
CHAPTER SEVEN

ON APPROXIMATE INFERENCE

In chapters 2 - 6 we developed and investigated real-valued (or lattice-valued)
propositional and predicate calculi based on the notion of a (continuous) t
norm and its residuum. Now our understanding of these calculi is reasonably
advanced: we have obtained several completeness theorems etc. But now we
must ask: how does this relate to fuzzy logic (in the narrow sense, obviously)?

Let us again quote from Zadeh [221]:
"In a narrow sense, fuzzy logic (FLn) is a logical system which aims at a

formalization of approximate reasoning. As such, it is rooted in multivalued
logic but its agenda is quite different from that of traditional multivalued log
ical systems, e.g., Lukasiewicz logic. In this connection, it should be noted
that many of the concepts which account for the effectiveness of fuzzy logic
as a logic of approximate reasoning are not a part of traditional multival
ued logical systems. Among these are the concepts of a linguistic variable,
canonical form, fuzzy rule, fuzzy graph, fuzzy quantifiers and such modes of
reasoning as interpolative reasoning, syllogistic reasoning and dispositional
reasoning."

In this chapter and also in some further chapters we shall investigate some
items from Zadeh's agenda of questions or topics typical of fuzzy logic in this
meaning: without denying that they do not belong to the "classical" questions
of many-valued logic we shall try to show that these topics admit a strictly
logical analysis in the sense of formal logic. It will turn out that much of
approximate inference may be presented as deduction in a suitably chosen
logic, i.e. in a truth-preserving way. This does not mean that we claim to
reduce fuzzy logic to many valued logic; but it does mean that the role of
many-valued logic as a base (foundation) of fuzzy logic is much greater and
more important than one would guess at the beginning. It goes without saying
that fuzzy logic indeed has aspects that are not grasped by classical many
valued logic (as control aspects of fuzzy control); but, I repeat, the deductive
aspect (with its corresponding semantical counterpart) is very important.

Section 1 analyses Zadeh's compositional rule of inference and two par
ticular cases of it: generalized modus ponens and a (less known) generalized
conjunctive rule. We also comment on some dangers in certain popular but
questionable uses of fuzzy logic in expert systems. Section 2 analyzes logical
aspects of fuzzy control. Section 3 presents an alternative formalization of
the two generalized rules and the corresponding alternative formalization of
fuzzy control.
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7.1. THE COMPOSITIONAL RULE OF INFERENCE

7.1.1 We start with the notion of a variate.37 A variate is given by its name
X and its domain D. X is just a symbol; D is a non-empty set. Examples
are: age with the domain of integers::; 120 (say), temperature (with some
domain), etc. Fuzzy logic notoriously uses expressions of the form "X is A"
where A is (the name ot) a fuzzy subset of D, e. g. "the age is high". These
expressions typically occur infuuy rules, to be analyzed later.

It is not automatically clear how this fits into our formalism of predicate
calculus, and, in fact, we shall present two ways of doing it. In this and the
next section, we shall proceed as follows: having n variates (Xl, D 1), ... ,

... (Xn , Dn ) we understand the D's as domains of a many-sorted structure
interpreting a predicate language; fixed fuzzy subsets of a domain interpret
some unary predicates. Besides we may have predicates of higher arity and
their interpretation in our many-sorted structure. The most important thing
comes now: the name of a variate is taken to be an object constant, interpreted
in each situation as the actual value of the variate. The expression "X is A"
becomes an atomic closed formula A(X) (once again: A is a unary predicate,
X is an object constant). A typical rule "IF X is A THEN Y is B" may be
interpreted as A(X) -+ B(Y). (Caution: this is not the only possible reading
of a "fuzzy IF - THEN rule", as we shall see later.)

Summarizing: We have understood an n-tuple of variates (Xi, Ddi=l as
determining a language 'I with sorts 81,' .. , 8 n and with object constants
Xl,'" ,Xn , Xi of the sort 8i. Besides our language may contain arbitrary
predicates of any type and any other object constants. Any 'I-structure

((Di)i" (rp)Ppred.,mXl'··· ,mxn "')

(where the dots stand for the interpretation of additional constants, if any) is
understood as a fuzzy structure over the given variates, with Xi denoting the
actual value of the i-th variate.

Given this, we may start our analysis of Zadeh's compositional rule of
inference.38

7.1.2 The compositional rule of inference in its traditional formulation can
be stated as follows:

From "X is A" and "(X, Y) is R" infer "Y is B" if for all v E Dy,

rB(v) = sup (rA(U) * rR(u, v)).
uEDx

37 Similarly to [86] we reserve the tenn "variable" for variables of a logical cal
culus (propositional variable, object variable) and use the tenn "variate" for what
several people call variable.

