 2CP' • (22) 

It should be emphasized that these refer to two directions which 
are perpendicular in the final state but will not be so in the initial 
state. 

It follows from (21) and (22) that 

I.e' +1.'1' =1.1' +1.'1.' =j1' constant,} 
and I.e' 1.'1' -re'1l=A1' AI' =jl' 

. (23) 

so that these are invariants o/finite strain. Also by (23),1./ and AI" 
are the roots of the quadratic 

A'2-j1A' +jl=o, . (24) 

or I I.e' -A rl I 0 rE' ~' -A ... 
The equation of the strain ellipse referred to its principal axes 

OX', OY' is 
, -1 I 1 -1 II " II l' l! ( ) .11.1 Xl +.11.2 Yl =.11.1 Xl +.II.2Yl -=1, • • 25 

and referred to axes OC, 01J inclined at cp' to these it is, using 
§ 7 (6) 

J..E'~'I.-2rl;1/+~''YJ'I.=I, 
where ill and re' are defined in (21) and (22). 

• (26) 

The above treatment, like that of § 7, has proceeded from the trans­
fonnation matrix 0, b, c, d to parameters such as All AI , etc., describing 
the strain. It is also of interest to deduce the transfonnation matrix from 
parameters describing the strsin. Consider first an irrotational (pure) 
strain whose principal quadratic elongations are Al and AI and whose 
principal axes are inclined at at and at+1'11' to Ox. Relative to principal 
axes the strain is 

(~~:) .. (~li 'ti) (~~), . (27) 

and referred to axes Oxy it becomes by (4) 

(~:) = (~: ;:s~ at) (~li ~Il) (_~: ~::) (~) 
( All cos· at+Ali sinlat (Ali-Asl) sin at cos at) (X) 28) 

'"' (All-Ali) sin at roSat All sinl at+A.1 cos' at y 
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which has the fonn (3) with 
a=A1t cos' I1+A,t sin' 11, d=A1t sin' I1+A.t cos' 11, 

b=c=(A1t-A.t) sin 11 cos 11. • (29) 
Using these values in § 7 (21) gives the fonn (26) of the strain ellipse. 
Also, it follows from (29) that A1t+A.i=a+d, and A1tA.t=ad-b2 so that 
A1 and A. may be detennined from a, b, d by a calculation similar to 
(24)· 

As remarked in § 7, a general homogeneous strain may be regarded as a 
pure strain, specified as above by A1> A., 11 or a, b, d followed by a finite 
rotation w. Using (4), the combined effect of these is, 

(;:) = (~:: -~~~:) (~ ~) (;) 
= (a C?S w-b sin w b c.os w-d sin w) (x) . (30) 

a sm w+b cos w b sm w+d cos w y 
which has the general fonn (3) so that the elements of the matrix are 
known if A1> A., 11, ware given. 

Similar results hold in three dimensions. Suppose that A1> A., A. are 
the principal quadratic elongations and that their direction cosines are 
11, 7111> n1; I., 711., n.; I., 711., n., relative to axes Oxyz. 

In three dimensions, the fonnulae for transfonnation from a set of 
rectangular axes Ox, Oy, Oz to another set O~, 0'1, 0" whose direction 
cosines relative to Oxyz are (11, 71110 n1), (I., m., n.), (l., 71Ia, n.) respectively, 
are1 

The two square matrices in (31) are inverses since a number of rela­
tions of type 

11'+m1"+ntl=I, /1"+/.'+/,1=1, } 
111,+m1m.+n1n.=o, 11m1 +1,m.+I.m.=o, etc. 

hold between the direction cosines of two sets of mutually perpendicular 
lines. 

Using (31), a pure strain with principal quadratic elongations A10 A" A. 
along the axes O~, 0'1, 0, becomes when referred to axes Oxyz 

( X') (It I, 13 )("1t 0 0 )(11 m1 n1)(X) y: = 7111 m. 711, 0 A.t 0 I, m. n. y 
z nl n. n. 0 0 Aat 13 ma n3 z 

( at b1 C1)(X) = b1 bl C, y,. 
C1 c. Ca Z 

• (33) 

where (33) is a symmetrical matrix in which 
a1=A81' +A,t/.' +A.t/3', b1=A1t/1m1+A.t/.m2+A.t/.m.} 
C1 = A1 t/1n1 + A,t/.n. + A.t/.n., b.= A1 tm1'+ A.tm,'+ Aatm,' (34) 
c.-A1tm1n1 + A.tm.n'+.\3tm3n3' Ca=.\1tnl' +.\ •• n.I+.\atn.' 

1 R. J. T. Bell, Coordinate Geometry of Three Dimensions, Chap. IV 
(Macmillan, 1920). 
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It follovlrs that a general pure strain in three dimensions corresponds to 
the symmetrical matrix (33) and the most general finite homogeneous 
strain is obtained by superimposing a finite rotation on (33) by matrix 
multiplication using (31). 

59. DETERMINATION OF FINITE STRAIN FROM DEFORMED OBJECTS 

During geological deformation of a rock matrix, objects such as 
pebbles, fossils and ooids embedded in it will be deformed and 
measurements of their final shapes can be used to give an indica­
tion of the finite strain in the rock. l Details of procedure differ 
according to whether the undeformed objects are spherical or 
non-spherical and to whether their mechanical properties are the 
same as, or different from, those of the matrix. A necessary pre­
liminary in all cases is the determination of the directions and 
lengths of the principal axes of an ellipsoid from three perpendi­
cular non-central sections. 

(i) Determination of the Principal A~es and Direction of an Ellipse 
Suppose. that the equation of the ellipse is 

Pl~'1.+2P1,;cy+p.y2- I. (I ) 
Two methods have already been used for solving this problem: 

(i) finding the directions in which the radius vector is a maximum 
or a minimum, so that the lengths of the radius vector in these 
directions will be the semi-axes; (ii) studying the intersection of 
(I) with a circle of radius R as in § 7 (23), which gives an equation 
for the lengths of the semi-axes. Also, since any ellipse may be 
regarded as the strain ellipse of some strain, finding the principal 
axes and elongations of this strain as in § 58 (24) is an equivalent 
problem. A similar treatment, set out in purely geometrical 
terms, will be followed here. 

Suppose that the principal axes O~l' Oyl of (I) are inclined at 
o and O+ln to O~, and that relative to them its equation is 

ql~lll+q~II_I. (2) 
When referred to axes Oxy, (2) becomes by § 7 (5) 

ql(~ cos O+y sin O)2+ql(~ sin (J-y cos (J)I-I. (3) 

1 J. G. Ramsay,loc. cit., gives a full discussion and references. Critical 
discussions are given by W. F. Brace, Bull. Geol. Soc. Amer., 7Z (1961), 
1059-80, and B. E. Hobbs and J. L. Talbot, ,. Geol., 74 (1966) SOO-I3. 
See also E. Cloos, Bull. Geol. Soc. Amer., 58 (1947), 843-918. 
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Comparing coefficients between (I) and (3) gives 
Pl=ql cos'l. 0+q2 sin2 0, P2=Ql sin2 0+Q2 cos2 0, (4) 

P12=1(QcQ2) sin 20. . (5) 
It follows that 

Pl+P2=Ql+q2=il' PlP'rP122=qlq2=i'l.' (6) 
where the quantities il and i2, being independent of 0, are in­
variants. It follows from (6) that 

QCQ2=::J:.(jl2_4i2)t, (7) 
and Ql and Q2 are found from (6) and (7). Also by (6) they are the 
roots of the equation in Q 

I PcQ P12 \ -0. (8) 
P12 P,,-Q 

The ambiguity of sign in (7) must be noted and it is usually 
necessary to return to (4) and (5) to see which semi-axis is 
associated with a given principal direction. 

It follows from (4) that 
sin20=(pcQl)/(Q2-Ql) (9) 

Alternatively from (4) 
PcPa=(Ql-Q'l.) cos 20, (10) 

and so from (10) and (5) 
tan 2O=2Pla/(PcP2)' (II) 

(ii) Determination of the Lengths and Directions of the Principal Axes of an 
Ellipsoid 

Here, again, many methods may be used and the one given here is 
similar to that used in §4 for the determination of principal stresses. 
Suppose the equation of the ellipsoid is 

Plxl+p.yl+Pazl+2PlsYZ+2P31ZX+2PuXY= I.. . (12) 
Let R be the radius vector in the direction I, m, n, so that x=IR, y=mR, 
z=nR. Inserting this in (12) and writing p=R.-2 for shortness gives, 

Plll+P2m2+Pan8+2Plamn+2pSlnl+2Pulm=R.-2=p. (13) 
The conditions for R or p to be stationary are as in § 4 (9) (10) 

with 

ap 
-=0 am ' 
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Using (14) in (13) gives 

Pll+pum+P3ln+(P3lI+p'3m+P3n)(on/ol) =0, (16) 

P12I+p.m+p'3n+(p3ll+p'3m+Pan)(on/om)=0, (17) 
and using (15) these give 

(pll+P12m+P3ln)/I=(p12l+p.m+P23n)/m=(p3lI+P.am+Pan)/n=h, (18) 
where h is unknown. Multiplying the three equations (18) by I", mO, nO, 
respectively, adding, and using (13) and 1'+m2+n2 =1 gives h=p so that 
the three equations (18) become 

(Pl-P)I+pum +P3ln=o} 
P12I+(p.-p)m+P •• n=o 
P3ll+P03m+(p3-p)n=0 

which are of the same form as § 4 (14). They have a non-zero solution 
only if p is a root of 

I Pl-P P12 P3l I 
Pu P.-P PI. =0. 
Pal P03 P.-P 

. (20) 

It is known that the cubic (20) has"three real roots and these will be 
A-', B-2, C-o, where A, B, C, are the semiaxes of the ellipsoid. For each 
value of p, solving any two of (19) gives the corresponding direction of a 
principal axis, and it can be shown that these directions are orthogonal. 
As in § 4 (17)-(20) the determinant in (20) can be expanded so that (20) 
takes the form 

p3-ilP2_i.p-i3=0, . . (21) 

where it> i., i3 are invariants. This cubic is readily solved graphically. 

