CHAPTER SEVEN

ON APPROXIMATE INFERENCE

In chapters 2-6 we developed and investigated real-valued (or lattice-valued) propositional and predicate calculi based on the notion of a (continuous) t norm and its residuum. Now our understanding of these calculi is reasonably advanced: we have obtained several completeness theorems etc. But now we must ask: how does this relate to fuzzy logic (in the narrow sense, obviously)? Let us again quote from Zadeh [221]:
"In a narrow sense, fuzzy logic (FLn) is a logical system which aims at a formalization of approximate reasoning. As such, it is rooted in multivalued logic but its agenda is quite different from that of traditional multivalued logical systems, e.g., Łukasiewicz logic. In this connection, it should be noted that many of the concepts which account for the effectiveness of fuzzy logic as a logic of approximate reasoning are not a part of traditional multivalued logical systems. Among these are the concepts of a linguistic variable, canonical form, fuzzy rule, fuzzy graph, fuzzy quantifiers and such modes of reasoning as interpolative reasoning, syllogistic reasoning and dispositional reasoning."

In this chapter and also in some further chapters we shall investigate some items from Zadeh's agenda of questions or topics typical of fuzzy logic in this meaning: without denying that they do not belong to the "classical" questions of many-valued logic we shall try to show that these topics admit a strictly logical analysis in the sense of formal logic. It will turn out that much of approximate inference may be presented as deduction in a suitably chosen logic, i.e. in a truth-preserving way. This does not mean that we claim to reduce fuzzy logic to many valued logic; but it does mean that the role of many-valued logic as a base (foundation) of fuzzy logic is much greater and more important than one would guess at the beginning. It goes without saying that fuzzy logic indeed has aspects that are not grasped by classical manyvalued logic (as control aspects of fuzzy control); but, I repeat, the deductive aspect (with its corresponding semantical counterpart) is very important.

Section 1 analyses Zadeh's compositional rule of inference and two particular cases of it: generalized modus ponens and a (less known) generalized conjunctive rule. We also comment on some dangers in certain popular but questionable uses of fuzzy logic in expert systems. Section 2 analyzes logical aspects of fuzzy control. Section 3 presents an alternative formalization of the two generalized rules and the corresponding alternative formalization of fuzzy control.

7.1. THE COMPOSITIONAL RULE OF INFERENCE

7.1.1 We start with the notion of a variate. ${ }^{37}$ A variate is given by its name X and its domain $D . X$ is just a symbol; D is a non-empty set. Examples are: age with the domain of integers ≤ 120 (say), temperature (with some domain), etc. Fuzzy logic notoriously uses expressions of the form " X is A " where A is (the name of) a fuzzy subset of D, e. g. "the age is high". These expressions typically occur in fuzzy rules, to be analyzed later.

It is not automatically clear how this fits into our formalism of predicate calculus, and, in fact, we shall present two ways of doing it. In this and the next section, we shall proceed as follows: having n variates $\left(X_{1}, D_{1}\right), \cdots$, $\cdots\left(X_{n}, D_{n}\right)$ we understand the D 's as domains of a many-sorted structure interpreting a predicate language; fixed fuzzy subsets of a domain interpret some unary predicates. Besides we may have predicates of higher arity and their interpretation in our many-sorted structure. The most important thing comes now: the name of a variate is taken to be an object constant, interpreted in each situation as the actual value of the variate. The expression " X is A " becomes an atomic closed formula $A(X)$ (once again: A is a unary predicate, X is an object constant). A typical rule "IF X is A THEN Y is B " may be interpreted as $A(X) \rightarrow B(Y)$. (Caution: this is not the only possible reading of a "fuzzy IF - THEN rule", as we shall see later.)

Summarizing: We have understood an n-tuple of variates $\left(X_{i}, D_{i}\right)_{i=1}^{n}$ as determining a language \mathcal{I} with sorts s_{1}, \cdots, s_{n} and with object constants $X_{1}, \cdots, X_{n}, X_{i}$ of the sort s_{i}. Besides our language may contain arbitrary predicates of any type and any other object constants. Any \mathcal{I}-structure

$$
\left\langle\left(D_{i}\right)_{i},,\left(r_{P}\right)_{P \text { pred. }}, m_{X_{1}}, \cdots, m_{X_{n}} \cdots\right\rangle
$$

(where the dots stand for the interpretation of additional constants, if any) is understood as a fuzzy structure over the given variates, with X_{i} denoting the actual value of the i-th variate.

Given this, we may start our analysis of Zadeh's compositional rule of inference. ${ }^{38}$
7.1.2 The compositional rule of inference in its traditional formulation can be stated as follows:

From " X is A " and " (X, Y) is R " infer " Y is B " if for all $v \in D_{Y}$,

$$
r_{B}(v)=\sup _{u \in D_{X}}\left(r_{A}(u) * r_{R}(u, v)\right)
$$

[^0]${ }^{38}$ See [213].
where $*$ is a continuous t-norm. The relation r_{B} is sometimes called the composition of r_{A} and r_{R}, or the image of r_{A} under the relation r_{R}.
7.1.3 We ask: what does this mean? What is inferred? Is this any deduction?

First observe that the rule is semantical: given any structure \mathbf{D} of domains of variates, it formulates a semantical condition on the fuzzy set r_{B} interpreting the predicate B in terms of r_{A} (fuzzy set) and r_{R} (fuzzy relation). Typically, no more explanation is given. The rule is stated more or less as self-evident.

But observe that in fact the definition of r_{B} in terms of r_{A} and r_{R} is expressible in BL \forall : The condition above just means that the formula $(\forall y)(B(y) \equiv(\exists x)(A(x) \& R(x, y))$ is 1-true in D. Call the last formula Comp (or $\operatorname{Comp}(A, R, B)$, the composition); thus the rule demands (assumes) $\|C o m p\|_{\mathbf{D}}=1$.

Lemma 7.1.4 Under the present notation,

$$
\mathrm{BL} \forall \vdash C o m p \rightarrow((A(X) \& R(X, Y)) \rightarrow B(Y))
$$

Consequently, for each structure \mathbf{D} such that $\|\operatorname{Comp}\|_{\mathbf{D}}=1$, $\|A(X) \& R(X, Y)\|_{\mathbf{D}} \leq\|B(Y)\|_{\mathbf{D}}$

Proof: By 5.1.14,
$\mathrm{BL} \forall \vdash(\forall y)([(\exists x)(A(x) \& R(x, y)) \rightarrow B(y)] \rightarrow(\forall x)[(A(x) \& R(x, y)) \rightarrow$ $B(y)]$) and
$\mathrm{BL} \forall \vdash(\forall y)(\forall x)((A(x) \& R(x, y)) \rightarrow B(y)) \rightarrow[(A(X) \& R(X, Y)) \rightarrow$ $B(Y)]$.
Thus
$\mathrm{BL} \forall \vdash C o m p \rightarrow((A(X) \& R(X, Y)) \rightarrow B(Y))$
by transitivity of implication. The rest is evident.
We also show that $C o m p$ is the best condition making the above inference possible.

Lemma 7.1.5 Let B^{\prime} be a unary predicate of the same sort as B. Then
$\mathrm{BL} \forall \vdash \operatorname{Comp} \&(\forall y)(\forall x)\left((A(x) \& R(x, y)) \rightarrow B^{\prime}(y)\right) \rightarrow(\forall y)(B(y) \rightarrow$ $\left.B^{\prime}(y)\right)$
(thus in each model \mathbf{D}, if $C o m p$ is true then r_{B} is the smallest fuzzy subset of D_{Y} making the inference of the composition rule sound).

Proof: Evidently,
$\mathrm{BL} \forall \quad \vdash \quad(\forall y)(\forall x)\left((A(x) \& R(x, y)) \quad \rightarrow \quad B^{\prime}(y)\right) \quad \rightarrow$
$\rightarrow(\forall y)\left[(\exists x)(A(x) \& R(x, y)) \rightarrow B^{\prime}(y)\right]$,
but assuming $C o m p$, the formula $(\exists x)(A(x) \& R(x, y))$ is equivalent to $B(y)$, thus we get the desired implication.
Proof:
We shall now discuss two important particular cases. For this purpose we replace the atomic formula $R(x, y)$ by an arbitrary formula $\varphi(x, y)$.

Corollary 7.1.6 (1) Let $C o m p$ be the formula
$(\forall y)(B(y) \equiv(\exists x)(A(x) \& \varphi(x, y))$. Then
$\operatorname{BL} \forall \vdash(C o m p \& A(X) \& \varphi(X, Y)) \rightarrow B(Y)$.
Proof: Evident modifications of the above.
7.1.7 Now we shall consider Zadeh's Generalized Modus Ponens as a particular case of the Compositional Inference rule. To this end let us slightly change notation: we replace A by A^{*}, B by B^{*} and then take $\varphi(x, y)$ to be $A(x) \rightarrow B(y)$ for some predicates A, B. Then 7.1.4 gives the following theorem.

Theorem 7.1.8 Let $\operatorname{Comp}_{M P}$ be the formula

$$
(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \&(A(x) \rightarrow B(y))\right) .\right.
$$

Then BL \forall proves

$$
\left(C o m p_{M P} \& A^{*}(X) \&(A(X) \rightarrow B(Y))\right) \rightarrow B^{*}(Y)
$$

Remark 7.1.9 (1) This may be visualized as a deduction rule:

$$
\frac{\operatorname{Comp}_{M P}, A^{*}(X), A(X) \rightarrow B(Y)}{B^{*}(Y)}
$$

The obvious reading is: if $\operatorname{Comp}_{M P}, A^{*}(X), A(X) \rightarrow B(Y)$ are 1-true (in a given structure \mathbf{D}) then $B^{*}(Y)$ is 1-true. But 7.1.8 gives more:

$$
\left\|\operatorname{Comp}_{M P} \& A^{*}(X) \&(A(X) \rightarrow B(Y))\right\|_{\mathbf{D}} \leq\left\|B^{*}(Y)\right\|_{\mathbf{D}}
$$

in particular, if $\operatorname{Comp}_{M P}$ is 1-true (B^{*} is defined as above), $A^{*}(X)$ is r-true and $A(X) \rightarrow B(Y)$ is s-true then $B^{*}(Y)$ is at least $(r * s)$ - true (where $*$ is the truth function of $\&)$.
(2) We stress that we have shown provability in BL \forall. Thus the above rule may be read for implication and conjunction in $£ \forall, G \forall, \Pi \forall$ and any other predicate calculus given by a continuous t-norm.
(3) Furthermore, observe that you may replace $\&$ by \wedge in 7.1.8 and make the obvious modifications, e.g. if the (modified) $\operatorname{Comp}_{M P}$ is 1-true, $A^{*}(X)$ is r-true and $A(X) \rightarrow B(Y)$ is s-true then $B^{*}(Y)$ is $\min (r, s)$-true.
(4) Let us mention that the use of A, A^{*}, B, B^{*} should suggest that A^{*} is similar to A in some sense - and then $\operatorname{Comp}_{M P}$ should say that B^{*} is similar to B in some other sense. ${ }^{39}$ But be careful: If A, B, A^{*} are interpreted by crisp (0,1 - valued) subsets of the respective domains then the interpretation of B^{*} is also crisp and
(i) either $r_{A^{*}} \subseteq r_{A}$ and $r_{A^{*}} \neq \emptyset$ and $r_{B^{*}}=r_{B}$,
(ii) or $r_{A^{*}} \subseteq r_{A}$ and $r_{A^{*}}=\emptyset$ and $r_{B^{*}}=\emptyset$,
(iii) or $r_{A^{*}}$ is not a subset of r_{A} and then $r_{B^{*}}=D_{Y}$ (the full set). (This can be formulated and proved in BL \forall - exercise.) See Figure 7.1.
(5) In general, if $\operatorname{Comp}_{M P}$ is defined as in 7.1.8 then
$\operatorname{Comp}_{M P} \vdash(\forall y)\left[\left((\exists x)\left(A^{*}(x) \& \neg A(x)\right) \rightarrow B^{*}(y)\right]\right.$.
Thus for each $v \in D_{Y}, r_{B}^{*}(v) \geq \sup _{u \in D_{X}}\left(r_{A^{*}}(u) *(-) r_{A}(u)\right)$.