38 See [213].
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where * is a continuous t-norm. The relation rB is sometimes called the com
position of r A and rR, or the image of r A under the relation rR.

7.1.3 We ask: what does this mean? What is inferred? Is this any deduction?
First observe that the rule is semantical: given any structure D of domains

of variates, it formulates a semantical condition on the fuzzy set r B inter
preting the predicate B in terms of rA (fuzzy set) and rR (fuzzy relation).
Typically, no more explanation is given. The rule is stated more or less as
self-evident.

But observe that in fact the definition of rB in terms of r A and rR is ex~

pressible in BLV': The condition above just means that the formula
(V'y) (B(y) == (3x)(A(x)&R(x,y)) is I-true in D. Call the last formula
Camp (or Comp(A, R, B), the composition); thus the rule demands (as
sumes) IIComplln = 1.

Lemma 7.1.4 Under the present notation,

BLV' f- Camp -+ ((A(X)&R(X, Y)) -+ B(Y)).

Consequently, for each structure D such that IIGomplin = 1,
IIA(X)&R(X, Y)lIn :<:::: IIB(Y)lIn

Proof By 5.1.14,
BLV' f- (V'y)([(3x)(A(x)&R(x, y)) -+ B(y)] -+ (V'x)[(A(x)&R(x, y)) -+
B(y)]) and
BLV' f- (V'y)(V'x)((A(x)&R(x, y)) -+ B(y)) -+ [(A(X)&R(X, Y)) -+
B(Y)].
Thus
BLV' f- Camp -+ ((A(X)&R(X, Y)) -+ B(Y}}
by transitivity of implication. The rest is evident. 0

We also show that Camp is the best condition making the above inference
possible.

Lemma 7.1.5 Let B' be a unary predicate of the same sort as B. Then
BLV' f- Camp & (V'y) (V'x)((A(x}&R(x, y)) -+ B'(y}} -+ (V'y)(B(y) -+
B'(y))
(thus in each model D, if Camp is true then rB is the smallest fuzzy subset
of Dy making the inference of the composition rule sound).

Proof Evidently,
BLV' f- (V'y)(V'x) ((A(x}&R(x, y}) B'(y))
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-+ (Vy)[(3x)(A(x)&R(x, y)) -+ B'(y)],
but assuming Comp,the formula (3x)(A(x)&R(x, y)) is equivalent to B(y),
thus we get the desired implication.
Proof" 0

We shall now discuss two important particular cases. For this purpose we
replace the atomic formula R(x, y) by an arbitrary formula cp(x, y).

Corollary 7.1.6 (1) Let Comp be the formula
(Vy)(B(y) == (3x)(A(x) & Ip(x, y)). Then
BLV f- (Comp&A(X) &1p(X, Y)) -+ B(Y).

Proof" Evident modifications of the above. o

7.1.7 Now we shall consider Zadeh's Generalized Modus Ponens as a par
ticular case of the Compositional Inference rule. To this end let us slightly
change notation: we replace A by A*, B by B* and then take cp(x, y) to be
A(x) -+ B(y) for some predicates A,B. Then 7.1.4 gives the following the
orem.

Theorem 7.1.8 Let CompMP be the formula

(Vy)(B*(y) == (3x)(A*(x) & (A(x) -+ B(y))).

Then BLV proves

(CompMP &A*(X) & (A(X) -+ B(Y))) -+ B*(Y).

Remark 7.1.9 (1) This may be visualized as a deduction rule:

ComPMP, A*(X), A(X) -+ B(Y)
B*(Y)

The obvious reading is: if ComPMP, A*(X), A(X) -+ B(Y) are I-true
(in a given structure D) then B*(Y) is I-true. But 7.1.8 gives more:

IIComPMP &A*(X) & (A(X) -+ B(Y))lln ~ IIB*(Y)lIn,

in particular, if CompMP is I-true (B* is defined as above), A*(X) is r-true
and A(X) -+ B(Y) is s-true then B*(Y) is at least (r * s) - true (where * is
the truth function of &).

(2) We stress that we have shown provability in BLV. Thus the above rule
may be read for implication and conjunction in LV, GV, llV and any other
predicate calculus given by a continuous t-norm.
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(3) Furthermore, observe that you may replace & by /\ in 7.1.8 and make
the obvious modifications, e.g. if the (modified) ComPMP is I-true, A*(X)
is r-true and A(X) --+ B(Y) is s-true then B*(Y) is min(r, s)-true.