(iii) Determination of an Ellipsoid from Three Orthogonal Non-central 
Sections 

In the geological context an ellipsoidal object, such as a pebble con­
tained in a matrix, may readily be sawn across three mutually perpen­
dicular planes: it is desired to find the equation of the ellipsoid from a 
knowledge of these sections. Suppose the planes are perpendicular to 
rectangular axes Oxy:;: and that relative to these the equation of the 
ellipsoid is (12). The section of this by the plane :;:=:;:0 is 

P1X·+PIY·+2P12XY+ 2PI3Y:;:0+2P31X:;:0 +P3:;:0 2= 1, 

which may be written in the form 
Pl(X-a.)·+p.(y_{J)2+2PlI(X-a.)(y-{J)=y, 

where a., p, y can be expressed in terms of Pl , Pia, ... ,:;:0. 

(22) 

This is an ellipse with centre a., B which is similar and similarly 
situated to the section of (12) by the plane :;:=0 which is 

P1X"+P.yl+2PlaXY=I. • . (24) 
It follows that Ph P. and Pll are determined from measurements of the 

section (23) except for a constant factor hh that is, 

Pl=klCl , Pl=klC., Pu=klC., . . (25) 
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where C,' C2, C. are known and k, is unknown. Similarly from sections 
perpendicular to the y- and x-axes it follows that 

p, =k2C" p.=k.C., P31 =k,C., } . (26) 
p,=k3C7 , p.=k3C., P23=k.C., 

where C, , ... , C. are known and k2 and k. are unknown. 
These equations are not all independent and, in fact, 

C,C.C7=C2C,C •. 
All of P, , ... , P3' can be determined from them except for a constant 
factor, say, k3 • If this is to be found, an additional measurement is 
necessary however, in the present context this is usually unimportant, 
and, neglecting it, the equation of the ellipsoid is found in the form (12). 
The case of three general sections is treated by Ramsay, loco cit. 

(iv) Deformation of Initially Spherical Objects 
Examples of this case are ooids, spherulites and pisolites. If 

it is assumed that they deform homogeneously with the matrix in 
which they are embedded, their final shape corresponds to the 
strain ellipsoid for the deformation. A sample, oriented with 
respect to the bedding or cleavage of the rock, is then cut in three 
perpendicular directions. Each of these cuts will intersect many 
deformed objects. For each cut, mean values of the axial ratios 
of the objects intersected and the directions of the axes of the 
elliptical sections may be calculated. From these, the equation of 
the strain ellipsoid and the principal strains may be found by the 
methods of (iii) and (ii) above. 

(v) Deformation of Non-spherical Objects 
In this case, the situation is more complicated since the objects 

are both rotated and deformed. For simplicity, only the two­
dimensional case will be considered. Suppose that an elliptical 
object whose equation is (I) is deformed by a pure strain with 
principal quadratic elongations Al and 1.2 along the x- and y-axes. 
Then the equation of the deformed ellipse will be 

Al-lPIX2+2(AIA2)-!PI2XY+A2 -lp2y2= I,. . (27) 
and by (I I) its major axis is inclined at an angle c/> to Ox given by 

tan 2c/> 2(~IA2)-lP~2 . (28) 
AJ Pl-)'2 P2 

2(ql-q2)(AlA2)-~ sin 28 (29) 
-(A1- 1-A2-1)(ql+q2)+(AI I+ A2-1)(qCq2) cos 28 
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using (4) and (5). This gives the direction of the axis of the de­
formed ellipse in terms of the parameters Al , .1.2 of the strain and 
Ql' Q2, 8. These formulae are most conveniently expressed in 
terms of Rs , the square of the axial ratio of the strain ellipse, 
and Ro and Rf of the initial and deformed shapes of the pebble 
so that 

Ro=qdql' Rs=At/A2 

In terms of these, (29) becomes 
2(Ro-I)Rst sin 28 

tan 2rp= ' 
(Rs-I)(Ro+I)+(Ro-I)(Rs+I) cos 28 

To find the value of Rf , (4) gives 
PI uRo tan2 (j 
~=-Ro+tan2 8 . 

and from (27) in the same way 
~Pl PI u Rf tan 2 rp 
A1P2 RsP2 Rf +tan2 rp . 

Eliminating Pt/P2 between (32) and (33) gives 
R _CuRo tan2 8) tan2 </>-(Ro+tan2 8)Rs 

r R.(Ro+tan2 8) tan2 rp-(uRo tan2 8)' 

. (3 I) 

where rp is given by (29)' There is some ambiguity in these 
formulae since (29) gives two possible values of rp. Two special 
cases are of importance. If 8=0, so that the object is aligned in the 
direction of greatest elongation, </>=0, Rf=RoR .. and this is its 
maximum value. If 8=in so that the object is aligned in the 
direction of least elongation, Rf has its least value but two cases 
arise: if Rci>R., rp=in and Rf=RoIR., while if R.>Ro, </>=0, and 
RrRslRo· 

The most common non-spherical objects used for the deter­
mination of finite strain are pebbles, the shapes of which are 
approximately ellipsoidal. Here the difficulty arises that neither 
the initial shape nor orientation of the pebbles is known. The 
shape factor is sometimes allowed for by measuring undeformed 
pebbles of the same composition and assuming that pebbles of the 
same composition will have approximately the same shape. It is 
usually assumed that the pebbles are randomly oriented. The 
procedure then is to choose some arbitrary direction in a surface 
intersecting many pebbles and to measure the inclinations rp of 
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the major axes of all pebbles relative to this direction as well as 
the squares of the axial ratios Rt of all pebbles. Rt is then plotted 
against cp. As shown above, the maximum value of Rt is RoRs and 
occurs in the direction of the maximum principal strain. From the 
maximum and minimum values of Rt , both Ro and Rs can be 
found and the technique can be extended to pebbles with varying 
values of Ro, Ramsay, loco cit. 

Strains determined from deformed pebbles generally refer to 
the pebbles themselves and not to the total strain experienced by 
the rocks containing them. This is because there is usually a 
difference in competence between the pebble and the surrounding 
matrix, the pebble being generally stiffer than the matrix and 
therefore suffering less strain than the surrounding rock. To 
estimate this effect, Gayl assumed a viscous model for both pebble 
and rock, the ratio of the viscosity of the pebble to that of the 
rock being R. He finds that if Al and A2 are principal quadratic 
elongations of an irrotational strain for the rock and Alp, )'2P are 
those for the pebble, 

AlP/A2P=[25/(2R+3)2](AdA2)' . . (35) 
R can be estimated from the viscosities of the pebbles and the 
matrix and the volume concentration of pebbles. As the latter 
approaches unity, R--7-I, and the importance of the difference in 
competence diminishes. 

(vi) Determination of Finite Strain from Deformed Fossils 
Fossils are probably the best indicators for the determination 

of finite strain in rocks because their undeformed shapes are 
generally known, and because there is usually no difference in 
competence between them and the surrounding rock so that they 
reflect the total finite strain experienced by the rock. 

Many common fossils may be used for this purpose and the 
treatment depends to some extent on their shape and symmetry. 
While the original size of the undeformed fossil is not known, it 
is usually the case that the ratio of the lengths of certain character­
istic lines fixed in the fossil is known. However, many fossils are 
relatively planar in shape and so will only indicate the strain in 
one plane. To determine the strain ellipsoid it will be necessary 
to find deformed fossils in three mutually inclined planes. 

1 N. C. Gay, Tectonophysics,S (1968), 2II-34. 
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(a) (b) (c) 
FIG. 82. (a) Brachiopod, showing hinge length h and median length m 

(b) Deformed Brachiopod 
(c) Mohr construction leading to,\tf'\a 

As an example, the case of brachiopods will be considered. 
These are relatively flat objects, and so are well suited for the 
determination of strain in their plane. Their undistorted shape 
is sketched in Fig. 82 (a), and the ratio of the length h of the hinge 
line to the length m of the (perpendicular) median line is known 
to be a constant K for a given species, so that 

h/m=K. . (36) 
In the deformed fossil, these lengths will have become h' and m' 

and the median line will have rotated through an angle "P, 
Fig. 82 (b), so that the shear strain is Ym=-YII=tan "P' The re­
ciprocal quadratic elongations are All' =(h/h') 2, Am' =(m/m')2 so 
that, using (36), all quantities can be scaled in terms of A.m' with 
numerical factors involving the known ratio K and the measured 
ratio K'=h'/m', so that 

AII'=(K/K')2Am', Ym'=A.m' tan "P,} 
YII' =AII' AII=-(K/K')2A.m' tan "P. . 

Knowing these quantities, the ratio Ad 1.2 of the principal 
quadratic elongations and the directions of the principal axes may 
be found by the Mohr construction of § S8 (19) (20). As an 
example, suppose K=2, K'=1·87, "P=30o. Then AII'=I'14Am', 
Ym'=0'S8Am', Yh'=-0·66Am'. Thus two points H(Ah', YII') and 
M(Am', Ym') on the Mohr circle in the A', Y' plane are known, and 
its centre C must be the intersection of the perpendicular bisector 
NC of HMwith the A'-axis. This is shown in Fig. 82 (c) which is 
scaled in terms of Am'. It follows by measurement of the diagram 
that A1'/Am'=O'71, A2'/Am'=2'IS so that AdA2=3·03. Also from 
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§ 58 (20), the angle OCH=64° is twice the angle between the 
final position of the hinge line and the direction of maximum 
elongation. This direction is shown in Fig. 82 (b). 

Other examples, both of the use of other fossils and of the 
Mohr diagram, are given by Ramsay, loco cit., and Brace, loco cit. 

(vii) Determination of Finite Strain from Deformed Sedimentary 
Structures 

Sedimentary structures which can be used for the determina­
tion of finite strain include cross-bedding, worm burrows, mud 
cracks, and ripple marks. Of these, only ripple marks provide 
sufficient information for the determination of a cross-section of 
the strain ellipsoid. Essentially, a ripple mark has an approxi­
mately triangular cross-section, two angles (l, {J of which are 
changed by the strain of (l', {J'. Hobbs and Talbot, loco cit., 
describe an analysis of strain using ripple marks but conclude that 
it is not possible to define the initial shape factors sufficiently 
accurately to allow quantitative determination of strain. 