Figure 1. The grey domain is the set of pairs satisfying $A^{*}(x) \&(A(x) \rightarrow B(y))$.
(6) Observe that, under the present notation, and over BL \forall, $\operatorname{Comp}_{M P} \vdash(\exists x) A^{*}(x) \rightarrow(\forall y)\left(B(y) \rightarrow B^{*}(y)\right)$. Indeed, the following formulas are provable:
${ }^{39}$ The notorious example is: If the colour is red then the tomato is ripe; the colour is very red - what follows?

```
\(B(y) \rightarrow(A(x) \rightarrow B(y))\),
\(\left.A^{*}(x) \& B(y)\right) \rightarrow\left(A^{*}(x) \&(A(x) \rightarrow B(y))\right.\),
\((\exists x)\left(A^{*}(x) \& B(y)\right) \rightarrow(\exists x)\left(A^{*}(x) \&(A(x) \rightarrow B(y))\right.\),
\((\exists x)\left(A^{*}(x) \& B(y)\right) \rightarrow B^{*}(y)\),
\(\left[(\exists x) A^{*}(x) \& B(y)\right] \rightarrow B^{*}(y)\),
\((\exists x) A^{*}(x) \rightarrow\left(B(y) \rightarrow B^{*}(y)\right)\) (by 5.1.18, (9)),
\((\exists x) A^{*}(x) \rightarrow(\forall y)\left(B(y) \rightarrow B^{*}(y)\right)\).
```

Thus in particular, if for some $u \in D_{X}, r_{A^{*}}(u)=1$, then for all $v \in D_{Y}$, $r_{B}(v) \leq r_{B^{*}}(v)$.
7.1.10 Now let us have predicates A, A^{*} (of the same sort), B, B^{*} (of the same sort) and take $A(x) \& B(y)$ for $\varphi(x, y)$. (Note that we could also take $A(x) \wedge B(y)$.) We automatically get a BL \forall - provable tautology and hence a sound deduction rule. We shall ask what it means and how it relates to classical logic. In the next section we shall use our analysis of Generalized Modus Ponens and the present Generalized Conjunctive Rule to an analysis of the logical background of fuzzy controllers. As above, 7.1.4 gives the following

Theorem 7.1.11 Let $C o m p_{C R}$ be

$$
(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \& A(x) \& B(y)\right)\right) .
$$

Then BL \forall proves

$$
\operatorname{Comp}_{C R} \& A^{*}(x) \& A(x) \& B(y) \rightarrow B^{*}(y)
$$

Remark 7.1.12 (1) As above, we get a sound deduction rule

$$
\frac{\operatorname{Comp}_{C R}, A^{*}(X), A(X) \& B(Y)}{B^{*}(Y)},
$$

Soundness means: for each domain structure \mathbf{D},

$$
\left\|\operatorname{Comp}_{C R}, A^{*}(X) \& A(X) \& B(Y)\right\|_{\mathbf{D}} \leq\left\|B^{*}(Y)\right\|_{\mathbf{D}} .
$$

In the language of "fuzzy rules": From " X is A and Y is B " and " X is A^{*} " infer " Y is $B^{* *}$. This is not a frequently used "fuzzy rule", but we get it naturally from the Compositional rule.
(2) There are at least two particular cases in the classical (Boolean) case. First, the usual rule for conjunction, second a rule of contradiction:

$$
\frac{A(X) \& B(Y)}{B(Y)} \quad \frac{\neg A(X), A(X) \& B(Y)}{\neg B(Y) \& B(Y)}
$$

(3) In general, for A, B, A^{*} crisp, we get the picture for $A^{*}(x) \& A(x) \&$ $\& B(y)$ given in Fig. 7.2:

A^{*}

Figure 2.
(i) either $r_{A} \cup r_{A^{*}} \neq \emptyset$ (for some $\left.u, r_{A}(u)=r_{A^{*}}(u)=1\right)$ and $r_{B}=r_{B^{*}}$
(ii) or $r_{A} \cup r_{A^{*}}=\emptyset$ and then $r_{B^{*}}=\emptyset\left(r_{B^{*}}(v)=0\right.$ for all $\left.v \in D_{Y}\right)$.
(4) In full generality, the following is provable over BL \forall : (for the present meaning of $C o m p_{C R}$):
(i) $\operatorname{Comp}_{C R} \vdash(\forall y)\left(B^{*}(y) \rightarrow B(y)\right)$,
(ii) $\operatorname{Comp}_{C R}{ }^{\text {†- }}(\forall y)\left(B^{*}(y) \rightarrow(\exists x)\left(A(x) \&\left(A^{*}(x)\right)\right)\right.$.

Indeed, assuming $\operatorname{Comp}_{C R}$ we prove
$B^{*}(y) \rightarrow(\exists x)\left(A^{*}(x) \& A(x) \& B(y)\right) \rightarrow\left[(\exists x)\left(A^{*}(x) \& A(x)\right) \& B(y)\right]$ (by 5.1.18 (9)).

From (ii) we also get
$\operatorname{Comp}_{C R} \vdash(\exists y) B^{*}(y) \rightarrow(\exists x)\left(A(x) \& A^{*}(x)\right)$.
and hence
$\operatorname{Comp}_{C R} \vdash \neg(\exists x)\left(A(x) \& A^{*}(x) \rightarrow \neg(\exists y) B^{*}(y)\right.$.
(5) We again stress that all provabilities are over BL \forall. These are valid over
$Ł \forall, \mathrm{G} \forall, \Pi \forall$ and any other t-norm logic. Moreover, the reader may check that everything remains valid if we replace $\&$ by \wedge throughout.

Example 7.1.13 We shall present here a critical analysis of the use of the compositional rule of inference in some fuzzy expert systems like CADIAG2 (developed by K.P. Adlassnig and his group; see [3, 4, 5, 117] or, for a short description , [115]; for a detailed analysis see [32]). We have three sets: M the set of patients, S - the set of symptoms and D - the set of diagnoses. Further we have three fuzzy binary relations: $P:(M \times S) \rightarrow[0,1]$ expressing for each pair $(p, s), p \in M, s \in S$, how much p has the symptoms s, further $R:(S \times D) \rightarrow[0,1]$ expressing for each $s \in S$ and $d \in D$ how much s confirms d, and $P^{\prime}:(M \times D) \rightarrow[0,1]$ expressing how much a patient p has the diagnosis d. Thus we have a structure with three domains M, S, D and three binary relations. Let $H a s, \operatorname{Conf}, \mathrm{Has}^{\prime}$ be binary predicates naming P, R, P^{\prime} respectively; thus $\operatorname{Has}(x, s)$ says " x has the symptom s ", similarly $H a s{ }^{\prime}(x, d)$; and Conf (s, d) says " s confirms d ". Using the compositional rule (for an arbitrary but fixed x) one defines

$$
\operatorname{Diag}(x, d) \equiv(\exists s)(\operatorname{Has}(x, s) \& \operatorname{Con} f(s, d))
$$

This defines over $£ \forall$ or other logic a relation $C:(P \times D) \rightarrow[0,1]$, expressing for each p and d how much d is confirmed for p.

So far so good; but what does this mean? Clearly, the answer depends on the definition of the meaning of Conf, i.e. of the relation R. Here our warning comes: In CADIAG and similar systems, one defines R from some data. $R(s, d)$ is taken to be the relative frequency $\operatorname{Fr}(d \mid s)$ of presence of d among objects (patients) having d (for implicity, symptoms and diagnoses are assumed to be crisp). What does $\operatorname{Diag}(x, d)$ mean in this case? This is difficult to say; but one thing is clear. Let p be a patient and let s_{1}, \ldots, s_{k} be the symptoms he has. We would be interested in knowing, or at least estimating $\operatorname{Fr}\left(d \mid s_{1} \ldots s_{k}\right)$ - the relative frequency of d among object having $s_{1} \ldots, s_{k}$ - as a possible estimate of the value of $H a s^{\prime}(x, d)$. But it must be clearly said that Diag does not estimate this relative frequency; Diag just defines $\max \left(\operatorname{Fr}\left(d \mid s_{1}\right), \ldots, \operatorname{Fr}\left(d\left(s_{k}\right)\right)\right.$. And observe that it can happen, for example, that $(k=2), \operatorname{Fr}\left(d \mid s_{1}\right)=\operatorname{Fr}\left(d \mid s_{2}\right)=0.9$ but $\operatorname{Fr}\left(d \mid s_{1}, s_{2}\right)=0.2$. (See the following frequency table)

s_{1}	s_{2}	d	
1	1	1	1
1	0	1	44
0	1	1	44
0	0	1	5
1	1	0	4
1	0	0	1
0	1	0	1
0	0	0	3

Note that it does not help to allow S to contain conjunctions of symptoms see [32] for details.

Let us offer one possible interpretation of Conf with desirable properties (without any claim that this is the only right interpretation). Assume the relations P, P^{\prime} interpreting Has, Has' to be fuzzy and let

$$
\operatorname{Conf}(s, d) \equiv(\forall x)\left(\operatorname{Has}(x, s) \rightarrow \operatorname{Has}^{\prime}(x, d)\right) .
$$

Thus the truth degree of $\operatorname{Conf}(s, d)$ is the minimum, over all patients x, of the truth degrees of the implication $\operatorname{Has}(x, s) \rightarrow \operatorname{Has}^{\prime}(x, d)$. Caution. For example, in $£ \forall,\|\operatorname{Conf}(s, d)\|=0.9$ means that for each patient, $\|\operatorname{Has}(x, s)\| \leq \min \left(1\right.$, Has $\left.^{\prime}(x, d) \|+0.1\right)$. (All truth values in the given structure.) Then for each patient p, the following formulas are true:

$$
\begin{aligned}
& (\operatorname{Has}(p, s) \& \operatorname{Conf}(s, d)) \rightarrow \operatorname{Has}^{\prime}(p, d), \text { thus } \\
& (\exists s)(\operatorname{Has}(p, s) \& \operatorname{Conf}(s, d)) \rightarrow \operatorname{Has}^{\prime}(p, d),
\end{aligned}
$$

i.e. $\operatorname{Diag}(p, d) \rightarrow \operatorname{Has}^{\prime}(p, d)$. Consequently, the truth degree of $\operatorname{Diag}(p, d)$ is a lower bound of the degree in which p has the diagnosis d. This is surely pleasing; the question remains if e.g. the physician can supply knowledge necessary to evaluate Conf in the present meaning.
7.1.14 In the rest of this section we shall discuss the question of what are "the present (actual) values of variables X, Y " and sketch a formalism for this. The present discussion will be used in an example in Ch. 8 and may be skipped now if desired.