(4) Let us mention that the use of A, A*, B, B* should suggest that A* is
similar to A in some sense - and then ComPMP should say that B* is similar
to B in some other sense.39 But be careful: If A, B, A* are interpreted by
crisp (0, 1 - valued) subsets of the respective domains then the interpretation
of B* is also crisp and

(i) either r A' ~ r A and r A' t= 0and rE' = rE,

(ii) orrA' ~ r A and r A' = 0 and rB' = 0,
(iii) or r A' is not a subset of r A and then rB' = Dy (the full set). (This

can be formulated and proved in BL\i - exercise.) See Figure 7.1.
(5) In general, if ComPMP is defined as in 7.1.8 then

CompMP f- (\iy)[((3x)(A*(x) & -,A(x)) --+ B*(y)].
Thus for each v E D y , rB(v) 2: sUPuEDx (q. (u) * (-)rA(U)).

B

Figure 1. The grey domain is the set of pairs satisfying A*(x)&(A(x) -t B(y)).

(6) Observe that, under the present notation, and over BL\i,
ComPMP f- (3x)A*(x) --+ (\iy)(B(y) --+ B*(y)).
Indeed, the following formulas are provable:

39 The notorious example is: If the colour is red then the tomato is ripe; the colour
is very red - what follows?
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B(y) -+ (A(x) -+ B(y)),
A*(x) &B(y)) -+ (A*(x) & (A(x) -+ B(y)),
(3x)(A*(x) & B(y)) -+ (3x)(A*(x) & (A(x) -+ B(y)),
(3x)(A*(x) &B(y)) -+ B*(y),
[(3x)A*(x) &B(y)] -+ B*(y),
(3x)A*(x) -+ (B(y) -+ B*(y)) (by 5.1.18, (9)),
(3x)A*(x) -+ (Vy)(B(y) -+ B*(y)).
Thus in particular, if for some u E Dx, T A' (u) = 1, then for all v E Dy,
TB(V) ~ TE' (v).

*

7.1.10 Now let us have predicates A, A* (of the same sort), B, B* (of the
same sort) and take A(x) & B(y) for cp(x, y). (Note that we could also take
A(x) /\ B(y).) We automatically get a BUt- provable tautology and hence a
sound deduction rule. We shall ask what it means and how it relates to classi
cal logic. In the next section we shall use our analysis of Generalized Modus
Ponens and the present Generalized Conjunctive Rule to an analysis of the
logical background of fuzzy controllers. As above, 7.1.4 gives the following

Theorem 7.1.11 Let ComPCR be

(Vy)(B*(y) == (3x)(A*(x) & A(x) & B(y))).

Then BUt proves

CampCR & A*(x) & A(x) & B(y) -+ B*(y)

Remark 7.1.12 (1) As above, we get a sound deduction rule

ComPCR, A*(X), A(X) & B(Y)
B*(Y)

Soundness means: for each domain structure D,

IIComPCR,A*(X)&A(X)&B(Y)lln ~ IIB*(Y)lln.

In the language of "fuzzy rules": From "X is A and Y is B" and "X is A*"
infer "Y is B*". This is not a frequently used "fuzzy rule", but we get it
naturally from the Compositional rule.

(2) There are at least two particular cases in the classical (Boolean) case.
First, the usual rule for conjunction, second a rule of contradiction:

A(X) &B(Y)
B(Y)

-,A(X), A(X) & B(Y)
-,B(Y) &B(Y)
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(3) In general, for A, B, A* crisp, we get the picture for A*(x) & A(x) &
& B(y) given in Fig. 7.2:

B

A

Figure 2.

(i)eitherrAUrA* f0(forsomeu,rA(u) =rA*(u) = l)andrB =rB*
(ii) or r AU r A* = 0and then rB* = 0 (rB* (v) = 0 for all v E Dy).
(4) In full generality, the following is provable over BUt: (for the present

meaning of CampcR):

(i) CompcR f- (Vy)(B*(y) -+ B(y)),

(ii) CampCR ~- (Vy)(B*(y) -+ (3x)(A(x) & (A*(x))).

Indeed, assuming CampcR we prove
B*(y) -+ (3x)(A*(x) &A(x) &B(y)) -+ [(3x)(A* (x) & A(x)) &B(y)]
(by 5.1.18 (9».

From (ii) we also get
CompCR f- (3y)B*(y) -+ (3x)(A(x) &A*(x)).

and hence
CompcR f- -,(3x)(A(x) & A*(x) -+ -,(3y)B*(y).