60. PROGRESSIVE DEFORMATION 

The theory of finite strain developed in §§ 7-9 and § 58 was 
concerned only with the geometry of two sets of positions of the 
particles of the body, described as the initial state and the final 
state. It did not consider the way in which the particles moved 
from their initial positions to their final positions or the way in 
which the parameters describing the strain varied during this 
movement. This sort of study is fundamental for structural 
geology. 

It is of the greatest importance to be clear that two separate 
but interacting types of calculation are involved. First, the actual 
movement of individual material or marker points, lines or curves, 
may be studied: since such lines and curves do commonly occur 
in geological materials in the form of veins or outlines of fossils, 
this study is of direct practical significance. Since only homo­
geneous strain is under consideration here (and in this case 
parallel lines remain parallel during straining) any line may be 
used as a marker line for its direction. Secondly, the movement of 
certain mathematical lines or curves may be followed, for example 
the principal axes of strain or the principal axes of a marker 
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ellipse: these mathematical lines move relatively to the marker 
points or lines and at every stage are associated with a different set 
of them. 

The types of effect involved may be illustrated by typical 
examples. 

(i) Steadily Increasing Pure Shear 
Many of the most important features of progressive deforma­

tion are illustrated by this case. Here, by § 7 (3) 
x'=kx, y'=k-1y, (1) 

where k increases steadily, and the lengths A and B of the semi­
major and semi-minor axes at any stage are A=k, B=k-l. A 

y 
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(a) (b) 
FIG. 83 (a) The movement of lines, initially of unit length and at various 

angles to Ox. for pure shear, x'=kx, y'=k-ly. Dots correspond 
successively to k=l, I'Z, 1'4, 1.6, ... 
(b) The variation of the inclination 8' of a line with the fractional 
shortening F=I_k-1 in the y-direction. I, region of shortening; 
II, shortening followed by lengthening; III, region of lengthening 

point x=cos (), y=sin () on a circle of unit radius becomes 
x' =k cos (), y' =k-1 sin () on the strain ellipse whose distance r' 
from the origin is 

and whose direction ()' is given by 
tan ()' =y' /x'=k- 2 tan (). (3) 

(2) and (3) give the movement of marker points under these 
conditions. The corresponding points for ()=900, 80°, 70°, 60°, 
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50° and 0, and for regular steps k=l, 1·2, 1·4, 1·6, ... , are shown 
by the circles in Fig. 83 (a). If 0=90°,0'=90° and r' decreases 
steadily. If 90>0>45°, r' falls to a minimum and then increases, 
so that any lines whose inclinations are in this region are first 
contracted and subsequently extended: in this region r' as a 
function of k has a minimum value of (sin 20)t when tan 0=k2 so 
that 0'=45°. If 0<0<45°, r' increases steadily and all lines in this 
angular region are extended. The fact that the regions of initial 
contraction and extension are separated by 0=45° follows from 
(2) since this gives 

r'(dr' jdk)=k cos2 0-k-3 sin2 0, 
and if k=1 this is positive if 0<45° and negative if 0>45°. 

An interesting alternative representation, Fig. 83 (b), plots the 
fractional shortening I-k-1 in the y-direction against 0' derived 
from (3). From the previous type of calculation this is found to 
divide into three regions: I, in which lines are shortened; II, in 
which lines previously shortened are subsequently lengthened; 
III, in which lines are lengthened. The boundaries between these 
are shown by the dotted lines, the boundary between regions II 
and III is the curve corresponding to 0=45°. 

Since from (I) 
x'y'=xy, (5) 

the points of Fig. 83 (a) in fact lie on hyperbolae which are 
shown as broken lines in the figure. These may be compared with 
the stream lines in viscous flow between parallel planes, Fig. 50, 
and, in fact, these stream lines, § 40 (16) are approximately 
hyperbolae in the region x~h, y~h, near the origin. 

(ii) Progressive Flattening of a Sphere to an Oblate Spheroid with No 
Change in Volume 

In this case the transfonnation is 
x'=kx, y'=ky, z'=k-2z, (6) 

The point x=cos (), y=o, z=sin () in a direction inclined at 111'-8 to the 
z-axis is transfonned to x'=k cos (), y'=o, z'=k-2 sin () at distance r' from 
the origin given by 

r'2=k2 cos. ()+k-' sin2 (),. (7) 
so that r'(dr'/dk)=k cos· ()-zk-6 sin" () (8) 

For k=I, (dr'/dk)<o if tan 9>z-i or 90>9>35.3°, so that lines in this 
cone are initially contracted and subsequently extended. For a given value 
of () the minimum value of r' occurs when 

k3=zi tan () or tan ()' =z' / x' =k-3 tan ()=z-i, 
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and this minimum value is (z7/4)i sin to cos f O. The paths of the 
particles in this case are x"z = Constant. 

The deformation of a sphere to a prolate spheroid may be treated 
similarly: in this case lines inclined at angles greater than tan-1 zt=54·8° 
to the axis of symmetry are initially contracted and subsequently 
lengthened. 

(iii) Progressive simple shear 
Here by § 7 (4) 

x'=x+zsy, y'=y, . (9) 
and the semi-axes A and B of the strain ellipse are 

A=(S2+I)t+S, B=(S'+I)t-S, (10) 
and its major axis makes an angle X 

X=!1T-! tan-Is (I I) 
with Ox, cf. p. 33. The principal quadratic elongations are '\I=A', 
,\.=B'. Lines y=x tan 0 are extended if 0<0<90° and are initially 
shortened and subsequently extended if 90<0<180°. 

2 _.!!.-.-. 
O~~~~~:~::-:::-:--:-~1·=·=-=-=·=;1~8~~2 

---.. _--._._--
-2 

---ia--·_· 

FIG. 84. Progressive simple shear. Variation of A, B, i l and £2 with s 

Suppose, now, that s increases steadily from zero, then (9) shows the 
way in which the axes of the strain ellipse vary, and their ratio AlB gives 
a measure of the way in which the shape of the ellipse changes. Alter­
natively, the logarithmic strains, § 18.(4) 

il=ln A=t In '\1, £2=ln B=t>.. , . (12) 
may be studied. These quantities are plotted against s in Fig. 84. 

The same results apply to the three-dimensional case x'=x+zsz, 
y'=y, z'=z, in which the axes of the strain ellipsoid are A, I, B. 

(iv) The Representation of the Parameters Specifying Strain 
In two dimensions, strain is specified by the semi-axes A='\lt , B=,\.t 

of the strain ellipse and the rotation w. A and B may be plotted against 
one another as in Fig. 85 (a). This diagram divides into three regions, 
OPQ of contraction in which A<I, B<I; SPR of expansion in which 
A>I, B>1; and RPQT in which A>I, B<L The hyperbola PT cor­
responds to the case AB=I in which areas are unchanged. If rotation, 
also, is to be considered, a third coordinate axis is needed. 
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FIG. 85. Representation of the shapes of strain ellipsoids ~(a) in two:dimen­

sions, (b) in three dimensions 

In three dimensions, apart from rotation, three semi-axes A='\'ll, 
B=A.t, C=A3' have to be represented. The shape of the strain ellipsoid 
can be specified by the two ratios 

a=AjB, b=BjC, 
and in the equivoluminal case in which ABC=I, 
specify the ellipsoid completely since in this case 

(13) 
the quantities (13) 

A=aIM, B=a-1b1, C=a-1b-l . (14) 
This case is illustrated in Fig. 85 (b) in which a is plotted against b. The 
line PS, a=b, corresponds to B=r. PQ corresponds to a prolate spheroid, 
B=C; and PR to an oblate spheroid A=B. The region QPS corresponds 
to prolate or constriction-type ellipsoids with A>I>B>C, and SPQ 
to oblate or flattening-type ellipsoids with A>B>I>C. 

Any continuous deformation corresponds to a curve or deformation 
path such as PU in the a, b plane; for example, (6) runs along PRo It 
should be understood that there is an infinite number of possible deforma­
tion paths between a given initial state P and a given final state U: 
specific assumptions, such as those made above, lead to specific paths. 
For example, Flinn, loco cit., defines 

K=(a-I)!(b-I) . (IS) 
and takes deformation paths to be straight lines 1 of constant K. In this 
case, taking a as the parameter specifying the strain, (14) becomes 

A=af[I +(a-I)K-l)l, B=a-I[I +(a-I)K-1)1 } 
C=a-1[I +(a- I)K-1)-f. . (16) 

In (IS) and (16), O<K<I corresponds to a flattening (oblate) deformation; 
K=I is the case B=I; and I<K<CO corresponds to a prolate (constriction­
type) deformation, Fig. 85 (b). 

1 This assumption is made because of its mathematical simplicity. 
D. Flinn in Controls of Metamorphism (ed. Pitcher and Flinn, Oliver 
and Boyd, 1965) and J. G. Ramsay, Trans. Amer. Geophys. Union, 45 
(1964), 106 remark that the case K=(ln a),'(1n b) is probably more meaning­
ful. 



ELASTICITY, FRACTURE AND FLOW 

(v) Progressive Irrotational Strain in Three Dimensions 
Referred to principal axes, the transfonnation is 

[§ 60 

x'=Ax, y'=By, z'=Cz, (17) 

so that the point P at unit distance along a line of direction cosines 
(l, m, n) becomes the point P' at distance r' along a line of direction 
cosines (1', m', n') where 

and 
1'=Al/r', m'=Bm/r', n'=CII/r', 
r' =(A2l2+B2m2+C2n2)i 

If the variation of A, B, C is known, the path of P' can be followed. 
The only case which will be considered here is the equivoluminal case 

a'-----....;.. .... ,A 

(a) (b) 
FIG. 86. Equivoluminal strain in three dimensions: (a) Regions on the 

stereographic projection in which lines are all extended (nearest to 
A) and contracted and subsequently extended (nearest to C). The 
numbers on the separating lines are values of K, (b) Changes in 
direction shown on the stereographic projection of a number of lines 
as a increases from 1 to 6 for the case K= 1 

with K constant in which A, B, C are given by (16) with a as parameter. 
As in (i) above, lines in some directions are continually extended as 
defonnation proceeds, while lines in other directions are initially con­
tracted and subsequently extended. The boundary between these two 
regions in the initial state is given by (dr' /da)a=l=O, or, using (16) in (19), 

(2K+I)12-(K-I)m 2-(K+2)n2=o, (20) 
which agrees with the results of (ii) for the case K=O and K=OO. Results 
for other values of K are conveniently shown on the stereographic pro­
jection on the AC plane, Fig. 86 (a). 