We can imagine a new domain M of objects (situations, time elements, persons) interpreting a new sort of variables; denote the new variables by z, z_{1}, \cdots. We assume that for each object $m \in M$, each variate X takes a value $f_{X}(m) \in D_{X}$ (temperature, colour, etc. of m). Thus X becomes a function symbol; $X(z)$ is a term. Fixing an $m_{0} \in M$ as a meaning of a new constant c for actual object, $X(c), Y(c)$ are terms for the values of the corresponding variates for the actual object.

Definition 7.1.15 Formally, this leads to a many-sorted many-valued calculus whose language consists of a sort of s_{0} objects, sorts s_{1}, \cdots, s_{n} for domains of variates,

- unary function symbols X_{1}, \cdots, X_{n} for variates and an object constant c for "the actual object" (possibly other constants),
- variables for each sort,
- predicates of various types.

The language is called the ground language. A structure for this language has the form

$$
\mathbf{M}=\left\langle M, D_{X_{1}}, \cdots, D_{X_{n}}, f_{1}, \cdots, f_{n},\left(r_{P}\right)_{P \text { predicate }}, m_{c}, \cdots\right\rangle
$$

(dots for possible meanings for other constants) where each f_{i} maps M into $D_{X_{i}} . \mathrm{M}$ is called a ground structure.

Terms are variables, constants and expressions $X_{i}(z)$ where X_{i} is the name of the i-th variate and z is a variable of the sort s_{0}. Everything else is as usual;

$$
\left\|X_{i}(z)\right\|_{M, v}=f_{i}(v(z))
$$

7.1.16 We may now formulate axioms like $(\forall z)(A(X(z)) \rightarrow B(Y(z))$, saying "for each object z (situation etc.), if the value of the variate X (on the object z, in the situation z etc.) is A (big, etc) then the value of Y (on z) is B ". Then e.g. the Generalized Modus Ponens with the old condition $\operatorname{Comp}_{M P}$ saying $(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \& A(x) \rightarrow B(y)\right)\right.$ can be formulated as

$$
\operatorname{Comp}_{M P} \rightarrow(\forall z)\left(\left(A^{*}(X(z)) \&(A(X(z)) \rightarrow B(Y(z))) \rightarrow B^{*}(Y(z))\right.\right.
$$

and shown to be provable in the corresponding obvious modification of BL \forall (with a limited use of function symbols). You may derive various corollaries, e.g.

$$
\frac{\operatorname{Comp}_{M P},(\forall z)\left(A(X(z)) \rightarrow B(Y(z)), A^{*}(X(c))\right.}{B^{*}(Y(c))}
$$

saying that if B^{*} is defined as $\operatorname{Comp}_{M P}$ demands, if for all situations, [X is A implies Y is B] and if in the actual situation X is A^{*} then in the actual situation Y is B^{*}. Soundness of the rule guarantees e.g. that if $C o m p_{M P}$ and [for all z, X is A implies Y is B] are true (i.e. 1-true) in a given ground structure and $\left[X\right.$ is $\left.A^{*}\right]$ is r-true in the actual situation then $\left[Y\right.$ is $\left.B^{*}\right]$ is at least r-time in this situation.

This appears to be the the way that the Generalized Modus Ponens is actually used.

7.2. FUZZY FUNCTIONS AND FUZZY CONTROLLERS

7.2.1 Fuzzy control is apparently the most broadly used application of fuzzy logic. Various books explaining fuzzy control, written by non-logicians, suffer by logical mismatch caused by the fact that "fuzzy IF-THEN rules" are presented as implications but then used to construct a fuzzy relation having little to do with any implication, at least at first glance (the relation is defined by a disjunction of conjunctions). Attempts to call e.g. the min-conjunction a "Mamdani implication" (see e.g. [35]) must be strictly rejected since we insist that the fuzzy truth function of a connective must behave classicaly for extremal values 0,1 - and this is not the case for minimum as implication. It has slowly become clear that fuzzy control deals with approximation of functions on the basis of pieces of fuzzy information of the kind "for arguments approximately equal c_{i} the image is approximately equal to d_{i} ". ${ }^{40}$

It is illuminating to analyze the crisp situation. Assume we have two domains M_{1}, M_{2} and a crisp, possibly partial, function f from M_{1} to M_{2}. Moreover, let us have distinct elements $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right) \in M_{1} \times M_{2}$ such that for each $i=1, \ldots, n, f\left(u_{i}\right)=v_{i}$. Let us have a two-sorted language with equality (denoted $=$ for both domains) and a binary predicate F interpreted by f, let $\mathbf{M}=\left\langle M_{1}, M_{2}, f,={ }_{1},={ }_{2}\right\rangle$ where $={ }_{i}$ is identity on M_{i}, x-variables range on M_{1}, y-variables on M_{2}. The fact that f is a partial mapping is expresed by the sentence $\left(\forall x, y_{1}, y_{2}\right)\left(\left(F\left(x, y_{1}\right) \wedge F\left(x, y_{2}\right)\right) \rightarrow y_{1}=y_{2}\right)$. Let c_{i} be the constants for u_{i}, and d_{i} for v_{i} respectively.
(1) The formula

$$
\bigwedge_{i} F\left(c_{i}, d_{i}\right)
$$

just expresses the fact that $f\left(u_{i}\right)=v_{i}$; it is true in \mathbf{M}.
(2) The formula

$$
\bigwedge_{i}\left(\left(x=c_{i}\right) \rightarrow\left(y=d_{i}\right)\right)
$$

defines a relation $r \subseteq M_{1} \times M_{2}$ whose restriction to $\left\{u_{1}, \ldots, u_{n}\right\}$ coincides with the restriction of f to $\left\{u_{1}, \ldots, u_{n}\right\}$ and containing all pairs (u, v) where u is distinct from all u_{1}, \ldots, u_{n} and $v \in M_{2}$; thus $f \subseteq r$.
(3) The formula

$$
\bigvee_{i}\left(x=c_{i} \wedge y=d_{i}\right)
$$

defines a relation $s \subseteq M_{1} \times M_{2}$ which is the restriction of f to $\left\{u_{1}, \ldots, u_{n}\right\}$; i.e. no pair (u, v) with u distinct from all u_{1}, \ldots, u_{n} belongs to s. Thus $s \subseteq f$.

[^1]Compare this, in the fuzzy case, with the deduction rules of the last section. We shall develop a general theory of fuzzy functions and "partial knowledge" on them and then apply it to describe (the logical aspect of) fuzzy control. We shall systematically develop the theory in BL \forall (showing various statements to be provable); thus this will give, in particular, sound results for any t-norm logic $\mathcal{C} \forall$. To simplify matters, we shall deal only with unary functions (having one argument); a generalization to functions of several variables is easy.

After having discussed fuzzy functions we shall investigate the general logical structure of fuzzy controllers, not using fuzzy functions. The hurrying reader, not interested in fuzzy functions, may skip to 7.2.17.

Definition 7.2.2 Let T be a theory with a binary predicate F of a type $\left(t_{1}, t_{2}\right)$, let \approx_{i} be a similarity predicate in T for the sort t_{i}. (We shall write \approx both for \approx_{1} and \approx_{2} without any danger of confusion.) We say that F defines a (partial) fuzzy function in T with respect to \approx if T proves the following:

$$
\begin{gathered}
\left(x \approx x^{\prime} \& y \approx y^{\prime}\right) \rightarrow\left(F(x, y) \equiv F\left(x^{\prime}, y^{\prime}\right)\right) \\
\left(F(x, y) \& F\left(x, y^{\prime}\right)\right) \rightarrow y \approx y^{\prime}
\end{gathered}
$$

The first formula is the congruence axiom (cf. 5.6.5); the second says that any two images of x are similar.

Lemma 7.2.3 Let F define a partial fuzzy function in T w.r.t. \approx. Let c, d be constants such that $T \vdash F(c, d)$.
(1) Then $T \vdash(x \approx c \& F(x, y)) \rightarrow y \approx d$.
(2) Moreover, if $A(x)$ is the formula $x \approx c$ and $B(y)$ is the formula given by the condition Comp of the compositional rule of inference from F and A (cf. 7.1.6 (2)), i. e. $B(y)$ is $(\exists x)(x \approx c \& F(x, y))$ then $T \vdash(B(y) \equiv y \approx d)$. (Thus the compositional rule transforms $x \approx c$ and $F(x, y)$ to $y \approx d$.)

Proof: (1) In $T, x \approx c \& F(x, y)$ implies $F(c, y)$ which, due to the provability of $F(c, d)$ gives $y \approx d$.
(2) Clearly, $T \vdash y \approx d \rightarrow[c \approx c \& F(c, y)] \rightarrow[(\exists x)(x \approx c \& F(x, y))]$. On the other hand, $T \vdash(\exists x)(x \approx c \& F(x, y)) \rightarrow y \approx d$ follows from (1).

Definition 7.2.4 Let r_{i} be a similarity on $M_{i}(i=1,2)$. A fuzzy relation $s:\left(M_{1} \times M_{2}\right) \rightarrow[0,1]$ is a fuzzy mapping from M_{1} into M_{2} w.r.t. r_{1}, r_{2} if s is extensional, \mathbf{i}. e. for all $x, x^{\prime} \in M_{1}, y, y^{\prime} \in M_{2}$,

$$
r_{1}\left(x, x^{\prime}\right) * r_{2}\left(y, y^{\prime}\right) * s(x, y) \leq s\left(x^{\prime}, y^{\prime}\right)
$$

and functional, i. e.

$$
s(x, y) * s\left(x, y^{\prime}\right) \leq r_{2}\left(y, y^{\prime}\right)
$$

Lemma 7.2.5 Let F define a function w.r.t. \approx in T. If $\left\langle M_{1}, M_{2}, r_{1}, r_{2}, s\right\rangle$ is a model of T then s is a fuzzy mapping from M_{1} into M_{2} w.r.t. r_{1}, r_{2}.