(5) We again stress that all provabilities are over BLV. These are valid over
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LV, GV, IIV and any other t-norm logic. Moreover, the reader may check that
everything remains valid if we replace & by /\ throughout.

Example 7.1.13 We shall present here a critical analysis of the use of the
compositional rule of inference in some fuzzy expert systems like CADIAG
2 (developed by KP. Adlassnig and his group; see [3,4,5, 117] or, for a short
description, [115]; for a detailed analysis see [32]). We have three sets: M 
the set of patients, 8 - the set of symptoms and D - the set of diagnoses. Fur
ther we have three fuzzy binary relations: P : (M x 8) -+ [0,1] expressing
for each pair (p, s),p E M, s E 8, how much p has the symptoms s, further
R : (8 x D) -+ [0,1] expressing for each s E 8 and d E D how much s
confirms d, and P' : (M x D) -+ [0,1] expressing how much a patient p has
the diagnosis d. Thus we have a structure with three domains M, 8, D and
three binary relations. Let Has, Con f, Has' be binary predicates naming
P, R, P' respectively; thus Has(x, s) says "x has the symptom s", similarly
H as'(x, d); and Conf(s, d) says "s confirms d". Using the compositional
rule (for an arbitrary but fixed x) one defines

Diag(x, d) == (3s)(Has(x, s)&Conf(s, d)).

This defines over LV or other logic a relation C : (P x D) -+ [0,1],
expressing for each p and d how much d is confirmed for p.

So far so good; but what does this mean? Clearly, the answer depends
on the definition of the meaning of Conf, Le. of the relation R. Here our
warning comes: In CADIAG and similar systems, one defines R from some
data. R(s, d) is taken to be the relative frequency Fr(dis) of presence of d
among objects (patients) having d (for implicity, symptoms and diagnoses are
assumed to be crisp). What does Diag(x, d) mean in this case? This is diffi
cult to say; but one thing is clear. Let p be a patient and let SI, ... , Sk be the
symptoms he has. We would be interested in knowing, or at least estimating
Fr(dls l •.. Sk) - the relative frequency of d among object having SI ... , Sk
- as a possible estimate of the value of H as' (x, d). But it must be clearly
said that Diag does not estimate this relative frequency; Diag just defines
max(Fr(dlst}, ... ,Fr(d(sk))' And observe that it can happen, for example,
that (k = 2), Fr(dlst} = Fr(dls2 ) = 0.9 but Fr(dls l , S2) = 0.2. (See the
following frequency table)
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Sl S2 dl
1 1 1 1

1 0 1 44

0 1 1 44

0 0 1 5

1 1 0 4

1 0 0 1

0 1 0 1

0 0 0 3

Note that it does not help to allow S to contain conjunctions of symptoms 
see [32] for details.

Let us offer one possible interpretation of Conf with desirable proper
ties (without any claim that this is the only right interpretation). Assume the
relations P, P' interpreting Has, Has' to be fuzzy and let

Conf(s,d) == (Vx)(Has(x,s) ---+ Has'(x, d)).

Thus the truth degree of Conf(s, d) is the minimum, over all patients x, of
the truth degrees of the implication Has (x, s) ---+ Has' (x, d). Caution. For
example, in LV, IIConf(s, d)11 = 0.9 means that for each patient,
IIHas(x,s)11 ::; min(l,Has'(x,d)1I + 0.1). (All truth values in the given
structure.) Then for each patient p, the following formulas are true:

(Has(p, s)&Conf(s, d)) ---+ Has'(p, d), thus
(3s)(Has(p, s)&Conf(s, d)) ---+ Has'(p, d),

i.e. Diag(p, d) ---+ Has' (P, d). Consequently, the truth degree of Diag(p, d)
is a lower bound of the degree in which p has the diagnosis d. This is surely
pleasing; the question remains if e.g. the physician can supply knowledge
necessary to evaluate Conf in the present meaning.

7.1.14 In the rest of this section we shall discuss the question of what are
"the present (actual) values of variables X, Y" and sketch a formalism for
this. The present discussion will be used in an example in Ch. 8 and may be
skipped now if desired.