Changes in length and direction of any line as a increases may be 
calculated from (18) and (19). As an example, Fig. 86 (b) shows the 
changes in direction of lines in various initial positions as a increases 
from 1 to 6 for the case K= I. The general movement of the directions 
towards the direction of maximum extension is very clearly shown. 
Flinn, loco cit., discusses problems of this sort in great detail. 
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(vi) The General Case 
The examples given above show the way in which parameters such as 

A and B which specify the strain behave, and the way in which marker 
lines move, in special cases in which the strain is of a simple specified 
type and its amount increases steadily. In fact, conditions will be much 
more complicated and the nature of the strain may change, continuously 
or discontinuously throughout deformation. At any particular moment of 
time there will be a completed finite strain and on this an incremental 
strain will be superimposed. Suppose that the principal axes A, B of the 
strain ellipse of the finite strain lie along the x- and y-axes and that the 
incremental strain is the infinitesimal strain § 58 (7). The resultant strain 
is by § 58 (8). 

. (21) 

It follows from § 7 (28) (29) that the semi-axes A, , Bl of the strain 
ellipse of (21) are 

. (22) 

and from § 7 (17) (18) that the angles IX, IX' specifying the initial and final 
positions of the principal axes are 

a.=yAB/(A·-B·), a.'=w+y(A·+B·)/2(A·-B·) . (23) 

(22) and (23) show the way in which an existing strain is modified by 
an additional small strain, and if further small strains are progressively 
superimposed, the parameters describing the strain will vary continu­
ously. Curves describing this variation are called strain paths or deforma­
tion paths. 

At any stage in the deformation, the strain ellipse for the existing 
deformation can be divided into regions in which lines have been either 
lengthened or shortened: these are separated by the directions of zero 
extension, § 7 (32). Similarly, the strain ellipse for the incremental strain 
can be divided into regions corresponding to lengthening and shortening. 
Since the strain ellipse for the incremental strain will not in general 
coincide with that for the existing finite strain, it should in general be 
possible to recognize four zones in any state of strain: (i), a zone in which 
lines, previously shortened, are still contracting; (ii), a zone in which 
lines, previously shortened, are now being lengthened; (iii), a zone in 
which lines, previously lengthened are still being lengthened; (iv), a zone 
in which lines, previously lengthened, are now being shortened. Clearly, 
even more complicated situations are possible. Fig. 83 illustrates some 
cases of shortening followed by lengthening. These ideas can be used to 
explain the occurrence of such diverse structures as ptygmatic folds, 
boudinage, disrupted folds and folded boudins in a single deformed 
area; Ramsay, loco cit., Ramberg, loco cit. 

(vii) A Numerical Example 
To illustrate the effects observed, consider the deformation of an 

ellipsoidal pebble of semi-axes X=2, Y=I, Z=O'5, embedded in a matrix 
of the same properties (so that it is a marker ellipsoid in the material). 
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The applied strain will be taken to consist of pure shear in the x2'-plane 
together with simple extension in the y-direction, This will be assumed 
to be applied in successive finite increments for each of which A1=I'ZZ. 
A,=I'II. Aa=o'8z. or £1=0'1. £,=0'05. £3=-0'1, The pebble will be 
supposed initially to be inclined with its intermediate axis parallel to the 
y-direction and with its major axis making an angle of 60° with the 
x-direction, 

Using § 7 (6), the equation of the pebble in the x2'-plane is initially 
i(x cos 60 0 +z sin 60 0 )'+4(-x sin 60 0 +z cos 60°)'=1 

or 3'06x'-3'Z5xz+I'19z'=I, ' (Z4) 
which could have been written down from § 59 (3), After the first incre­
ment it becomes by § 59 (z7) 

Z'5IXS-3'Z5XZ+I'45Z!=I , (ZS) 
By § 59 (II) the major axis ofthis is inclined at 8=54° to Ox and the new 
semi-axes are X=I'92 and Z=O'5Z, using § 59 (6) (7), An alternative 
derivation will be given later, The deformation in the y-direction is 
independent of that in the x2'-plane and the new semi-axis of the pebble 
in this direction after the first increment is Y=(I'II)i=I'05, The effects 
of subsequent increments may be calculated in the same way and the 
results are shown in Table I. which gives the changes in the axial lengths 
and axial ratios of the pebble as well as those of the strain ellipsoid, The 
direction 8 of the major axis of the pebble after each increment is given, 
together with the direction 8' of the line whose initial position was along 
the major axis of the pebble; this, of course, does not remain the major 
axis of the pebble after deformation, 

The data in Table VI are plotted in Fig, 87, The table and figure show 
clearly the effect of the successive increments of strain on the shape of the 
pebble, During the first two strain increments, the major axis of the 
pebble is situated in the contracting zone (8<45°) ofthe strain ellipse and 
its length is reduced by each successive increment, During the third 
increment, this axis rotates into the zone of extension 'and subsequently 

2 )It 
It It ""'- X X 

~ )( x 
Pebble ...". • ~ • • • • 

~ D 0 
~ 0 
>< 0 0 o StrDin ellipsoid 

0 

2 3 

'l'z and (A,jA,\":: 

FIG, 87, Strain path. for the strain ellipsoid (circles) and for the pebble 
(dots) from the data of Table VI. Crosses are the strain path for the 
pebble with additional rotation as specified in (28) 
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increases steadily, its length being greater than its initial value at the end 
of the fifth increment. The intermediate axis of the pebble is parallel 
to the intermediate axis of the strain ellipsoid in which direction the 
strain is a simple extension and hence the intermediate axis of the pebble 
increases in length with each increment. The shortest axis of the pebble 
lies initially in the zone of elongation and its length increases in the first 
two increments. It then rotates into the zone of contraction and sub­
sequently decreases in length. In Fig. 87, the ratio XI Y for the pebble is 
plotted against YIZ in the manner of Fig. 85 (b). The corresponding 
ratios ('>'d '>'.)' and ('>'.1'>'.)' for the strain ellipsoid are also plotted. The 
curves show that initially the pebble follows a strain path markedly 
different from that of the strain ellipsoid. However, with increasing strain 
the paths approach each other and the orientation of the pebble moves 
towards that of the strain ellipsoid. 

The preceding calculation was carried out using the elementary 
methods of § 59. Alternatively, the matrix methods of § 58 might have 
been used. The initial parameters X=2, Z=o·S, 6=60° of the pebble may 
be regarded as specifying a strain ellipse and by § 58 (29) the transforma­
tion matrix for this is 

(X') = (0.875 
y' 0·649 

0.649) (x). 
1·625 Y 

(26) 

The first increment of strain gives 

(x") = (1.104 0) (°.875 0.649) (X) 
y" ° 0·906 0·649 1.625 Y 

= (~:~~~ ~:~;n (~) . (27) 

and, using § 7 (28) (29) (19) the semi-axes and inclination of this are 
X=I·92, Z=0·S2, 6=54° as found previously. 

This method becomes more convenient as the transformation becomes 
more complicated; for example, if rotation occurs as it frequently does. 
Suppose, for example, that each increment consists of a pure strain as 
specified above together with a clockwise rotation of 20°. Then, using (27) 
as in § 58 (30) the transformation corresponding to the first increment is 

(x") _ ( 0·940 0.342) (°.966 0.717) (X) 
y" - -0·342 0·940 0.588 1·471 Y 

= (1.109 1.177) (X) (28) 
0·222 1·137 Y ,. 

leading to X=I·92, Z=0·S2, 6=34°. The strain path corresponding to 
further increments is shown by crosses in Fig. 87. 

(viii) The Methods of Structural Geology 
Structural geology has an approach of its own to the deformation of 

rocks, which is based on observation and simple deductions from the 
theory of finite homogeneous strain. 

Many rocks contain structures which give an indication of the strains 
they have undergone. For example, tension cracks form in planes per­
pendicular to the direction of greatest extension, and, if they are curved, 
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may give an indication of the lack of homogepeity of the strain. Again, 
slaty cleavage forms in planes perpendicular to the direction of maximum 
contraction. These observations can be verified from markers in the rocks 
such as deformed fossils or ooids. 

More precise indications of the deformation history of the rock can be 
obtained if it contains layers of more competent ' material. If these lie 
near the direction of the greatest extension, they are pulled apart into 
fragments (boudinage) and possibly the interstices are filled. If they lie 
near the direction of maximum shortening, they are crumpled (ptyg­
matic folding). If, as in (i) and (ii) above, they are first shortened and 
then lengthened, the folds first formed may be disrupted: if they are 
first lengthened and subsequently shortened, the boudins first formed 
may be pushed together or folded. Such effects are greatly dependent on 
the orientation of the layers and the relative competence of them and the 
matrix. All these effects may be reproduced in model experiments, cf. 
Ramberg (loc. cit.), also many of them may be produced on actual rocks 
at high confining pressures, Griggs and Handin,' Paterson and Weiss." 

These observations are made on strain only and give information about 
the strain-history of the rock completely independent of its mechanical 
condition and the stresses operating. Attempts may be made to deduce 
from them information about the stresses operating or the· mechanical 
properties of the rocks, but these present much greater difficulties. 