Proof: Obvious.
Example 7.2.6 (1) Assume that s is a fuzzy mapping from M_{1} into M_{2} w.r.t. r_{1}, r_{2} and let r_{1}, r_{2}, s be crisp (0,1 -valued). Then r_{i} is an equivalence on M_{i} and if we factorize, i. e. put $M_{i}^{\prime}=M_{i} / r_{i}$ (in more details: $[u]_{1}=\left\{u^{\prime} \in\right.$ $\left.M_{1} \mid r_{1}\left(u, u^{\prime}\right)=1\right\}$, analogously $[v]_{2}$ then putting $f\left([u]_{1}\right)=[v]_{2}$ iff $s(u, v)=$ 1 we get a crisp mapping from M_{1}^{\prime} into M_{2}^{\prime} - see Fig. 7.3.

Figure 3.
(2) Now let r_{i} be similarities on $M_{i}(i=1,2)$ and let f be a crisp partial mapping from M_{1} into M_{2}. Take the least extensional relation s containing f (cf. 5.6.13). Our question is under which conditions s is a fuzzy mapping from M_{1} into M_{2}. The condition is that f respects the similarities r_{1}, r_{2}, i. e., for all $x_{1}, x_{2} \in M_{1}$,

$$
r_{1}\left(x_{1}, x_{2}\right) \leq r_{2}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)
$$

Indeed, consider $\mathbf{M}=\left\langle M_{1}, M_{2}, r_{1}, r_{2}, f, s\right\rangle$ and let $\approx_{1}, \approx_{2}, F, \hat{F}$ be names of r_{1}, r_{2}, f, s; thus the formula

$$
\begin{equation*}
(\forall \cdots)\left(\hat{F}(x, y) \equiv\left(\exists x^{\prime}, y^{\prime}\right)\left(x \approx x^{\prime} \& y \approx y^{\prime} \& F\left(x^{\prime}, y^{\prime}\right)\right)\right. \tag{*}
\end{equation*}
$$

is 1 -true in \mathbf{M}. Our condition reads

$$
\begin{equation*}
(\forall \cdots)\left(\left(x_{1} \approx x_{2} \& F\left(x_{1}, y_{1}\right) \& F\left(x_{2}, y_{2}\right)\right) \rightarrow y_{1} \approx y_{2}\right) \tag{**}
\end{equation*}
$$

Clearly, if the axioms of a fuzzy function are 1 -true for \approx_{i}, \hat{F} in M then (**) is 1 -true. Conversely, assume (${ }^{*}$) 1 -true; we have to show that the formula

$$
(\forall \cdots)\left(\left(\hat{F}\left(x, y_{1}\right) \& \hat{F}\left(x, y_{2}\right)\right) \rightarrow y_{1} \approx y_{2}\right)
$$

is 1 -true. Let T contain axioms of similarity for \approx_{i} and (${ }^{*}$).
$T \vdash\left[x \approx x^{\prime} \& y_{1} \approx y^{\prime} \& x \approx x^{\prime \prime} \& y_{2} \approx y^{\prime \prime} \& F\left(x^{\prime}, y^{\prime}\right) \& F\left(x^{\prime \prime}, y^{\prime \prime}\right)\right] \rightarrow$ $y_{1} \approx y_{2}$ (since the left-hand side implies $x^{\prime} \approx x^{\prime \prime} \& F\left(x^{\prime}, y^{\prime}\right) \& F\left(x^{\prime \prime}, y^{\prime \prime}\right) \&$ $y_{1} \approx y^{\prime} \& y_{2} \approx y^{\prime \prime}$, which in turn implies $y^{\prime} \approx y^{\prime \prime} \& y_{1} \approx y^{\prime} \& y_{2} \approx y^{\prime \prime}$ (by $(* *)$), and this implies $y_{1} \approx y_{2}$). Thus

$$
T \vdash\left(\exists x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)[\cdots] \rightarrow y_{1} \approx y_{2}
$$

(cf. 5.1.14 (2))),
$T \vdash\left[\left(\exists x^{\prime}, y^{\prime}\right)\left(x \approx x^{\prime} \& y_{1} \approx y^{\prime} \& F\left(x^{\prime}, y^{\prime}\right)\right) \&\right.$ $\left.\left(\exists x^{\prime \prime}, y^{\prime \prime}\right)\left(x \approx x^{\prime \prime} \& y_{2} \approx y^{\prime \prime} \& F\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)\right] \rightarrow y_{1} \approx y_{2}(c f .5 .1 .18$ (9)), which gives

$$
T \vdash\left(\hat{F}\left(x, y_{1}\right) \& \hat{F}\left(x, y_{2}\right)\right) \rightarrow y_{1} \approx y_{2} .
$$

See Fig. 7.4.
(3) We give an example of the meaning of the previous condition for Łukasiewicz logic. Assume $M_{i}=\left[a_{i}, b_{i}\right]$ are real intervals; let for $u, v \in m_{i}$, $r_{i}(u, v)=\max \left(0,1-c_{i}|u-v|\right)$. Then a sufficient condition for a mapping f of M_{1} into M_{2} is to satisfy the Lipschitz condition

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq \varepsilon\left|x_{1}-x_{2}\right|
$$

for an $\varepsilon \leq c_{2} / c_{1}$.

Our next task is to investigate the situation described as follows: there is a fuzzy mapping s from M_{1} into M_{2} (w.r.t. r_{1}, r_{2}), that is not at our disposal as a whole; but we know finitely many examples $u_{i}, v_{i}(i=1, \ldots, n)$ such that $s\left(u_{i}, v_{i}\right)=1$, i. e. if F names s, c_{i} name u_{i} and d_{i} name v_{i} then $F\left(c_{i}, d_{i}\right)$ is 1-true in $\mathbf{M}=\left\langle M_{1}, M_{2}, r_{1}, r_{2}, s, u_{i}, v_{i}\right\rangle$. It follows immediately that each formula

$$
x \approx c_{i} \& F(x, y) \rightarrow y \approx d_{i}
$$

is 1 -true; and this resembles an "IF- THEN rule"
IF x is similar to c_{i} THEN y is similar to d_{i}.

Figure 4. A fuzzy mapping given by the crisp function $y=x^{2}$.

What more can we say?
Definition 7.2.7 We say that, in a theory T, F defines $a \approx$-function with examples $\left(c_{i}, d_{i}\right)(i=1, \ldots n)$ if F defines a fuzzy function in T w.r.t. a similarity \approx and for $i=1, \ldots, n, T$ proves $F\left(c_{i}, d_{i}\right)$.

Repeating once more, the definitions say that the following formulas are provable in T : Similarity axioms for \approx, extensionality of $F:\left(F(x, y) \& x \approx x^{\prime} \& y \approx y^{\prime}\right) \rightarrow F\left(x^{\prime}, y^{\prime}\right)$, functionality of $\left.F:\left(F(x, y) \& F\left(x, y^{\prime}\right)\right) \rightarrow y \approx y^{\prime}\right)$, examples of $F: \bigwedge_{i=1}^{n} F\left(c_{i}, d_{i}\right)$.
Let us agree that in the sequel $A_{i}(x)$ will stand for $x \approx c_{i}$ and $B_{i}(y)$ for $y \approx d_{i}$, unless stated otherwise.

Theorem 7.2.8 Let T be a theory over BL \forall and assume that in T, F defines a \approx-function with examples $\left(c_{i}, d_{i}\right)(i=1, \cdots, n)$. Then T proves the following formulas:

$$
F(x, y) \rightarrow \bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)
$$

$$
\bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow F(x, y)
$$

Proof: (1) $T \vdash\left(F(x, y) \& x \approx c_{i}\right) \rightarrow F\left(c_{i}, y\right)$ (from extensionality), $T \vdash F\left(c_{i}, y\right) \rightarrow y \approx d_{i}\left(\right.$ from functionality and $T \vdash F\left(c_{i}, d_{i}\right)$).
Thus $T \vdash\left(F(x, y) \& A_{i}(x)\right) \rightarrow B_{i}(y)$, $T \vdash F(x, y) \rightarrow\left(A_{i}(x) \rightarrow B_{i}(y)\right)$, $T \vdash F(x, y) \rightarrow \bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)$. (cf. 7.2 .3 (1).)
(2) $T \vdash\left(x \approx c_{i} \& y \approx d_{i}\right) \rightarrow F(x, y)$ from extensionality, thus $T \vdash\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow F(x, y)$, $T \vdash \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow F(x, y)$.

Remark 7.2.9 Given predicates A_{i}, B_{i}, we let $\operatorname{RULES}(x, y)$ stand for the formula

$$
\bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)
$$

and $M A M D(x, y)$ (resembling the name Mamdani, see his [131, 132, 133]) for the formula

$$
\bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)
$$

We shall prove various results on the relation of these two formulas. In particular, Theorem 7.2.8 says that under the assumptions made,

$$
T \vdash M A M D(x, y) \rightarrow F(x, y) \rightarrow R U L E S(x, y)
$$

Lemma 7.2.10 Let $T, F, \approx, c_{i}, d_{i}, A_{i}, B_{i}$ be as above and let $T \vdash$ $\vdash M A M D(x, y) \equiv \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)$. Then $M A M D$ defines in T a $\approx-$ function with examples $\left(c_{i}, d_{i}\right)$.

Proof: Extensionality:
$T \vdash\left(x \approx c_{i} \& y \approx d_{i}\right) \rightarrow\left(\left(x^{\prime} \approx x \& y^{\prime} \approx y\right) \rightarrow\left(x^{\prime} \approx c_{i} \& y^{\prime} \approx d_{i}\right)\right)$,
$T \vdash\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow\left(\left(x^{\prime} \approx x \& y^{\prime} \approx y\right) \rightarrow\left(A_{i}\left(x^{\prime}\right) \& B_{i}\left(y^{\prime}\right)\right)\right)$,
$T \vdash\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow\left(\left(x^{\prime} \approx x \& y^{\prime} \approx y\right) \rightarrow \operatorname{MAMD}\left(x^{\prime}, y^{\prime}\right)\right)$,
$T \vdash \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right) \rightarrow\left(\left(x^{\prime} \approx x \& y^{\prime} \approx y\right) \rightarrow M A M D\left(x^{\prime}, y^{\prime}\right)\right)$,
$T \vdash\left(M A M D(x, y) \& x^{\prime} \approx x \& y^{\prime} \approx y\right) \rightarrow \operatorname{MAMD}\left(x^{\prime}, y^{\prime}\right)$.
Functionality:
$T \vdash M A M D(x, y) \rightarrow F(x, y)$; thus
$T \vdash\left(M A M D(x, y) \& M A M D\left(x, y^{\prime}\right)\right) \rightarrow\left(F(x, y) \& F\left(x, y^{\prime}\right)\right)$, hence $\left.T \vdash M A M D(x, y) \& M A M D\left(x, y^{\prime}\right)\right) \rightarrow y \approx y^{\prime}$, by the functionality of F. Examples: Clearly, $T \vdash A_{i}\left(c_{i}\right) \& B_{i}\left(d_{i}\right)$,hence $T \vdash M A M D\left(c_{i}, d_{i}\right)$.