We can imagine a new domain M of objects (situations, time elements,
persons) interpreting a new sort of variables; denote the new variables by
Z, Zl,···. We assume that for each object m E M, each variate X takes
a value fx(m) E Dx (temperature, colour, etc. ofm). Thus X becomes
a function symbol; X (z) is a term. Fixing an mo E M as a meaning of a
new constant c for actual object, X(c), Y(c) are terms for the values of the
corresponding variates for the actual object.
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Definition 7.1.15 Formally, this leads to a many-sorted many-valued calcu
lus whose language consists of a sort of So objects, sorts Sl," . ,Sn for do
mains of variates,

- unary function symbols Xl,' .. ,Xn for variates and an object con
stant c for "the actual object" (possibly other constants),

variables for each sort,
- predicates of various types.

The language is called the ground language. A structure for this language
has the form

M = (M, DXll"', Dxn , fl,"', in, (rp)ppredieate, me,"')

(dots for possible meanings for other constants) where each Ii maps Minto
D Xi' M is called aground structure.

Terms are variables, constants and expressions Xi (z) where Xi is the
name of the i-th variate and z is a variable of the sort So. Everything else
is as usual;

7.1.16 We may now formulate axioms like (Vz) (A(X(z)) -+ B(Y(z)), say
ing "for each object z (situation etc.), if the value of the variate X (on the ob
ject z, in the situation z etc.) is A (big, etc) then the value of Y (on z) is B".
Then e.g. the Generalized Modus Ponens with the old condition ComPMP
saying (Vy)(B*(y) == (3x)(A*(x) & A(x) -+ B(y)) can be formulated as

ComPMP -+ (Vz)((A*(X(z)) & (A(X(z)) -+ B(Y(z))) -+ B*(Y(z))

and shown to be provable in the corresponding obvious modification of BLV
(with a limited use of function symbols). You may derive various corollaries,
e.g.

CompMP, (Vz)(A(X(z)) -+ B(Y(z)), A*(X(c))
B*(Y(c))

saying that if B* is defined as CompMP demands, if for all situations, [X
is A implies Y is B] and if in the actual situation X is A* then in the actual
situation Y is B*. Soundness of the rule guarantees e.g. that ifComPMP and
[for all z, X is A implies Y is B] are true (i.e. I-true) in a given ground
structure and [X is A*] is r-true in the actual situation then [Y is B*] is at
least r-time in this situation.

This appears to be the the way that the Generalized Modus Ponens is ac
tually used.
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7.2. Fuzzy FUNCTIONS AND FUZZY CONTROLLERS
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7.2.1 Fuzzy control is apparently the most broadly used application of fuzzy
logic. Various books explaining fuzzy control, written by non-logicians, suf
fer by logical mismatch caused by the fact that "fuzzy IF-THEN rules" are
presented as implications but then used to construct a fuzzy relation having
little to do with any implication, at least at first glance (the relation is defined
by a disjunction of conjunctions). Attempts to call e.g. the min-conjunction
a "Mamdani implication" (see e.g. [35]) must be strictly rejected since we
insist that the fuzzy truth function of a connective must behave classicaly for
extremal values 0, 1 - and this is not the case for minimum as implication. It
has slowly become clear that fuzzy control deals with approximation offunc
tions on the basis of pieces of fuzzy information of the kind "for arguments
approximately equal Ci the image is approximately equal to d i ". 40

It is illuminating to analyze the crisp situation. Assume we have two do
mains M 1, M 2 and a crisp, possibly partial, function j from M 1 to M 2 . More
over, let us have distinct elements (Ul' vr), . .. ,(un, vn) E M 1 X M 2 such that
for each i = 1, ... , n, j (Ui) = Vi. Let us have a two-sorted language with
equality (denoted = for both domains) and a binary predicate F interpreted
by j, let M = (M1, M 2 , j, =1, =2) where =i is identity on Mi, x-variables
range on Ml, y-variables on M2. The fact that j is a partial mapping is exp
resed by the sentence ('v'x, Yl, Y2)( (F(x, yr) f\ F(x, Y2)) --+ Yl = Y2). Let Ci

be the constants for Ui, and d i for Vi respectively.
(1) The formula

just expresses the fact that j(Ui) = Vi; it is true in M.
(2) The formula

!\((x = Ci) --+ (y = di))
i

defines a relation r ~ M 1 X M 2 whose restriction to {Ul' ... ,un} coincides
with the restriction of j to {Ul' ... ,un} and containing all pairs (u, v) where
U is distinct from all Ul,' .. ,Un and V E M 2 ; thus j ~ r.

(3) The formula

defines a relation s ~ Ml X M2 which is the restriction of j to {Ul, ... , un};
i.e. no pair (u, v) with U distinct from all Ul, ... ,Un belongs to s. Thus s ~ j.