61. ANALYSIS OF STRAIN IN FOLDING 

Here, only the most common type of folding, cylindrical 
folding, wiII be considered. Cylindrical folds are generated by 
parallel lines and so can be represented by their sections by a 
plane perpendicular to these lines and treated two-dimensionally, 
Fig. 88. The line through the point H', Fig. 88 (a), at which the 
curvature of the section is greatest, is called the hinge line, and 
the plane H' K' through this line and the centre of curvature is 
the axial plane. The region near the hinge line H' is called the 
hinge zone, and the regions C', D ' , Fig. 88 (a), remote from 
this at which the curvature is least are called the limbs. 

In the simplest type of folding, parallel marker beds such as 
AB, CD, Fig. 88 (b), are deformed by inhomogeneous plane 
strain into the folded form, A' B ', C' D'. In practice, the nature of 
the strain may be specified by measuring (i) the distance between 

1 In structural geology, competence is used in a qualitative sense to 
describe the degree of ductility. Thus competent layers are relatively 
difficult to deform, while incompetent layers deform readily. 

• D. Griggs and ]. Handin, Geol. Soc. Amer. Mem., 79 (1960), 347--64. 
3 M. S. Paterson and L. E. Weiss, Bull. Geol. Soc. Amer., 79 (1968), 

795-812. 
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FIG. 88. Basic types of folding of the region ABeD shown in (b). (a) 

Similar folding; (c) simple concentric folding; (d) parallel folding; 
. (e) simple concentric shear 

two surfaces in a direction parallel to the axial plane, or (ii) the 
distance between the tangents to the surfaces in specified directions, 
or (iii) by drawing dip isogons which are curves joining points on 
the surfaces at which the dip is the same, Ramsay, loe. cit. How­
ever, particularly in the older literature, a great deal of attention 
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has been paid to simple idealized types of folding in which a 
rectangle ABeD, Fig. 88 (b), is deformed by inhomogeneous 
,strain into other shapes. Although the strain is inhomogeneous, 
it is approximately homogeneous in smaller regions and may be 
represented by strain ellipses in these. The variation in shape and 
orientation of these strain ellipses gives an indication of the 
inhomogeneity of the strain. The strain as defined by the initial 
and final states will be described first: effects of strain paths will 
be considered later. 

(i) Similar Folding 
In this case, the transformation is 

y'=y+J(x), x'=x, (I) 
where J(x) is any prescribed function. A layer PS parallel to Oy 
is displaced by J(x), and a thin rectangle PQRS is transformed by 
simple shear into the parallelogram P'Q'R'S', Fig. 88 (a). This 
simple shear may be written 

y'=Y+2SX, x'=x, where2s=tantp=!'(x), (2) 
and the strain ellipse can be found from § 7 (17)-(29), remember­
ing that x and yare interchanged in the present notation. Fig. 
87 (a) is drawn for J(x)=ll sin me/I, and the variation of the 
shape and orientation of the strain ellipse along the fold is shown. 

Similar folding may be represented by displacement of a pack 
of cards, and consecutive episodes of similar folding about 
different axes may be studied by the use of card models (O'Dris­
coIl, loco cit.) 

In the present case, all strain ellipses have a direction of no 
finite eloqgation (,A,=I) parallel to the y-axis, corresponding to 
the fact that the distance between two surfaces in the y-direction 
is unchanged by the strain. This latter effect, which is all that 
can be observed in the final state, also occurs if the material is 
subjected to a homogeneous pure strain with principal axes 
parallel to the x- and y-directions before the inhomogeneous 
simple shear. 

Similar-type folds on all scales occur very frequently. Whether 
they are formed by the obvious mechanisms of progressive shear 
or flow across the beds is a matter of argument. Some writers l 

1 S. W. Carey, y. Alberta Soc. Petrol. Geol., ]0 (1962), 95-144. 
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suggest that they are. An alternative mechanism is an initial 
buckling of the layers, of the type described in § 62, followed by a 
homogeneous pure strain.l 

(ii) Simple Concentric Folding 
A great deal of attention has been paid to models in which a 

rectangular region ABCD, Fig. 88 (b), is deformed in such a way 
that parallel beds AB, OE, DC, Fig. 88 (b), become arcs of 
concentric circles. Such structures are very common in nature. 

In the simplest deformation of this type, it is assumed that 
straight lines AD, BC, parallel to the y-axis remain straight lines 
of unchanged length and that straight lines parallel to Ox become 
arcs of concentric circles, Fig. 88 (c). If the rectangle ABCD, 
o<x<l, -a<y<a is deformed in this way so that the length 
OE=I=O'E' is unchanged and O'E' is a circle of radius R, the 
final configuration is shown in Fig. 88 (c). The line O'E' of un­
changed length is called the neutral line. The region a>y>o 
undergoes extension and o>y>-a undergoes contraction. The total 
area ABCD=2al is equal to the area A'B'C'D'. 

The point P(x,y) becomes P' whose polar coordinates T, () are 
T=R+y, ()=xjR. (3) 

The neighbouring point PI(X+XI, Y+YI), Fig. 88 (b), becomes 
PI' whose polar coordinates are r,=R+y+y, , ()J=(x+xJ)jR, so 
that the projections Xl" Yl' of P' PI' on the tangential and radial 
directions P'T, P'R, Fig. 88 (c), are 

x/=(R+Y+YJ)xdR=xl(uyjR), YI'=YI, (4) 
neglecting the small quantity XIYI . Thus the parameters § 7 (7) 
of the strain are 

a= 1 +Y j R, b=o, c=o, d= I. (5) 
It follows from § 7 (28) (29) that the semi-axes of the strain 

ellipse are A=(uyjR), B=I and the principal directions are 
radial and tangential. These results hold for all values of x. The 
strain ellipses are shown in Fig. 88 (c). 

This geometry is by no means the only simple one which can be 
postulated. Alternatively, instead of assuming that distances measured in 
the y-direction are unchanged, it might be assumed that areas are un­
changed. Suppose that y=o is the neutral line whose length is unaltered, 

1 D. Flinn, loc. cit.; J. G. Ramsay, J. Geol. 70 (1962), 309-27. 
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then for the area between this line and the line of ordinate y to be un­
changed we need 

ly=l[(y'+R)2-R']I/R=l[y'2+ zRy']I/R, 
so that y'={R2+zRy)1-R, . (6) 
and this fonnula holds for both signs of y. The point P{x, y) then 
becomes P' whose polar coordinates are (R2+zRy)l, x/R in place of (3). 
The neutral line is not now in the middle of the defonned region. Pro­
ceeding as before, the axes of the strain ellipse for the point (x, y) are 

A={R'+zRy)l/R, B={R2+2Ry)-tR (7) 

Elastic materials show approximately the behaviour described 
by (5) and perfectly ductile material that described by (7). 
Clearly, all possible intermediate types of behaviour may be 
expected, depending on the ductility of the material, Ramsay, 
loco cit. 

During the growth of folds of this type, tensional features such 
as radial cracks may form on the outer arc and thin competent 
layers may be boudinaged, cf. § 60 (viii). On the inner arc, com­
pressive features such as crumpling of the layers and conjugate 
shears may develop: if the material is relatively incompetent, 
slaty cleavage may develop parallel to the axial plane of the fold. 
Finally, during the growth of a fold, it is possible for the neutral 
surface to change its position and so it is possible for early 
compressive structures to be modified by later elongation and 
vice versa. 

(iii) Parallel Folding 
Two curves are said to be parallel if the distance between them, 

measured along a common normal, is constant. The situation is 
shown in Fig. 88 (d). The normal to the curve A'P'B' has also to 
be a normal to the curve D'S' C' and the distance S' P' is constant 
and equal to 2a. The normal Q'R' at a neighbouring point Q' will 
intersect P'S' in J, the centre of curvature at the point P'. It is 
assumed that the curvature varies continuously and the locus KJ 
of the centre of curvature is the evolute of the curve A'P'B'. 
All parallel curves such as A'P'B', D'S'C', are involutes of the 
curve KJ and they may be constructed and their properties 
studied from this relationship.1 

1 H. Lamb, Infinitesimal Calculus (Cambridge, 1913). J. B. Mertie, Jr, 
Bull. Geol. Soc. Amer., 58 (1947), 779-80z. 



ELASTICITY, FRACTURE AND FLOW [§ 61 

If the rectangle ABCD, Fig. 88 (b), is folded to lie between the 
parallel curves A'B'C'D' of Fig. 88 (d) the previous theory and 
(3)-(5) still apply to any small region P'Q' R' S' so that the axes of 
the strain ellipses will be aligned normal and tangential to the 
curve A' P' B' and their lengths will vary continuously with 
position according to (5). . 

Concentric folding as described in (ii) is, of course, a special 
case of parallel folding, and parallel folds may tend to develop by 
maintaining a constant curvature at the hinge and increasing the 
curvature at the limbs so that they become more nearly con­
centric. The maximum shortening obtainable in this way (cor­
responding to deformation into a semicircle) is in the ratio 2/1'& or 
36 per cent. 

(iv) Simple Concentric Shear 
A completely alternative model to that of (ii) for straining into a 

circular fold involves tangential shear such as would occur in 
wrapping a pile of paper around a circular cylinder. Suppose that 
the region ABCD of Fig. 88 (b) is folded around a circle A'B' 
of radius R-a in such a way that A'D' remains a radial direction, 
thicknesses in the radial direction are preserved, and dis­
tances along the arcs of all concentric circles are unchanged, 
Fig. 87 (e). Then the point P(x, y) becomes P' whose polar 
coordinates are T=R+y, O=x/(R+y). The neighbouring point 
p](x+x]> Y+Yl) becomes P/ whose polar coordinates are R+Y+Yl 
and (x+xl)/(R+Y+Yl)' 

The projections x/, Yl' of P'P1' on P'T and P'R are 

, [ x+x] x ] ' 
Xl = R+Y+Yl - R+y (R+Y+Yl)=X1-XYl/(R+y), YI =YI (8) 

This is a simple shear with 

tan "P=2s=-x/(R+y)=-0, (9) 
where 0, Fig. 88 (e) is the dip of the beds. The value of this varies 
from zero when x=o to -l/(R+y) when x=l. The variation of the 
strain ellipse with position is shown in Fig. 88 (e). Clearly, the 
model can be generalized to parallel slip folding in which the 
region ABCD is wrapped around a curve whose curvature varies 
continuously. 