Remark 7.2.11 Thus the formula $\operatorname{MAMD}(x, y)$, i. e. $\bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)$ defines in T the least \approx-function with examples $\left(c_{i}, d_{i}\right)$. Caution: The formula $R U L E S(x, y)$, i. e. $\bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)$ (with our fixed assumptions, $A_{i}(x)$ is $x=c_{i}$ etc.) need not define a \approx-function! This can be seen already in the crisp case: for x non-equivalent to any of c_{1}, \ldots, c_{n}, our formula gives no restriction to the value of y. In more details, if T is as above and $T \vdash R U L E S(x, y) \equiv \bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)$ then
$T \vdash\left(\bigwedge_{i} \neg\left(A_{i}(x)\right) \rightarrow R U L E S(x, y)\right.$ (since $T \vdash \neg A_{i}(x) \rightarrow\left(A_{i}(x) \rightarrow\right.$ $\left.B_{i}(y)\right)$). see Fig.7.5.

Figure 5.
Thus keeping our assumptions on T we may ask under which conditions the two formulas, $R U L E S(x, y)$ and $\operatorname{MAMD}(x, y)$ are equivalent. The following lemma gives the answer:

Lemma 7.2.12 Let $T, F, \approx, c_{i}, d_{i}, A_{i}, B_{i}$ be as above, let $\operatorname{MAMD}(x, y)$ stand for $\bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)$ (i. e. for $\bigvee_{i}\left(x \approx c_{i} \& y \approx d_{i}\right)$) and let $R U L E S(x, y)$ stand for $\bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right)$ i. e. for $\bigwedge_{i}\left(x \approx c_{i} \rightarrow y \approx d_{i}\right)$. Then

$$
T \vdash\left(\bigvee_{i} A_{i}^{2}(x)\right) \rightarrow(M A M D(x, y) \equiv R U L E S(x, y))
$$

Proof: $T \vdash\left(A_{i}(x) \rightarrow B_{i}(y)\right) \rightarrow\left[\left(A_{i}(x) \& A_{i}(x)\right) \rightarrow\left(A_{i}(x) \& B_{i}(y)\right)\right]$, $T \vdash A_{i}^{2}(x) \rightarrow\left[\left(A_{i}(x) \rightarrow B_{i}(y)\right) \rightarrow\left(A_{i}(x) \& B_{i}(y)\right)\right]$,
$T \vdash A_{i}^{2}(x) \rightarrow\left[\bigwedge_{i}\left(A_{i}(x) \rightarrow B_{i}(y)\right) \rightarrow \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)\right]$,
$T \vdash \bigvee_{i} A_{i}^{2}(x) \rightarrow[M A M D(x, y) \equiv R U L E S(x, y)]$ (by 7.2.9; recall that in propositional calculus, $p \equiv q$ is equivalent to $(p \rightarrow q) \wedge(q \rightarrow p)$, cf. 2.2.16 (29)).

Corollary 7.2.13 Under the present notation, $T \cup\left\{(\forall x)\left(\bigvee_{i} A_{i}(x)\right)\right\} \vdash(\forall x, y)(M A M D(x, y) \equiv R U L E S(x, y))$. (Note that if \mathbf{M} is a model of the theory in question then for each $u \in M$ there is an i such that if c_{i} denotes u_{i} in \mathbf{M}, u is similar to u_{i} in degree 1.)

Proof: This follows from facts on the propositional calculus: we know that $\bigvee_{i} p_{i} \vdash\left(\bigvee_{i} p_{i}\right)^{2}$ (since $q \rightarrow\left(q \rightarrow q^{2}\right)$ is BL-provable); and $\left(\bigvee_{i} p_{i}\right)^{2} \vdash$ $\bigvee_{i}\left(p_{i}^{2}\right)$ by 2.2 .24 .

What we have done up to now may be described (or interpreted) as follows: We have two domains M_{1}, M_{2} (you could write D_{X}, D_{Y} instead), similarities r_{1}, r_{2} on M_{1}, M_{2} respectively and a partial fuzzy mapping s from M_{1} to M_{2}, thus a model $\mathbf{M}=\left\langle M_{1}, M_{2}, r_{1}, r_{2}, s\right\rangle$. We introduce the language $\approx_{1}, \approx_{2}, F$ and assume we have n examples (u_{i}, v_{i}) named (c_{i}, d_{i}) such that $F\left(c_{i}, d_{i}\right)$ is 1 -true in M (i. e. $s\left(u_{i}, v_{i}\right)=1$). This can be expressed by saying " F sends c_{i} to d_{i} ", or, " F sends (x similar to c_{i}) to (y similar to d_{i})", or "IF x is similar to c_{i} (and $F(x, y)$) THEN y is similar to d_{i} ". We know that in each model \mathbf{M} as above the formula $(\forall x, y)\left(F(x, y) \rightarrow \bigwedge_{i}\left(\left(x \approx c_{i}\right) \rightarrow\left(y \approx d_{i}\right)\right)\right)$ is 1 -true, thus s is a subrelation of the fuzzy relation defined by $\Lambda_{i}(x \approx$ $c_{i} \rightarrow y \approx d_{i}$) (which itself need not be $\mathrm{a} \approx$ mapping); on the other hand, the formula $\left.\bigvee_{i}\left(x \approx c_{i}\right) \& y \approx d_{i}\right)$ defines in \mathbf{M} a \approx-fuzzy mapping h which is a subrelation of s and satisfies $h\left(u_{i}, v_{i}\right)=1$.

Lemma 7.2.12 says that for each $u \in M_{1}, v \in M_{2}$, the degree in which u satisfies $\bigvee_{i}\left(x \approx c_{i}\right)^{2}$ (i. e. which u is very similar to an $\left.u_{i}, i=1, \ldots, n\right)$ is a lower bound for the degree in which (u, v) satisfies $\operatorname{MAMD}(x, y) \equiv$ $R U L E S(x, y)$.

We should ask the following: What if we just have M_{i}, similarities r_{i} and (potential) examples (u_{i}, v_{i})? What must be assumed to be sure that there is a fuzzy mapping s (w.r.t. r_{i}) such that $s\left(u_{i}, v_{i}\right)=1$? The following lemma gives the answer.

Lemma 7.2.14 Let T be a theory with two sorts and similarity predicates \approx_{1}, \approx_{2} of the respective sorts; let c_{1}, \ldots, c_{n} be constants of the first sort and d_{1}, \ldots, d_{n} constants of the second sort. If $T \vdash c_{i} \approx c_{j} \rightarrow d_{i} \approx d_{j}$ for each i, j (indices at \approx deleted) and $T \vdash \operatorname{MAMD}(x, y) \equiv \bigvee_{i}\left(x \approx c_{i} \& y \approx d_{i}\right)$
then $M A M D$ defines a \approx-function in T and $T \vdash M A M D\left(c_{i}, d_{i}\right)$ for $i=$ $1, \ldots, n$.

Proof: Extensionality as above.
Functionality: T proves the following chain of implications.
$\left[M A M D\left(x, y_{1}\right) \& M A M D\left(x, y_{2}\right)\right] \rightarrow$
$\left[\left(\bigvee_{i} x \approx c_{i} \& y_{1} \approx d_{i}\right) \& \bigvee_{j}\left(x \approx c_{j} \& y_{2} \approx d_{j}\right)\right] \rightarrow$
$\left[\bigvee_{i, j}\left(x \approx c_{i} \& x \approx c_{j} \& y_{1} \approx d_{i} \& y_{2} \approx d_{j}\right)\right] \rightarrow$
$\left[\bigvee_{i, j}\left(c_{i} \approx c_{j} \& y_{1} \approx d_{i} \& y_{2} \approx d_{j}\right)\right] \rightarrow$
$\left[\mathrm{V}_{i, j}\left(d_{i} \approx d_{j} \& y_{1} \approx d_{i} \& y_{2} \approx d_{j}\right)\right] \rightarrow y_{1} \approx y_{2}$.
Examples: Obviously, $T \vdash\left(c_{i} \approx c_{i} \& d_{i} \approx d_{i}\right)$, thus $T \vdash \operatorname{MAMD}\left(c_{i}, d_{i}\right)$.

Proof: Let us be still more modest: let us have M_{1}, M_{2} and fuzzy subsets $r_{A_{i}}$ of $M_{1}, r_{B_{i}}$ of M_{2}. We ask under which conditions we may assume

- similarities s_{1} on M_{1} and s_{2} on M_{2} with respect to which $r_{A_{i}}, r_{B_{i}}$ are extensional,
- elements $u_{1}, \ldots, u_{n} \in M_{1}, v_{1}, \ldots, v_{n} \in M_{2}$ such that such that $r_{A_{i}}$ are "fuzzy singletons given by u_{i} with respect to s_{1} " and similarly for $r_{B_{i}}, v_{i}, s_{2}$,
- a s_{1}, s_{2}-fuzzy mapping r_{F} "sending u_{i} to v_{i} ".

We shall answer these questions.
Lemma 7.2.15 ${ }^{41}$ Let T be a theory, A_{i} unary predicates of the same sort $(i=1, \ldots, n)$.
(1) Define a binary predicate \approx as follows:

$$
\left(\forall x, x^{\prime}\right)\left(x \approx x^{\prime} \equiv \bigwedge_{i}\left(A_{i}(x) \equiv A_{i}\left(x^{\prime}\right)\right)\right.
$$

The resulting extension T^{\prime} of T is conservative, \approx is a similarity in T^{\prime} and T^{\prime} proves all A_{i} to be extensional.
(2) Add new constants c_{i} and axioms $\left.(\forall x)\left(A_{i}(x) \equiv x \approx c_{i}\right)\right)$. The resulting theory $T^{\prime \prime}$ is a conservative extension of T^{\prime} iff T^{\prime} proves all formulas

$$
\begin{gathered}
(\exists x) A_{i}(x) \\
(\exists x)\left(A_{i}(x) \& A_{j}(x)\right) \rightarrow(\forall x)\left(A_{i}(x) \equiv A_{j}(x)\right) .
\end{gathered}
$$

${ }^{41}$ See [118] 4.13.

Proof: (1) T^{\prime} is a conservative extension of T by 5.2 .15 ; the proof that in $T^{\prime} \approx$ is a similarity making all A_{i} extensional is an easy variant of 5.6.14.
(2) First assume $T^{\prime \prime}$ to be a conservative extension of T^{\prime}; then it suffices to prove the above formulas in $T^{\prime \prime}$.
$T^{\prime \prime} \vdash c_{i} \approx c_{i}$ thus $T^{\prime \prime} \vdash(\exists x)\left(x \approx c_{i}\right)$ and $T^{\prime \prime} \vdash(\exists x) A_{i}(x)$. Furthermore, $T^{\prime \prime} \vdash(\exists x)\left(A_{i}(x) \& A_{j}(x)\right) \equiv\left(c_{i} \approx c_{j}\right)$ (since $T^{\prime \prime} \vdash c_{i} \approx c_{j} \rightarrow\left(c_{i} \approx\right.$ $\left.c_{i} \& c_{i} \approx c_{j}\right)$ and $\left.T^{\prime \prime} \vdash\left(x \approx c_{i} \& x \approx c_{j}\right) \rightarrow c_{i} \approx c_{j}\right)$; and $T^{\prime \prime} \vdash c_{i} \approx$ $c_{j} \rightarrow\left(x \approx c_{i} \equiv x \approx c_{j}\right)$. Thus $T^{\prime \prime} \vdash(\exists x)\left(A_{i}(x) \& A_{j}(x)\right) \rightarrow(\forall x)\left(A_{i}(x) \equiv\right.$ $\left.A_{j}(x)\right)$.