40 For analyses ofIF-THEN rules see [43, 118, 119, 155, 198]. Our presentation is
a free elaboration of Kruse et al. [118] Sec. 4.4-4.5; and Godo and Hajek [61, 63, 62];
but our notion of a fuzzy function seems to be new.
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Compare this, in the fuzzy case, with the deduction rules of the last sec
tion. We shall develop a general theory of fuzzy functions and "partial knowl
edge" on them and then apply it to describe (the logical aspect of) fuzzy
control. We shall systematically develop the theory in BL'v' (showing various
statements to be provable); thus this will give, in particular, sound results for
any t-norm logic C'v'. To simplify matters, we shall deal only with unary func
tions (having one argument); a generalization to functions of several variables
is easy.

After having discussed fuzzy functions we shall investigate the general
logical structure of fuzzy controllers, not using fuzzy functions. The hurrying
reader, not interested in fuzzy functions, may skip to 7.2.17.

Definition 7.2.2 Let T be a theory with a binary predicate F of a type (tl, t2),
let ~i be a similarity predicate in T for the sort ti. (We shall write ~ both for
~I and ~2 without any danger ofconfusion.) We say that F defines a (partial)
fuzzy function in T with respect to ~ if T proves the following:

(x ~ x/ &y ~ y/) -+ (F(x, y) == F(x', y/»,

(F(x, y) &F(x, y/» -+ y ~ y/.

The first formula is the congruence axiom (cf. 5.6.5); the second says that any
two images of x are similar.

Lemma 7.2.3 Let F define a partial fuzzy function in T w.r.t. ~. Let c, d be
constants such that T f- F(c, d).

(l) Then T f- (x ~ c & F (x, y» -+ y ~ d.
(2) Moreover, if A(x) is the formula x ~ c and B(y) is the formula given

by the condition Camp of the compositional rule of inference from F and A
(cf. 7.1.6 (2», i. e. B(y) is (3x)(x ~ c& F(x, y» then T f- (B(y) == y ~ d).
(Thus the compositional rule transforms x ~ c and F(x, y) to Y ~ d.)

Proof (1) In T, x ~ c&F(x,y) implies F(c,y) which, due to the prov
ability of F (c, d) gives y ~ d.

(2) Clearly, T f- y ~ d -+ [c ~ c&F(c,y)] -+ [(3x)(x ~ c&F(x,y»].
On the other hand, T f- (3x)(x ~ c&F(x,y» -+ y ~ d follows from (1).
o

Definition 7.2.4 Let n be a similarity on Mi (i = 1, 2). A fuzzy relation
s: (MI x M2) -+ [0,1] is afuzzy mapping from MI into M2 W.r.t. rl, r2 if s
is extensional, i. e. for all x, x' E M I , y, y/ E M 2 ,

rl(x,x/) * r2(Y,y/) * s(x,y) ::; s(x/,y/)
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s(x, y) * s(x, y') S r2(Y, y')
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Lemma 7.2.5 Let F define a function w.r.t. ::::; in T. If (Ml , M 2, rl, r2, s) is
a model ofT then s is a fuzzy mapping from M l into M 2 w.r.t. rl, r2.

Proof Obvious. o

Example 7.2.6 (1) Assume that s is a fuzzy mapping from M l into M 2 w.r.t.
rl, r2 and let rl, r2, s be crisp (0, I-valued). Then ri is an equivalence on
M i and if we factorize, i. e. put M[ = Mdri (in more details: [uh = {u' E
Mllrl(u, u') = I}, analogously [vh then putting f([uh) = [vh iff s(u, v) =
1 we get a crisp mapping from M{ into M~ - see Fig. 7.3.

Figure 3.

(2) Now let ri be similarities on Mi (i = 1,2) and let f be a crisp partial
mapping from M l into M 2 . Take the least extensional relation s containing
f (cf. 5.6.13). Our question is under which conditions s is a fuzzy mapping
from M l into M 2. The condition is that f respects the similarities rl, r2, i. e.,
for all Xl, X2 E M l ,

Indeed, consider M = (Ml, M2, rl, r2, f, s) and let ::::;1, ::::;2, F, F be names
of rl, r2, f, s; thus the formula

h "", ,(V .. ·)(F(x,y) == (:Jx,y)(x::::; X &y::::; y &F(x,y)) (*)
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is I-true in M. Our condition reads

(\7"")((XI ~ x2&F(XI,YI)&F(X2,Y2)) -7 YI ~ Y2) (**)

Clearly, if the axioms of a fuzzy function are I-true for :::::i, F in M then (**)
is I-true. Conversely, assume (*) I-true; we have to show that the formula