Geological examples of this type occur very frequently: if the 
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shear is uniformly distributed over the cross-section, as above, 
they are described as flexural flow folds, Ramsay, loco cit. How­
ever, in many cases the shear is inhomogeneously distributed, 
being much greater near the boundaries of the region and such 
folds are known as flexural slip folds. 1 

(v) More General Cases 
It is clear that natural folds as well as many sketched as illustra­
tions in textbooks do not conform to those simple types and show 
mismatches in either geometry or the strain parameters. The 
simplest example of this is a sudden change of curvature in 
parallel folding at which a sudden change in the parameters of 
the strain ellipse will occur. These more general cases may be 
handled by postulating more general types of strain which are 
essentially combinations of the basic types discussed above. 

62. INSTABILITY THEORY: FOLDING AND KINKING 

A number of problems arise in which a long thin sheet or 
fibre is stressed in the direction of its length. Taking x=o as the 
direction of the sheet and stress, the undeflected state x=o is 
always a possible state, but if it is disturbed slightly this distur­
bance may grow so that the solution x=o becomes unstable. 
Examples of this are the buckling of plates and columns in 
engineering theory and folding and kinking in structural geology. 

Folding 
The simplest case of instability related to folding follows by an 

extension of the theory of bending of beams given in § 36. 

A o 

x 

FIG. 89 

1 F. A. Donath, Trans. N. Y. Acad. Sci. (2), 24 (1962), 236-49· 
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Suppose that a long sheet, of unit length perpendicular to the 
plane of the paper and thickness zb, which was initially straight 
and along the x-axis is deflected into the position ABCD of 
Fig. 89. If R is the radius of curvature of the small element BC 
at x, y, and M is the couple applied to it by the rest of the beam, 
it follows from § 36 (30) that R=EI/M, where I=zb313 is a 
constant determined by the cross-section of the sheet and known 
as the moment of inertia of the cross-section. If the slope dy / dx 
of the sheet is small, the radius of curvature is given by 

1 d2y M 
R= dx2- EJ' . (1) 

This is a differential equation for the deflection of the sheet 
which can be solved if M is known. M can be found by taking 
moments about C. If there are forces f(x') at x' in the direction 
Oy, the contribution Ml of these to the value of M at x is 

Ml = J~f(X')(X'-X) dx', (z) 

so that 

dMl Ja:> , , d2Ml 
dx =- ,/(x) dx, dx2-=f(x). 

The moment about C of the axial force P along Ox is just -Py. 
Thus (1) gives 

or, using (3), 
...d4y d2y 

EFdx4+Pdx2-f(x) =0. (5) 

Now suppose that the sheet is immersed in a viscous fluid which 
provides resistance to motion 'YJ times the velocity y so that 
f(x) is (5) is -'YJY and (5) becomes 

dy d2y d4y 
'YJdt +Pdx2+EI dx'=o. (6) 

Suppose now that the sheet is deflected into the harmonic 
form of amplitude Y and wave length A, 

y= Y sin (znx/A). (7) 
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Substituting (7) in (6) gives 

dY 4Jt2{ 4Jt2E1} r; dt =);2 P-~ Y. (8) 

The solution of this is 

{ 4Jt2( 4Jt2E1)} Y= Yo exp ),2r; P--~ t , 

where Yo is the value of Y when t=o, that is, the amplitude of 
the initial disturbance. If P<4Jt2Elj),2, Y dies away exponentially; 
but if P>4Jt2Elj),2 the system is unstable, and Y increases 
exponentially. The rate of increase is a maximum if 

d{P 4Jt2E!l 
d)' ,),2-J:4 J=o, 

that is if 1.=2n(2EljP)t. This is called the dominant 'wave length, 
and if the initial deflection consists of a sum of terms of type (7), 
those of the dominant wave length will increase most rapidly and 
thus determine the final shape of the sheet. 

This elementary theory was given by Biot1 and corresponds 
approximately to the case of a layer of competent rock in vis­
cous material. He also considers the case of a plane sheet of 
viscous material of thickness hand viscosityr; immersed in a viscous 
material of viscosity r;1' In this case, the dominant wave length 
is found to be 

),=2nh(r;j6'T}1)1. . (10) 

This theory applies only to the case "1/"11'" I, as may be seen from the fact 
that (10) gives a definite value of ,\/h=3'46 for the case of no contrast in 
viscosity, "1="1 .. when no folding would be expected. The theory has been 
verified experimentally by Biot, Ode and Roever.' 

It is clear that on the theory leading to (10) the dominant wave length 
is directly proportional to the thickness of the folded layer. This relation­
ship is easily recognized in natural fold systems, and Currie, Patnode 
and Trump' have shown that it holds for folds ranging in wave length 
from one inch to nearly one hundred thousand feet. Fig. 90 shows their 
results. From this graph, it is found that the average ratio of wave length 
to thickness for the folds is ,\/h=27. Currie et al. derive an equation very 
similar to Biot's for the buckling of one elastic layer embedded in a less 

1 M. A. Biot, Bull. Geol. Soc. Amer., 72 (1961), 1595. 
• M. A. Biot, H. Ode and W. J. Roever, ibid., 72 (1961), 1621. 
• J. B. Currie, H. W. Patnode and R. P. Trump, ibid., 73 (1962), 655. 
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competent, but still elastic, medium and the observed value for 'A/h 
suggests that the ratio of these elastic moduli is about soo: 1 during 
folding. This result is similar to Biot's conclusion that for well-defined 
folding to develop by viscous buckling, the viscosity ratio should lie in 
the range 100<7]/7]1<1,000. 

0 rIO 
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FIG. 90. Variation of dominant wave length 'A with thickness h of beds for 

natural folds on all scales 

For values of 7]/7]1<100 the amplitude of folds generated by buckling is 
very small until a significant amount of shortening of the layer by homo­
geneous compressive strain has occurred. Ramberg! has discussed in 
detail the effect of layer shortening by simultaneous buckling and homo­
geneous strain. He derived the following equation which relates the rate 
of buckling to the rate of layer shortening: 

oX/.\=(413)'IT1[6(7]/7]1)l]t(A/.\)lo!, • • (II) 
where o! is the rate of strain in layer shortening, oX is the rate of change of 
wave length (that is, the rate of shortening by buckling) and A is the 
amplitude of the fold at a particular time. From this equation it follows 
that the rate of shortening by buckling relative to the rate of layer shorten­
ing increases with 7]/7]1 and also as the amplitude of the fold grows. Thus 
ina rock made up of layers of varying competence, the least competent 
materials will deform mainly by homogeneous strain while the more 
competent layers will buckle. 

Sherwin and Chapple I recently measured several hundred folded 
quartz veins in slate and phyllite to test Biot's equation and found that 

1 H. Ramberg, Tectonophysics, 1(1964),307-41. 
I Jo-Ann Sherwin and W. M. Chapple, Amer. J. Sci., z66 (1968), 

167-79· 
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the mean values of >..jh fell in the range 4·0-6·8, indicating very small 
viscosity ratios in the range z<'TI/'TIl<8. They therefore modified Biot's 
theory to allow for uniform layer shortening accompanying the folding 
and found for the dominant wave length 

~=7Th[z'TI(T+I)I3'T1lT']i, . . (12) 
where T is the final value of the quadratic elongation associated with the 
shortening. Applying this modified theory to the measured folds gave 
viscosity ratios in the range 14<'TI/'TIl<30 and values of T in the range 
z·7<T<S·7· 

Recently, Biot l has extended his analysis to the internal buckling of a 
multilayered medium consisting of alternate layers of competent and 
incompetent material of viscosities 'TIl and 'TIs. If 'TIt/ 'TI2 is large, he finds for 
the dominant wave length 

~=1·66h(H/h)i('TIt/'TI.)l, • • (13) 
where h is the thickness of the individual competent layers and H is the 
total thickness of the material. For smaller values of 'TIt/'TI1 the result 
tends to 

~=1·90(hH)l .. 

Kinking 
In its simplest form this is a mode of instability failure of 

fibrous materials such as wood, and of strongly laminated rocks, in 
which axial load causes initially straight fibres to be deformed into 
the ramp shape ABeD of Fig. 91. The deformation occurs 

p 

! 

i 
o 0.5 I.S 

(a) (b) 
FIG. 91. (a) Geometry of kinking; (b) the function y=",2+a cos "'. 

Numbers on the curves are values of a 

1 M. A. Biot, Bull. Geol. Soc. Amer., 75 (1964), 563-8. 
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sharply at the edges of a parallelogram BCLK known as a kink 
band. Such a kink band requires three parameters to specify it, 
namely the angles PI , pz and the length BC-I, Fig. 91 (a). 

The morphology of kink bands has been extensively studied on 
both natural and artificially defonned rocks. 1 Observed values of 
PI and P. vary widely, but their mean values are both between 
55° and 65° with PI usually less than pz . The nonnal thicknesses 
tl of the kink band and tl of the undisturbed fibres are related by 

tl cosecpI-BF-t" cosecp" (IS) 
so that there will be a dilatation 

A=(tl -tI)/tI=Sinp2 cosec PI-1 (16) 
which is positive if PZ>PI as is usually the case. In natural kinks, 
open fissures fonned during this dilatation are frequently filled 
with segregation veins. If PI =pz the transfonnation of the paral­
lelogram BCGF from its initial state to its final state is one of 
simple shear although the defonnation path may be very 
different. 

Woo'd commonly fails by kinking and its behaviour in the 
triaxial test is of a completely different type to that of rocks as 
described in §§ 20, 21. Firstly, the angle PI of failure in the kink 
band is greater than 45°, while the angle of shear failure is less 
than 45°. Secondly, there is little or no increase of (11 at failure 
with (13 , by contrast to the considerable increase shown by rocks. 