Conversely, assume that T^{\prime} proves the above formulas. Then we may extend T^{\prime} conservatively by all axioms $A_{i}\left(c_{i}\right)$; call the resulting theory $T^{\prime \prime \prime}$. $T^{\prime \prime \prime} \vdash x \approx c_{i} \rightarrow A_{i}(x)$ immediately from the definition of \approx; on the other hand, $T^{\prime \prime \prime} \vdash A_{i}(x) \rightarrow\left(A_{i}\left(c_{i}\right) \equiv A_{i}(x)\right)$ (since $A_{i}\left(c_{i}\right)$ is provable),
$T^{\prime \prime \prime} \vdash\left(A_{i}(x) \& A_{j}(x)\right) \rightarrow(\forall z)\left(A_{i}(z) \equiv A_{j}(z)\right)$,
$T^{\prime \prime \prime} \vdash A_{i}(x) \rightarrow\left(A_{j}(x) \rightarrow\left(A_{i}\left(c_{i}\right) \equiv A_{j}\left(c_{i}\right)\right)\right)$,
$T^{\prime \prime \prime} \vdash A_{i}(x) \rightarrow\left(A_{j}(x) \rightarrow A_{j}\left(c_{i}\right)\right)$ (since $\left.T^{\prime \prime \prime} \vdash A_{i}\left(c_{i}\right)\right)$
and also
$T^{\prime \prime \prime} \vdash\left(A_{i}\left(c_{i}\right) \& A_{j}\left(c_{i}\right) \rightarrow\left(A_{i}(x) \equiv A_{j}(x)\right)\right.$
$T^{\prime \prime \prime} \vdash A_{j}\left(c_{i}\right) \rightarrow\left(A_{i}(x) \rightarrow A_{j}(x)\right)$
thus all together,
$T^{\prime \prime \prime} \vdash A_{i}(x) \rightarrow \bigwedge_{j}\left(A_{j}(x) \equiv A_{j}\left(c_{i}\right)\right)$, hence
$T^{\prime \prime \prime} \vdash A_{i}(x) \rightarrow x \approx c_{i}$.
Thus $T^{\prime \prime \prime}$ is stronger than $T^{\prime \prime}$ (in fact equivalent to $T^{\prime \prime}$) and hence $T^{\prime \prime}$ is a conservative extension of T^{\prime}.

Theorem 7.2.16 Let T be a theory, A_{i} unary predicates of one sort, B_{i} unary predicates of another sort. Assume

$$
\begin{gathered}
T \vdash(\exists x) A_{i}(x), \quad T \vdash(\exists y) B_{i}(y), \\
T \vdash(\exists x)\left(A_{i}(x) \& A_{j}(x)\right) \rightarrow(\forall x)\left(A_{i}(x) \equiv A_{j}(x)\right), \\
T \vdash(\exists y)\left(B_{i}(y) \& B_{j}(y)\right) \rightarrow(\forall y)\left(B_{i}(y) \equiv B_{j}(y)\right) .
\end{gathered}
$$

Add definitions $x_{1} \approx x_{2} \equiv \bigwedge_{i}\left(A_{i}\left(x_{1}\right) \equiv A_{i}\left(x_{2}\right)\right), y_{1} \approx y_{2} \equiv \bigwedge_{i}\left(B_{i}\left(y_{1}\right) \equiv\right.$ $\left.B_{i}\left(y_{2}\right)\right)$, new constants c_{i}, d_{i} and axioms $A_{i}(x) \equiv x \approx c_{i}, \quad B_{i}(y) \equiv y \approx d_{i}$.
Finally add the definition

$$
M A M D(x, y) \equiv \bigvee_{i} A_{i}(x) \& B_{i}(y)
$$

The resulting theory T^{M} is a conservative extension of T and \approx_{1}, \approx_{2} are similarities.
$M A M D$ defines in T^{M} a fuzzy mapping w.r.t. \approx_{1}, \approx_{2} with the examples $\left(c_{i}, d_{i}\right)$ iff

$$
T \vdash(\exists x)\left(A_{i}(x) \& A_{j}(x)\right) \rightarrow(\exists y)\left(B_{i}(y) \& B_{j}(y)\right) .
$$

Proof: We only put things together. Adding $\approx_{i}, c_{i}, d_{i}$ and the axioms concerning them to T is conservative and the extension proves similarity axioms by the preceding lemma. Also recall that $c_{i} \approx c_{j}$ is equivalent to $(\exists x)\left(A_{i}(x) \& A_{j}(x)\right)$ and similarly for $d_{i} \approx d_{j}$. Thus the fact that $\operatorname{MAMD}(x, y)$ defines a fuzzy mapping follows by 7.2.14.
7.2.17 After having discussed fuzzy functions at large, let us ask what we can say about the (logical) principles of fuzzy control in general, without relating it to the notion of similarity. (We again restrict ourselves to just one "input" variate X, a generalization to more input variates being easy.) The heartof the matter is as follows: We have n rules "IF X is A_{i} THEN Y is $B_{i}{ }^{\prime \prime} r_{i}=1, \cdots, n, A_{i}$ unary predicates of the same sort, B_{i} predicates, all of the same sort (possibly different from the former sort). Let us write the rules as $A_{i}(x) \rightarrow B_{i}(y)$ cf. 7.1.1). We use A_{i} and B_{i} to define a binary predicate $M A M D$ by

$$
\begin{equation*}
(\forall x, y)\left(M A M D(x, y) \equiv \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)\right) \tag{Mamd}
\end{equation*}
$$

and, given another unary predicate A^{*} of the first sort, define a B^{*} from A^{*}, via the compositional rule of inference, i. e.

$$
\begin{equation*}
(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \& M A M D(x, y)\right)\right) . \tag{B*}
\end{equation*}
$$

Given a model $\mathbf{M}=\left\langle D_{X}, D_{Y}, r_{A_{i}}, r_{B_{i}}\right\rangle$ this defines a functional associating to each fuzzy subset $r_{A^{*}}$ of D_{X} the corresponding fuzzy subset $r_{B^{*}}$ of D_{Y}. (Note that in fuzzy control this is used to define a crisp mapping of D_{X} into D_{Y} : one first uses a fuzzification operation, associating to each $u \in D_{X}$ a fuzzy set $r_{A^{*}}$ ("approximately u "), then applies the functional to get $r_{B^{*}}$ and finally applies a defuzzification procedure converting the fuzzy set $r_{B^{*}}$ into a crisp output v. We shall disregard the operations of fuzzification and defuzzification.)

Our question now reads: is there any logic here? Let us try a positive answer, as general as possible. To this end we shall make the above formulas axioms of a theory of fuzzy control:

Definition 7.2.18 FC is a two-sorted theory having unary predicates A_{1}, \ldots, $\ldots A_{n}, A^{*}$ of sort 1 , unary predicates $B_{1}, \ldots, B_{n}, B^{*}$ of sort 2 a binary predicate $M A M D$ of the type $\langle 1,2\rangle$. The axioms are the formulas (Mamd), (B^{*}) above (defining $M A M D$ from A_{i}, B_{i} and defining B^{*} from $A^{*}, M A M D$). In addition, FC has two constants: X of sort 1 and Y of sort 2.

Theorem 7.2.19 FC proves the following (over BL \forall):

$$
\left[\bigwedge_{i}\left(A_{i}(X) \rightarrow B_{i}(Y)\right) \& \bigvee_{i}\left(A_{i}\right)^{2}(X)\right] \rightarrow\left(A^{*}(X) \rightarrow B^{*}(Y)\right):
$$

7.2.20 Before we prove the theorem let us discuss its meaning. It says that, under the asumptions as how B^{*} is obtained, if the current value of the variate X (denoted by the constant X) satisfies, together with the current value the variate Y, all the rules $A_{i}(X) \rightarrow B_{i}(Y)$ and (sharp and) X satisfies $\bigvee_{i} A_{i}{ }^{2}(X)$ then $A^{*}(X)$ implies $B^{*}(Y)$. In particular, assume $[\cdots]$ to be $1-$ true in M . Then $\left\|A_{i}(X)\right\|_{M} \leq\left\|B_{i}(Y)\right\|_{M}$ for all i and $\left\|A_{i}(X)\right\|_{M}=1$ for at least one i. The conclusion is $\left\|A^{*}(X)\right\|_{M} \leq\left\|B^{*}(Y)\right\|_{M}$.

But this is not all. Assume the value of the antecedent $[\cdots]$ to be $\geq r$, i.e. the rules are sufficiently true and X sufficiently satisfies one of A_{i} 's. The conclusion is that $\left\|B^{*}(Y)\right\|_{M}$ is not much less than $\left\|A^{*}(X)\right\|_{M}$. For example, if the rules are 1-true then $\left.\left\|B^{*}(Y)\right\|_{M} \geq\left\|A^{*}(X)\right\|_{M} * \| \bigvee A_{i}^{2}(X)\right) \|_{M}(*$ being the interpretation of $\&)$. We shall come back to this discussion in a moment.
7.2.21 Proof of 7.2.19.
$\mathrm{FC} \vdash\left(A_{i}(X) \&\left(A_{i}(X) \rightarrow B_{i}(Y)\right)\right) \rightarrow B_{i}(Y)$, thus
$\mathrm{FC} \vdash\left(A_{i}^{2}(X) \& \bigwedge_{i}\left(A_{i}(X) \rightarrow B_{i}(Y)\right)\right) \rightarrow\left(A_{i}(X) \& B_{i}(Y)\right)$, thus
$\mathrm{FC} \vdash\left[A_{i}^{2}(X) \& \bigwedge_{i}\left(A_{i}(X) \rightarrow B_{i}(Y)\right) \& A^{*}(X)\right] \rightarrow A^{*}(X) \& M A M D(X, Y)$.
Consequently,
$\mathrm{FC}-\left(A_{i}^{2}(X) \& R U L E S(X, Y)\right) \rightarrow\left(A^{*}(X) \rightarrow\right.$
$\left.\rightarrow(\exists x)\left(A^{*}(x) \& M A M D(x, Y)\right)\right)$,
which gives the result by the definition of B^{*}.
Now let us see what happens if we assume A^{*} to be equivalent to A_{i} :
Theorem 7.2.22 FC proves (over BL \forall) the following:

$$
\begin{gathered}
{\left[(\forall x)\left(A^{*}(x) \equiv A_{i}(x)\right) \&(\exists x) A_{i}^{2}(x)\right] \rightarrow(\forall y)\left(B_{i}(y) \rightarrow B^{*}(y)\right)} \\
\qquad\left[(\forall x)\left(A^{*}(x) \equiv A_{i}(x)\right) \&(\forall x)\left(\bigwedge_{i \neq j} \neg\left(A_{i}(x) \& A_{j}(x)\right)\right)\right] \rightarrow \\
\rightarrow(\forall y)\left(B^{*}(y) \rightarrow B_{i}(y)\right)
\end{gathered}
$$