(\7' ... )((F(x, yt} &F(x, Y2)) -7 YI ~ Y2)

is I-true. Let T contain axioms of similarity for ~i and (*).
T I- [x ~ x' &YI ~ Y' &x ~ x" &Y2 ~ Y" &F(x',y') & F(x", y")] -7

YI ~ Y2 (since the left-hand side implies x' ~ x" & F(x', y') & F(x", y") &
YI ~ Y' & Y2 ~ y", which in tum implies y' ~ Y" & Yl ~ Y' & Y2 ~ Y" (by
(**)), and this implies YI ~ Y2). Thus

T I- (:lx', y',x", y")[. ..] -7 YI ~ Y2

(cf. 5.1.14 (2))),
T I- [(:lx', y')(x ~ x' & YI ~ y' & F (x' , y') ) &
(:lx", y")(x ~ x" & Y2 ~ y" & F(x", y"))] -7

which gives
YI ~ Y2 (cf. 5.1.18 (9)),

See Fig. 7.4.
(3) We give an example of the meaning of the previous condition for

Lukasiewicz logic. Assume Mi = [ai, bi ] are real intervals; let for u, v E mi,
ri(u, v) = max(O, 1 - cilu - vi). Then a sufficient condition for a mapping
f of M I into M 2 is to satisfy the Lipschitz condition

*

Our next task is to investigate the situation described as follows: there is a
fuzzy mapping s from M I into M2 (w.r.t. rl, r2), that is not at our disposal as
a whole; but we know finitely many examples Ui, Vi (i = 1, ... , n) such that
S(Ui,Vi) = 1, i. e. if F names s, Ci name Ui and di name Vi then F(Ci,di)
is I-true in M = (MI, M2, rl, r2, s, Ui, Vi). It follows immediately that each
formula

x ~ Ci &F(x, y) -7 Y ~ di

is I-true; and this resembles an "IF- THEN rule"
IF x is similar to Ci THEN y is similar to di.
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Figure 4. A fuzzy mapping given by the crisp function y = x2 .

What more can we say?

Definition 7.2.7 We say that, in a theory T, F defines a ,;:::!-function with ex-
amples (Ci, di) (i = 1, n) if F defines a fuzzy function in T w.r.t. a simi-
larity ';:::! and for i = 1, ,n, T proves F(Ci, di).

Repeating once more, the definitions say that the following formulas are
provable in T: Similarity axioms for ';:::!,
extensionality of F: (F(x, y) & x';:::! x' & y ';:::! y') --t F(x', y'),
functionality of F: (F(x, y) &F(x, y')) --t Y ';:::! y'),
examples of F: /\7=1 F(Ci' di).
Let us agree that in the sequel Ai(x) will stand for x ';:::! Ci and Bi(y) for
y ';:::! di , unless stated otherwise.

Theorem 7.2.8 Let T be a theory over BUt and assume that in T, F de
fines a ';:::!-function with examples (Ci' dd (i = 1", . ,n). Then T proves the
following formulas:

F(x,y) --t !\(Ai(x) --t Bi(y)),
i
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V(Ai(x) &Bi(y)) -+ F(x,y).
i

Proof (1) T ~ (F(x, y) & x ~ Ci) -+ F(Ci, y) (from extensionality),
T ~ F(Ci, y) -+ y ~ di (from functionality and T ~ F(Ci, di)).
Thus T ~ (F(x, y) & Ai(x)) -+ Bi(y),
T ~ F(x, y) -+ (Ai(X) -+ Bi(y)),
T ~ F(x,y) -+ 1\(Ai(x) -+ Bi(Y))' (cf. 7.2.3 (1).)

(2) T ~ (x ~ Ci &y ~ di) -+ F (x, y) from extensionality, thus
T ~ (Ai(x) & Bi(y)) -+ F(x, y),
T ~ Vi(Ai(x) &Bi(y)) -+ F(x, y). 0

Remark 7.2.9 Given predicates Ai, Bi' we let RULES(x, y) stand for the
formula

1\(Ai (x) -+ Bi(y))
i

and MAMD(x, y) (resembling the name Mamdani, see his [131, 132, 133])
for the formula

V(Ai(x)&Bi(y))
i

We shall prove various results on the relation of these two formulas. In par
ticular, Theorem 7.2.8 says that under the assumptions made,

T ~ MAMD(x,y) -+ F(x,y) -+ RULES(x,y).