No simple mechanical theory of kinking has been given, although it 
might be expected that a simple phenomenological theory would exist for 
so well defined a type of behaviour. Geologists tend to associate kinking 
with folding, and the instability theory of folding given above essentially 
regards this as a progressive failure whose amplitude increases steadily at 
a rate governed by the viscosity. But this is not the only type of behaviour 
open to such simple mechanical systems: for it is sometimes possible for 
them to move from an unstable to a stable position, and this final position 
is determined solely by the statics of the system. 

As a simple illustrative example, consider the parallelogram BFGC of 
Fig. 91 (a) and suppose that the total axial load on it is P. The potential 
energy of this load is PI cos w, where W=W-Pl-{J •. Suppose, also, that 
bending of the fibre ABC through the angle w is resisted by a couple 
proportional to this angle, then the strain energy due to this bending will 
be klWI, where k, is a constant. Also, there will be strain energy of distor­
tion of the parallelogram CGFB; this would be difficult to estimate 

1 T. B. Anderson, Nature, 202 (1964), 272-4. M. S. Paterson and L. E. 
Weiss, Bull. Geol. Soc. Amer., 77 (1966), 343-74. 
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because it undergoes a complicated finite strain, but for simplicity suppose 
that the strain energy is proportional to the square of the displacement of 
C from its initial position resolved in the direction BFK as it would be in 
the case of infinitesimal strain. This component of strain energy would 
then be 

h.l'[cos fl,+COS fl.]i=4k.[2 cos' t(fl,+fl.) cos' l(~cfl.), . (17) 
where h. is a constant. 

The total potential energy V is given by 
V=Pl cos w+k,w'+¥.ZO sin' lw sin2 (~,,,,,!W) 

For equilibrium it is necessary that 
oV/ow=o=OV/Ofl" 

and the second of these gives w=o or 
sin (Zfl,+W)=O. 

That is, 

or fl.=fl, which is, approximately, the relation observed 
With this value of 0, , (18) becomes 

V=Pl cos w+h,w2+¥.ZO sinl lw 

(18) 

(19) 

(zo) 

(Zl) 
in practice. 

=(Pl-zh.l") cos w+zh.l·+k,w· (zz) 
=[a cos w+w 2+b]k, , (Z3) 

where a=(Pl-zk.l2)/h, and b=zk.l"/h. 
For the system to be in stable equilibrium, the value of V given by (z3) 

must be a minimum. Fig. 91 (b) shows its behaviour for the relevant 
values of a. If a <z, V has a minimum at w=o so that the undeflected 
position is stable. If z<a<."., V has a maximum at w=o so that 
this position is unstable, and it has a minimum at some value of w between 
o and ."./z giving a stable inclined position. If a:>.". there is no stable 
position. It appears then, that for small values of P the straight position 
is stable: if P is increased sufficiently this becomes unstable and a kinked 
position becomes stable. It should be emphasized that this discussion is 
illustrative only. 

Both in the field and laboratory experiments,l further deformation 
involves the production of additional, intersecting kink bands and it is an 
open question whether some types of fold are produced by the buckling 
mechanism described earlier or by progressive development of kink 
bands. 

63. DEVELOPMENT OF PREFERRED ORIENTATIONS OF ELLIPSOIDAL 
PARTICLES 

Particles which are immersed in a matrix of viscous fluid generally 
change their position, and, if they are not rigid, their shape, during 

1 Paterson and Weiss, loco cit. L. E. Weiss, Geol. SUTfJey Canada (in 
press, 1968). 
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defonnation of the particle-fluid system. These changes in position and 
shape can be related to, and used to determine, the total finite strain 
experienced by the system. Moreover, with increasing deformation, the 
particles tend to move to stable positions, and, in this way, preferred 
orientations of the particles are set up. The development of preferred 
orientations under stress during metamorphism is of great geological 
interest. The motion of small particles in a viscous fluid has been exten­
sively studied in physics, biology and rheology. Much of this work is 
based on a fundamental paper by Jeffery, 1 who considers the slow motion 
of a small, rigid ellipsoidal particle of semi-axes A, B, C immersed in 
fluid of viscosity "I. 

Let x, y, z be rectangular axes, chosen along the principal axes of the 
ellipsoid and moving with it, so that its equation is 

xSjA2+yljB2+ZljC2=1. (I) 
Let U, v, w be the components of velocity in the undisturbed motion of 

the fluid in the neighbourhood of the particle referred to the x, y, z-axes 
so that as in § II (7H9) 

u=ax+hy+gz+qz-ry } 
v=hx+by+!z+rx-pz • 
w-gx+!y+cz+PY-qx 

(2) 

where, for shortness, a, b, c,!, g, h are written for the components of rate 
of strain, and p, q, r for the components of rate of rotation, in the fluid 
motion. The Navier-Stokes equations for slow viscous motion (the 
equivalent of § 40 (2), (3) in three dimensions) are 

1JIl.IU=Opjox, 1JVIV-Op/oy, 1JV1w=op/oz, . 
together with the equation of continuity § 19 (14). 

Now suppose that the angular velocities of the ellipsoid about the 
x, y, z-axes are till , t112 , t113 , then we have to find a solution of (3) which 
tends to (2) at large distances and is such that there is no slip at the 
surface of the particle, that is, that the boundary conditions there are 

u=tllaZ-tII3Y, V=tII~-tIIIZ, .u=tII1Y-tIIaX. (4) 
When this solution has been found, the resultant couple on the particle 
due to the fluid can be calculated, and the condition that this should be 
zero gives the equations of motion of the particle. Jeffery (loc. cit.) carries 
out this calculation and finds the equations of motion to be 

(B8+CI)tII1-BI(p+!)+CI(P-!)} 
(CI+AI)tII.= CI(q+g)+A"(q_g) . 
(A "+ BI)tlla=A "(r+h)+ B"(r-h) 

(s) 

These equations are referred to x, y, z-axes which move with the 
particle, and to specify the undisturbed motion of the fluid a new set of 
axes x', y', z', fixed in space, is needed. Let the direction cosines of the 
x, y, z-axes relative to the x', y', z' system be (/10 m" nl), (I .. ml, n2), 

(la, ma, n.), respectively. The transfonnation between the two sets of axes 
is § S8 (31), namely 

X=llx'+mly'+nlz', x'=/lx+13Y+1aZ, etc., 
and. velocities transform according to the same law. 

1 G. B. Jeffery, hoc. Roy. Soc., A, IOZ (1922), 161-'79. 

(6) 
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Equations (5) may now be solved in simple special cases. Jeffery (loc. 

cit.) considers the case of simple shear in the y'z' plane for which 
u'=o, il'=o, iu'=yY', . 

where y is the rate of shear. Using (6) for velocities gives 

u =llu'+m v'+nlw' 
=ynlY' 
=ynl(ml:'C+m.y+m3z), (8) 

using (7) and (6). Comparing coefficients between (8) and (2) gives 

a=ymlnl , (h-r)=yn,m., (g+q)=ynlm. (9) 
Similarly, from the equations for wand W, 

(h+r)=ym,n., b=ym.n., j-p=yn.m., . (10) 
(g-q)=ymln., j+p=ym.n., C=ym3n. (II) 

Using the values (9)-(1l) in (5) gives for the equations of motion of the 
particle corresponding to simple shear motion of the fluid 

(B'+CZ)W, =y(B·m.n3-C·n.m.), (12) 

(C·+A·)w.=y(C'nlm3-A'mln3)' (13) 
(A'+B2)W3=y(A2m1n.-B'n1m.). (14) 

x' 

FIG. 92 

These equations can easily be integrated for the case of an ellipsoid 
of revolution, B=C. In this case, the position of the ellipsoid can be 
specified by the Eulerian angles 8, '" of its axis of symmetry, where 8 is 
the angle x'Ox and ,p is the angle between the planes x'Oy' and x'Ox, 
Fig. 92. Oy is chosen in the plane x'Ox. The direction cosines of the axes 
Oxyz are seen to be 

II =cos8, m1 =sin 8 cos q" n1 =sin 8 sin ,p, 
I.=-sin 8, m.=cos 8 cos,p, n.=cos 8 sin,p, 
13=0, m3=-sin ,p, n3=cos,p .. 
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Also, the angular velocities required are 
W2=-~ sin (J, wa=/J •. 

Using (15)-(IS) in (13) and (14) gives 
(AI+CI)~=i'(A2 cos· tfo+C2 sin2 tfo), 
(A2+CI)/J=ty(AI-C2) sin 2(J sin 2tfo. 

Integrating (19) gives 

(IS) 

tan tfo=(A/C) tan ["AC/(A2+CI)] . (21) 
for the case in which tfo=o when ,,=0. Also dividing (19) by (20) and 
integrating gives 

(AI cos l tfo+CI sin2 tfo) tan l (J=k"A2C2, . (22) 
where k is a constant. Thus the axis of symmetry of the particle describes 
a cone about the x' -axis (which is normal to the y' z' -plane of deformation) 
and the angle of this cone varies from tan-I (kC) when tfo=o to tan-I (kA) 
when tfo=!.". 

The above theory applies to both prolate and oblate ellipsoids. In the 
latter case, A<C, if e is the eccentricity so that e2=(CI-AI)/C2, (22) 
may be written 

(I-e· cos· tfo) tan! (J=tanl (J" . (23) 
where 8i is the value of (J when tfo=l"', This shows that the angle (J 
between the axis of symmetry and the normal to the y' z' plane of deforma­
tion oscillates between a minimum value of (J, and a maximum when 
tfo=o. This maximum increases towards 1." as the eccentricity e increases 
towards I, that is, the ellipsoid tends to set itself parallel to the planes of 
shearing. 

Gayl has developed similar theory for the case of pure shear in the 
x'y'-plane so that (7) is replaced by 

u'=ix', r/J'=-ey', w'==o, 
where i is the rate of natural strain. He shows that any ellipsoid oriented 
with its axes aligned parallel to any of the strain axes will retain this 
orientation throughout the deformation. However, for inclined positions, 
the axis of a prolate ellipsoid will rotate towards the direction of maximum 
elongation and the axis of an oblate ellipsoid will rotate towards the 
direction of maximum shortening, these rates of rotation increasing with 
increasing eccentricity of the elliptic cross-section. 