Proof: (i)
$\mathrm{FC} \vdash\left(A_{i}^{2}(x) \&\left(A_{i}(x) \equiv A^{*}(x)\right) \& B_{i}(y)\right) \rightarrow A^{*}(x) \& A_{i}(x) \& B_{i}(y)$,
$\mathrm{FC} \vdash\left[(\exists x)\left(A_{i}^{2}(x) \&\left(A_{i}(x) \equiv A^{*}(x)\right) \& B_{i}(y)\right] \rightarrow\right.$
$\rightarrow(\exists x)\left(A^{*}(x) \& \bigvee_{j}\left(A_{j}(x) \& B_{j}(y)\right)\right)$,
$\mathrm{FC} \vdash\left[(\exists x) A_{i}^{2}(x) \&(\forall x)\left(A_{i}(x) \equiv A^{*}(x)\right] \rightarrow(\exists x)\left(A_{i}^{2}(x) \&\left(A_{i}(x) \equiv A^{*}(x)\right)\right)\right.$,
FC $\vdash\left[(\exists x) A_{i}^{2}(x) \&(\forall x)\left(A_{i}(x) \equiv A^{*}(x)\right) \& B_{i}(y)\right] \rightarrow$
$\rightarrow(\exists x)\left(A^{*}(x) \& M A M D(x, y)\right)$,
$\mathrm{FC} \vdash\left[(\exists x) A_{i}^{2}(x) \&(\forall x)\left(A_{i}(x) \equiv A^{*}(x)\right)\right] \rightarrow\left(B_{i}(y) \rightarrow B^{*}(y)\right)$.
Now we prove (ii).
Write $\operatorname{Dsjnt}\left(A_{i}\right)$ for $(\forall x) \bigwedge_{j \neq i} \neg\left(A_{i}(x) \& A_{j}(x)\right)$,
$\operatorname{Equiv}\left(A_{i}, A^{*}\right)$ for $(\forall x)\left(A^{*}(x) \equiv A_{i}(x)\right)$.
$\mathrm{FC} \vdash\left(B^{*}(y) \& E q u i v\left(A^{*}, A_{i}\right)\right) \rightarrow(\exists x)\left(A_{i}(x) \& \bigvee_{j}\left(A_{j}(x) \& B_{j}(y)\right)\right)$,
$\mathrm{FC} \vdash \operatorname{Djn} t\left(A_{i}\right) \rightarrow\left[\left(A_{i}(x) \& \bigvee_{j}\left(A_{j}(x) \& B_{j}(y)\right) \rightarrow A_{i}^{2}(x) \& B_{i}(y)\right]\right.$
(since $A_{i}(x) \& A_{j}(x) \& B_{j}(y)$ implies $\overline{0}$ for $i \neq j$), i. e.
$\mathrm{FC} \vdash\left[D \operatorname{sjnt}\left(A_{i}\right) \& E q u i v\left(A^{*}, A\right) \& B^{*}(y)\right] \rightarrow(\exists x)\left(A_{i}^{2}(x) \& B_{i}(y)\right)$,
$\mathrm{FC} \vdash\left[\operatorname{Djnt}\left(A_{i}\right) \& E q u i v\left(A^{*}, A\right)\right] \rightarrow\left(B^{*}(y) \rightarrow B_{i}(y)\right)$,
which gives the result by generalizing (by $(\forall y)$) and moving $(\forall y)$.
Remark 7.2.23 (1) Again read the formulas as true in a model - first with the antecedent 1-true and then with the antecedent sufficiently true. We see that
(i) if $A^{*}(x)$ is sufficiently near to A_{i} and A_{i} is (sufficiently) non-empty then B_{i} is sufficiently included in B^{*};
(ii) if A_{i} is sufficiently disjoint from all the other A_{j} 's and A^{*} is sufficiently near to A_{i} then B^{*} is sufficiently included in B_{i}. Obviously, these are fuzzy readings; the precise meaning is given by the formulas proved and may be expressed in greater detail again as an exercise.
(2) Let us repeat once more that instead of antecedent of the form $A_{i}(X)$ we could investigate $A_{i 1}\left(X_{1}\right) \& \ldots \& A_{i k}\left(X_{k}\right)$ or $A_{i 1}\left(X_{1}\right) \wedge \ldots \wedge A_{i k}\left(X_{k}\right)$; this brings no problems but is more cumbersome.
(3) On the other hand, replacing \& by \wedge in the definition on $M A M D$ does bring additional problems (unless your logic is $G \forall$ - Gödel). We shall not go into them here.

7.3. AN ALTERNATIVE APPROACH TO FUZZY RULES

7.3.1 Up to now, we have worked with two variates X, Y with domains D_{X}, D_{Y} respectively; syntactically, we had just two sorts, predicates A_{i}, A^{*}
of the first sort and B_{i}, B^{*} of the second. X and Y were understood as object constants (for the actual value of the respective variate) and we had rules of the form $A_{i}(X) \rightarrow B_{i}(Y)$ saying "if the actual value of X is A_{i} then the actual value of Y is $B_{i}{ }^{\prime \prime} . X$ and Y thus denoted possibly unknown but crisp elements of the respective domains.

Let us now try to be still more fuzzy and let X, Y denote fuzzy subsets of the respective domains, giving some vague information on the actual values of our variates. Syntactically this means that X and Y become unary predicates of the respective sorts. Then it is natural to formalize the assertation " X is A_{i} " to be just the formula $(\forall x)\left(X(x) \rightarrow A_{i}(x)\right)$ (briefly, $\left.X \subseteq A_{i}\right)$. Indeed, the formula is 1-true if for each element m of D_{X}, the degree in which m satisfies X is a lower bound of the degree in which m satisfies A_{i}. (The reader may state in words the meaning of $X \subseteq A_{i}$ if this formula is r-true.) We shall reconsider the generalized modus ponens and the inference in fuzzy control in this new setting. ${ }^{42}$

Definition 7.3.2 (1) If X, A are unary predicates of the same sort then $X \subseteq$ A stands for $(\forall x)(X(x) \rightarrow A(x))$. Similarly, if φ, ψ are formulas with exactly one free variable x then $\varphi \subseteq \psi$ stands for $(\forall x)(\varphi(x) \rightarrow \psi(x))$
(2) Given $A^{*}, A, B, B^{* *}$ of the obvious sort, $\operatorname{Comp}_{M P A}$ (alternative composition for generalized modus ponens) stands for the formula

$$
\left.(\forall y)\left(B^{* *}(y) \equiv\left[(\forall x)\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right]\right)\right)
$$

or, briefly,

$$
B^{* *}(y) \equiv\left[\left(A^{*} \subseteq A\right) \rightarrow B(y)\right]
$$

Remark 7.3.3 Recall $\operatorname{Comp}_{M P}$, i. e. the formula

$$
(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \&(A(x) \rightarrow B(y))\right)\right.
$$

and observe that, over $\mathrm{BL} \forall, \operatorname{Comp}_{M P}, \operatorname{Comp}_{M P A} \vdash B^{*} \subseteq B^{* *}$. Indeed, assuming $B^{*}, B^{* *}$ to be defined by $\operatorname{Comp}_{M P}, \operatorname{Comp}_{M P A}$ respectively, we can prove the following:

$$
\begin{aligned}
B^{* *}(y) & \equiv\left((\forall x)\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right), \\
B^{* *}(y) & \equiv(\exists x)\left(\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right), \\
B^{*}(y) & \equiv(\exists x)\left(A^{*}(x) \&(A(x) \rightarrow B(y))\right), \\
{\left[A^{*}(x) \&(A(x)\right.} & \rightarrow B(y))] \rightarrow\left[\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right]
\end{aligned}
$$

(note that the last formula is equivalent to the provable formula

$$
\begin{gathered}
\left.\left[A^{*}(x) \&\left(A^{*}(x) \rightarrow A(x)\right) \&(A(x) \rightarrow B(y))\right] \rightarrow B(y)\right) \\
(\exists x)\left(A^{*}(x) \&(A(x) \rightarrow B(y)) \rightarrow(\exists x)\left(\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right),\right. \\
B^{*}(y) \rightarrow B^{* *}(y)
\end{gathered}
$$

Theorem 7.3.4 Let $\operatorname{Comp}_{M P A}$ be as in 7.3.2, i. e. $(\forall y)\left(B^{* *}(y) \equiv\left(A^{*} \subseteq\right.\right.$ $A) \rightarrow B(y)))$. Then BL \forall proves
$\left[\operatorname{Comp}_{M P A} \&\left(X \subseteq A^{*}\right) \&((X \subseteq A) \rightarrow(Y \subseteq B))\right] \rightarrow Y \subseteq B^{* *}$

Proof: Observe that it suffices to prove, in BL \forall, the formula

$$
\begin{equation*}
\left[\left(X \subseteq A^{*}\right) \&((X \subseteq A) \rightarrow(Y \subseteq B))\right] \rightarrow Y \subseteq\left[\left(A^{*} \subseteq A\right) \rightarrow B\right] \tag{1}
\end{equation*}
$$

Indeed, having (1) we get
$\left[\left(X \subseteq A^{*}\right) \&((X \subseteq A) \rightarrow(Y \subseteq B)) \& C o m p_{M P A} \rightarrow\left(Y \subseteq\left[\left(A^{*} \subseteq A\right) \rightarrow\right.\right.\right.$ $B] \&\left[\left(A^{*} \subseteq A\right) \rightarrow B\right] \subseteq B^{* *}$ which gives the result by (provable) transitivity of \subseteq. Thus we prove the formula (1).