The theory given above applies only to rigid particles immersed in a 
viscous fluid. If the particles are not rigid, they experience both a rigid­
body rotation and a change of shape during the deformation of the 
fluid. Several workers' have discussed the behaviour of small, initially 
spherical, viscous particles immersed in a viscous fluid during pure 

1 N. C. Gay, Tectonophysics,s (196S), 81-8. 
I G. I. Taylor, hoc. Roy. Soc., A, Z38 (1932), 41-S; z46 (1934), 

501-23; W. Bartok and S. G. Mason". Colloid Sci., Z3 (195S), 293-307; 
F. D. Rumscheidt and S. G. Mason". Colloid Sci., z6 (1961), 210-37; 
R. Cerf". Chim. Phys., 49 (1951), 59-105. 
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shear and simple shear, and recently Gayl has analysed, numerically, the 
behaviour of two-dimensional circular and elliptical particles in a viscous 
fluid during shear deformation of the fluid. During a pure shear deforma­
tion, a particle initially inclined with its major axis at an angle IjJ offiess 
than 45 0 to the direction of shortening becomes less eccentric in shape 
and rotates towards the direction of elongation. However, once the 
particle has passed through the angle 1jJ=45 0 it enters the field of elonga­
tion and becomes more eccentric as its major axis moves towards the 
direction of maximum elongation. The rate of rotation and change in 
shape decrease rapidly with increasing viscosity contrast between the 
particle and the surrounding fluid. During simple shear, an elliptical 
particle both deforms and rotates towards the shearing direction. The 
rate of change of shape of the particle as its major axis rotates towards the 
shearing direction depends greatly on the ratio of the viscosities of the 
particle and fluid, being high for a low viscosity ratio and small for a high 
ratio. 

This single-particle theory may be extended to cover the development 
of preferred orientations in multi-particle systems by the use of statistical 
considerations. Thus in pure shear of a multi-particle system, particles 
will tend to lie with their major axes oriented parallel to the direction of 
maximum elongation in the deformation plane. For simple shear, all 
particles again tend towards the deformation plane. 

1 N. C. Gay, Tectonophysics, 5 (1968), 2II-34. Two-dimensional 
effects may conveniently be illustrated by model experiments. E. S. 
O'Driscoll, Nature, 203 (1964), 832-5. 



NOTATION 

SOlliE symbols which are frequently used are listed below, together 
with the pages on which they are defined. 

A, B, C semi-axes of strain ellipsoid, 34 
E Young's Modulus, 57 
ez, etc. Strain deviation, 90 
G Modulus of rigidity, 56 
g Acceleration of gravity 
11> 12, ••• Invariants of stress, 14 
J1> J2, ... Invariants of stress deviation, 92 
K Bulk modulus, 56 
I, m; n Direction cosines, I I 

lx, -etc. Stress deviation, 90 
So Shear strength, 76 
To Tensile strength, 77, 85 
U, (I, W Displacements, 45 
X, Y, Z Body forces, IIS 
'>' Shear strain, 22 
'>'11., etc. Shear strain components, 46 
~ Dilatation, 47 
~z, etc. Normal strain components, 46 
~h ~2' £3 Principal strains, 47 
"1 Viscosity, 71 
A, G Lame's parameters, 56 
A Quadratic elongation, 30, 224 
A" A2' A3 Principal quadratic elongations, 35, 224 
,\' Reciprocal quadratic elongation 37, 225 

,\1', A.-, Aa' Principal reciprocal quadratic elongations, 37, 225 
,>,'= A ',>, 37,225 
p. Coefficient of internal friction, 76, 160 
II Poisson's ratio, 57 
p Density, II6 
ax, etc. Normal stress components, 3, ISO 

al>ayaa Principal stresses, 13, 151 
'Til', etc. Shear stress components, 3 
<fo=tan -1 p. Angle of (internal) friction, 83, 160 
w., etc. Components of rotation, 46 

NOTE: Stresses and strains are reckoned positive when compressive in 
Chapter IV and when tensile in the other chapters. 
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Huber, 93 
Hydraulic fracturing, 188, 210 
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Inclusion, cylindrical, in infinite 
medium, 203 

Incompressibility, 56 
Infinitesimal strain, 22, 38, 45, 223 
Instability, 251; of elastic sheet, 

252; of viscous layers, 253 
Intermediate principal stress, effect 

of, 94, 213 
Invariants, 7, 14, 92, 180, 226 
Irrotational strain, 27, 39, 46, 226 
Isobars, 183 
Isochromatics, 182 
Isoclinics, 182 
Isopachs, 182 
Isotropic substances, 55 

Kelvin substance, 100 
Kinking, 255 

Lame's parameters, 56 
Line load, 126,207 
Linear relations, 55, 103, 164 
Logarithmic strain, 68 
Love waves, 135 

Marker points and lines 235 
Matrices, 222; square, 222; unit, 

222; inverse, 222; multiplica­
tion law, 222; representation 
of finite strain by, 223; in­
finitesimal strain, 223; rota­
tion, 223 

Maximum shear stress, 10, 17 
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Maximum shear stress criterion, 
75, 91, 158 

Maxwell substance, 102, 105 
Mean normal strain, 90 
Mean normal stress, 90 
Measuring bolts, 211 
Modulus of rigidity, 56 
Mohr envelope, 81, 83, 157, 167, 

169 
Mohr's circle diagram, 9, 18, 42, 

159, 161, 175, 193 
Mohr's representation of finite 

strain, 34, 225, 234 
Mohr's theory of fracture, 81, 95 

Natural strain, 68, 89 
Navier,75 
Newtonian substance, 54, 100 
Normal stress, 3, 6, II, 150 

Octahedral plane, 93 
Octa hedral shearing stress, 93 
Orthotropic material, 64 
Overcoring, 209 

Perfectly elastic solid, 5 I 
Perfectly plastic solid, 51, 97, 110 
Photoelasticity, 184 
Plane strain, 60, 121 
Plane stress, 59, 124 
Plastic flow, 143 
Plastic potential, 180 
Poise, 72 
Poisson's ratio, 57, 66 
Poisson's relation, 58 
Polar coordinates, 43, 123, 130 
Porous media, stresses in, 164; 

failure of, 166 
Primary seismic waves, 117, 133 
Principal axes of an ellipse, deter­

mination of, 228; of an ellip­
soid,229 

Principal axes of strain, 26, 33, 41, 
224 

Principal axes of stress, 7, 13 
Principal quadratic elongations, 35, 

224 
Principal strains, 41 
Principal stresses, 7, 13, 151 
Progressive deformation, 235, 241 
Proportional limit, 5 I 
Ptygmatic folding, 245 
Pure shear, 24, 32, 236 

Quadratic elongation, 22, 30, 35, 
224 

Quadric surface, 14 

Rankine's states of equilibrium, 84 
Rayleigh waves, 134 
Reciprocal quadratic elongations, 

37,225 
Reciprocal strain ellipse, 29 
Reciprocal strain ellipsoid, 33 
Relaxation time, 101, 104 
Rheological models, 99, 152 
Rheology, 54, 99 
Rock boiting, 193 
Rock properties, measurement in 

situ, 21 I; in the laboratory, 
212 

Rotation, 24, 27 
Rotational symmetry, 60 
Rupture, 74 

St-Venant,98 
St-Venant substance, 54, 100 
Secondary seismic waves, 118, 133 
Seismic prospecting, 136 
Seismology, 135 
Shear fracture, 74. 154 
Shear line, 144, 182 
Shear strain, 22 
Shear strength, 76; numerical 

values, 155, 156 
Shear stress, 3, 6, II, 175 
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Simple shear, 24, 32, 238 
Size effects, empirical formulae, 

216,217; WeibuII's theory, 2I 5 
Sliding between rock surfaces, 162 
Slip line, 133, 182 
Soil mechanics, 83, 163, 165, 191 
Sphere, flattening or extension of, 

237 
Strain conic, 41 
Strain deviation, 90 
Strain ellipse, 27, 224, 238 
Strain ellipsoid, 33, 239 
Strain energy, 62 
Strain energy of distortion, 93 
Strain gauges, 43 
Strain hardening, 5 I 
Strain quadric, 47 
Strain theories of failure, 87 
Stream function, 140 
Strengths of materials, 75,155,156 
Stress, 2 
Stress-components, 4, 151 
Stress conic, 8 
Stress deviation, 90 
Stress function, 122, 128, 130, 196 
Stress gradients, effects of, 216 
Stress quadric, 14 
Stress space, 95 
Stress-strain curve, 50, 151,217 
Stress-strain relations, 56, 58, 62, 

63, 91, 164, 186 
Stress tensor, 4 
Stress trajectories, 177, 182, 184, 

188 
Stress vector, 3 
Stresses around openings, 186 ; 

circular hole, 187, 196; elliptic 
hole, 189, 198; crack, 199; 
square hole, 190,200; circular 
hole in fractured material, 191 

Symmetry, 64 

Tabular excavations, 200, 207 
Tectonic regimes, 175 
Temperature, influence on strength 

155 
Tensile test, 50, 74, 88 
Testing machines, effects of stiff-

ness, 219 
Thermal stresses, 119 
Torsion, 113 
Traction, 3 
Tresca's criterion, 91, 94, 96, 143 
Triaxial test, 81, 84, 153, 154; in-

cluding pore-pressure, 166 

Ultimate stress, 75, 88 
Underground stresses, 171, 21 I; 

methods of measuring, 208 
Uniaxial strain, 59 
Uniaxial stress, 59 
Unit stress, 3 

Viscosity, 54, 70 
Viscosity, measurement of, 109, 

142 
Viscosity, non-Newtonian, 72, 109 
Viscosity, values of, 72 
Viscous motion, 138, 140 
Voigt substance, 100 
von Karman, 52,154 
von Mises's criterion, 92, 96, 143 

Wave equation, II7, 131 
Wood,255 

Yield criteria, 73, 89 
Yield stress, 51, 92, 100 
Yield surface, 96 
Young's modulus, 57, 66 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