First observe that, by our axiom on quantifiers, the following chain of implications is provable:

$$
\begin{align*}
& {[(\forall x)(X(x) \rightarrow A(x)) \rightarrow(\forall y)(Y(y) \rightarrow B(y))] \rightarrow } \\
\rightarrow \quad & (\forall y)[(\forall x)(X(x) \rightarrow A(x)) \rightarrow(Y(y) \rightarrow B(y))] \rightarrow \\
\rightarrow & (\forall y)[Y(y) \rightarrow((\forall x)(X(x) \rightarrow A(x)) \rightarrow B(y))] . \tag{2}
\end{align*}
$$

on the other hand, by the (provable) properties of implication,

$$
\begin{aligned}
(X(x) \rightarrow & \left.A^{*}(x)\right) \rightarrow[((X(x) \rightarrow A(x)) \rightarrow B(y)) \rightarrow \\
& \left.\rightarrow\left(\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right)\right],
\end{aligned}
$$

thus

$$
\begin{aligned}
X \subseteq & A^{*} \rightarrow[(\exists x)((X(x) \rightarrow A(x)) \rightarrow B(y)) \rightarrow \\
& \left.\rightarrow(\exists x)\left(\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right)\right],
\end{aligned}
$$

and

$$
\begin{aligned}
X \subseteq & A^{*} \rightarrow[((\forall x)(X(x) \rightarrow A(x)) \rightarrow B(y)) \rightarrow \\
& \left.\rightarrow\left((\forall x)\left(A^{*}(x) \rightarrow A(x)\right) \rightarrow B(y)\right)\right]
\end{aligned}
$$

in short,

$$
\begin{equation*}
X \subseteq A^{*} \rightarrow\left([(X \subseteq A) \rightarrow B] \subseteq\left[\left(A^{*} \subseteq A\right) \rightarrow B\right]\right) \tag{3}
\end{equation*}
$$

The implications in (2) prove

$$
\begin{equation*}
((X \subseteq A) \rightarrow(Y \subseteq B)) \rightarrow(Y \subseteq[(X \subseteq A) \rightarrow B]) \tag{4}
\end{equation*}
$$

and (3) and (4) give

$$
\begin{gathered}
{\left[(X \subseteq A \rightarrow Y \subseteq B) \&\left(X \subseteq A^{*}\right)\right] \rightarrow} \\
\rightarrow(Y \subseteq[X \subseteq A) \rightarrow B] \&\left([(X \subseteq A) \rightarrow B] \subseteq\left[\left(A^{*} \subseteq A\right) \rightarrow B\right]\right)
\end{gathered}
$$

by transitivity of \subseteq we get our formula (1); this completes the proof of the theorem.

Remark 7.3.5 (1) This remark is analogous to 7.1.9: we may visualize the result as a rule

$$
\frac{\operatorname{Comp}_{M P A}, X \subseteq A^{*},(X \subseteq A) \rightarrow(Y \subseteq B)}{Y \subseteq B^{* *}}
$$

Thus if the assumptions are 1 -true in a structure \mathbf{M} then so is the conclusion. But again, let us stress that 7.3.4 gives more:

$$
\left\|\operatorname{Comp}_{M P A} \&\left(X \subseteq A^{*}\right) \&((X \subseteq A) \rightarrow(Y \subseteq B))\right\|_{\mathbf{M}} \leq\left\|Y \subseteq B^{* *}\right\|_{\mathbf{M}}
$$

(2) Observe that taking A for $A^{*} \operatorname{Comp}_{M P A}$ becomes equivalent to $B \subseteq$ $B^{* *}$, thus we get the trivial rule (modus ponens)

$$
\frac{X \subseteq A \rightarrow Y \subseteq B, X \subseteq A}{Y \subseteq B}
$$

as a particular case.
(3) More generally, assume \mathbf{M} to be a model; iff $\left\|A^{*} \subseteq A\right\|_{\mathbf{M}}=1$ then in $\mathbf{M}, \operatorname{Comp}_{M P A}$ is equivalent to $B \subseteq B^{* *}$, if $\left\|A^{*} \subseteq A\right\|_{\mathbf{M}}=r<1$ then $\left\|\operatorname{Comp}_{M P A}\right\|_{\mathrm{M}}=1$ iff for each m from the common domain of $Y, B, B^{* *}$, $r_{B^{* *}}(m) \geq \min \left(1, r_{B}(m)+1-r\right)$.
(4) Furthermore, we show that the rule in (1) becomes ill (non-sound) if we replace $\operatorname{Comp}_{M P A}$ (the alternative composition for modus ponens) by $\operatorname{Comp} p_{M P}$ (see 7.3.3) and $B^{* *}$ by B^{*}. We exhibit the simple example of a structure in which $\operatorname{Comp}_{M P}, X \subseteq A^{*}, X \subseteq A \rightarrow Y \subseteq B$ are 1-true but $Y \subseteq B^{*}$ is not. Let $D_{X}=\left\{x_{0}, x_{1}\right\}, D_{Y}=\left\{y_{0}\right\}$. (The example works in any of the logics $L \forall, G \forall, \Pi \forall$.)

The following tables give the interpretation of X, A, A^{*} and Y, B, B^{*} :

	X	A	A^{*}
x_{0}	1	1	1
x_{1}	$\frac{1}{2}$	0	$\frac{1}{2}$

	Y	B	B^{*}
y_{0}	1	$\frac{1}{2}$	$\frac{1}{2}$

One trivially verifies $\left\|\operatorname{Comp}_{M P}\right\|=\left\|X \subseteq A^{*}\right\|=1,\|X \subseteq A\|=$ $\|Y \subseteq B\|=\frac{1}{2}$, thus $\|(X \subseteq A) \rightarrow(Y \subseteq B)\|=1$, but $\left\|Y \subseteq B^{*}\right\|=\frac{1}{2}$. Note also $\|(\exists x) X(x)\|=1$.

Thus the rule

$$
\frac{\operatorname{Comp}_{M P},(\exists x) X(x),\left(X \subseteq A^{*}\right),(X \subseteq A) \rightarrow(Y \subseteq B)}{Y \subseteq B^{*}}
$$

is not sound (in $£ \forall, G \forall, \Pi \forall$). The reader may show as an exercise that the last rule is sound in the Boolean logic Bool \forall.
(5) Finally, observe that if \approx a similarity predicate in T and T proves A, B, A^{*}, B^{*} to be extensional (i.e. proves congruence axioms for them) and for some constants c, d, the theory T proves $(\forall x)(X(x) \equiv x \approx c)$ and $(\forall y)(Y(y) \equiv y \approx d)$ i.e. X, Y define fuzzy singletons) then $T \vdash(X \subseteq$ $A) \equiv A(c), T \vdash\left(X \subseteq A^{*}\right) \rightarrow A^{*}(c), T \vdash(Y \subseteq B) \equiv Y(d)$ etc. and $\left.T \vdash\left(\operatorname{Comp}_{M P A} \&\left(X \subseteq A^{*}\right) \&((X \subseteq A) \rightarrow Y \subseteq B)\right)\right] \rightarrow\left(Y \subseteq B^{*}\right)$. Thus we get, in this particular case, again the result of 7.1.8.

Let us now turn to fuzzy control. We just restrict ourselves to one result (relating the Mamdani formula to the rules in our new sense).

Theorem 7.3.6 Let A_{i}, A^{*}, X be unary predicates of one sort, B_{i}, B^{*}, Y unary predicates of another sort. Let $\operatorname{MAMD}(x, y)$ stand for the formula $\bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)$ (as above) and let $C o m p_{M A M D}$ be the formula

$$
(\forall y)\left(B^{*}(y) \equiv(\exists x)\left(A^{*}(x) \& M A M D(x, y)\right)\right.
$$

Then BL \forall proves

$$
\begin{gathered}
{\left[\operatorname{Comp}_{M A M D} \& X \subseteq A^{*} \& \bigwedge_{i}\left(\left(X \subseteq A_{i}\right) \rightarrow Y \subseteq B_{i}\right)\right) \&} \\
\left.\&(\exists x) X^{2}(x) \& \bigvee_{i}\left(X \subseteq A_{i}\right)^{2}\right] \rightarrow Y \subseteq B^{*}
\end{gathered}
$$

Remark 7.3.7 Before we prove the theorem let us comment on its meaning. The inference pattern of the Mamdani-like fuzzy control mechanism can be formulated as
"if X is A^{*}, B^{*} is defined from A_{i}, B_{i} using the Mamdani formula, and Y corresponds to X then Y is $B^{* \prime \prime}$.

We have analyzed this pattern as a sound deduction rule (or, better, as a provable implication) in the preceding section. The question is what it means that Y corresponds to X. In the theorem this is understood as the assumption that the pair (X, Y) satisfies all the rules $\left(\bigwedge_{i}\left(\left(X \subseteq A_{i}\right) \rightarrow\left(Y \subseteq B_{i}\right)\right)\right.$. Alternatively we replace this assumption by the assumption that (X, Y) satisfies an analogon of the Mamdani formula $\bigvee_{i}\left(x \subseteq A_{i} \& Y \subseteq B_{i}\right)$. We shall do this in the next lemma and then show how this gives our Theorem.

Lemma 7.3.8 Under the assumptions of 7.3.6, BL \forall proves
$\left[C o m p_{M A M D} \& X \subseteq A^{*} \&(\exists x) X^{2}(x) \& \bigvee_{i}\left(X \subseteq A_{i} \& Y \subseteq B_{i}\right)\right] \rightarrow Y \subseteq B^{*}$

Proof: BL \forall proves
$\left[(\exists x)\left(X(x) \& X(x) \&\left(X \subseteq A^{*}\right) \&\left(X \subseteq A_{i}\right)\right] \rightarrow(\exists x)\left(A^{*}(x) \& A_{i}(x)\right)\right.$, thus $\left(X_{i} \subseteq A_{i} \& Y \subseteq B_{i}\right) \rightarrow$
$\rightarrow\left[\left(X \subseteq A^{*} \&\left(\exists x\left(X^{*} 2(x) \& Y(y)\right) \rightarrow(\exists x)\left(A^{*}(x) \& A_{i}(x) \& B_{i}(y)\right)\right]\right.\right.$, and $(\exists x)\left(A^{*}(x) \& A_{i}(x) \& B_{i}(y)\right) \rightarrow(\exists x)\left(A^{*}(x) \& \bigvee_{i}\left(A_{i}(x) \& B_{i}(y)\right)\right.$, thus $\bigvee_{i}\left(\left(X \subseteq A_{i}\right) \rightarrow\left[\left(\left(X \subseteq A^{*}\right) \&(\exists x) X^{2}(x) \& Y(y)\right) \rightarrow\right.\right.$
$\left.\rightarrow(\exists x)\left(A^{*}(x) \& M A M D(x, y)\right)\right]$ thus
$\left[\operatorname{Comp}_{M A M D} \& X \subseteq A^{*} \&(\exists x) X^{2}(x) \& \bigvee_{i}\left(X \subseteq A_{i} \& Y \subseteq B_{i}\right)\right] \rightarrow$ $\rightarrow\left(Y(y) \rightarrow B^{*}(y)\right)$,
which gives the result.
7.3.9 Proof of 7.3.6. The theorem follows from our lemma by observing the provability of

$$
\left[\bigvee_{i}\left(X \subseteq A_{i}\right)^{2} \& \bigwedge_{i}\left(X \subseteq A_{i} \rightarrow Y \subseteq B_{i}\right)\right] \rightarrow \bigvee_{i}\left(\left(X \subseteq A_{i}\right) \&\left(Y \subseteq B_{i}\right)\right)
$$

(which is an easy exercise in propositional calculus).

[^0]: ${ }^{37}$ Similarly to [86] we reserve the term "variable" for variables of a logical calculus (propositional variable, object variable) and use the term "variate" for what several people call variable.

[^1]: ${ }^{40}$ For analyses of IF-THEN rules see [43, 118, 119, 155, 198]. Our presentation is a free elaboration of Kruse et al. [118] Sec. 4.4-4.5; and Godo and Hájek [61, 63, 62]; but our notion of a fuzzy function seems to be new.