Lemma 7.2.10 Let T, F,~,Ci, di' Ai, Bi be as above and let T ~

~ MAMD(x,y) == Vi(Ai(x)&Bi(y)). Then MAMD defines in T a~

function with examples (Ci, di)'

Proof Extensionality:
T ~ (x ~ Ci & y ~ di) -+ ((x' ~ x & y' ~ y) -+ (x' ~ Ci & y' ~ di)),
T ~ (Ai(x) & Bi(y)) -+ ((x' ~ x & y' ~ y) -+ (Ai (x') & Bi(y'))),
T ~ (Ai(x) &Bi(y)) -+ ((x' ~ x&y' ~ y) -+ MAMD(x',y')),
T ~ Vi(Ai(x) & Bi(y)) -+ ((x' ~ x &y' ~ y) -+ MAMD(x', y')),
T ~ (MAMD(x,y) &x' ~ x&y' ~ y) -+ MAMD(x',y').
Functionality:
T ~ MAMD(x, y) -+ F(x, y); thus
T ~ (MAMD(x,y) &MAMD(x,y')) -+ (F(x,y) &F(x,y')), hence
T ~ MAMD(x,y) &MAMD(x,y')) -+ y ~ y', by the functionality of F.
Examples: Clearly, T ~ Ai (Ci) &Bi(di),hence T ~ M AMD (Ci, di ). 0
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Remark 7.2.11 Thus the formula MAMD(x,y), i. e. Vi(Ai(x)&Bi(y))
defines in T the least ::::::-function with examples (Ci, di ). Caution: The for
mula RULES(x,y), i. e. Ai(Ai(x) ---+ Bi(y)) (with our fixed assumptions,
Ai (x) is x = Ci etc.) need not define a ::::::-function! This can be seen al
ready in the crisp case: for x non-equivalent to any of Cl, ... , Cn, our formula
gives no restriction to the value of y. In more details, if T is as above and
T f- RULES(x, y) == Ai(Ai(X) ---+ Bi(y)) then
T f- (Ai --'(A(x)) ---+ RULES(x,y) (since T f- --,Ai(x) ---+ (Ai(X) ---+
Bi(y))). see Fig.7.S.

Figure 5.

Thus keeping our assumptions on T we may ask under which conditions
the two formulas, RULES(x, y) and M AMD(x, y) are equivalent. The fol
lowing lemma gives the answer:

Lemma 7.2.12 Let T,F,::::::,Ci,di,Ai,Bi be as above, let MAMD(x,y)
stand for Vi (Ai (x) &Bi(y)) (i. e. for Vi(x :::::: Ci&y :::::: di)) and let
RULES(x, y) stand for Ai(Ai(x) ---+ Bi(y)) i. e. for Ai(x :::::: Ci ---+ Y :::::: di).
Then

T f- (V A;(x)) ---+ (MAMD(x, y) == RULES(x, y)).
i

Proof T f- (Ai (x) ---+ Bi(y)) ---+ [(Ai (x) & Ai(X)) ---+ (Ai (x) &Bi (y) )],
T f- A[(x) ---+ [(Ai(x) ---+ Bi(y)) ---+ (Ai(X) & Bi(y))],
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T f- Ay(x) -+ [Ai(Ai(x) -+ Bi(y)) -+ Vi(Ai(x) & Bi(y))],
T f- Vi Ay(x) -+ [MAMD(x,y) == RULES(x,y)] (by 7.2.9; recall that in
propositional calculus, P == q is equivalent to (p -+ q) 1\ (q -+ p), cf. 2.2.16
(29». 0

Corollary 7.2.13 Under the present notation,
TU {(V'x)(ViAi(x))} f- (V'x,y)(MAMD(x,y) == RULES(x,y)).
(Note that if M is a model of the theory in question then for each U E M
there is an i such that if Ci denotes Ui in M, U is similar to Ui in degree 1.)

Proof This follows from facts on the propositional calculus: we know that
ViPi f- (ViPi)2 (since q -+ (q -+ q2) is BL-provable); and (Vi Pi)2 f
Vi(py) by 2.2.24. 0

What we have done up to now may be described (or interpreted) as follows:
We have two domains M I , M2 (you could write Dx, Dy instead), similarities
rl, r2 on M I , M2 respectively and a partial fuzzy mapping S from M I to M2,
thus a model M = (MI , M2, rl, r2, s). We introduce the language ~I, ~2, F
and assume we have n examples (Ui' Vi) named (Ci' dd such that F (Ci' di ) is
I-true in M (i. e. S(Ui' Vi) = 1). This can be expressed by saying "F sends Ci

to d/', or, "F sends (x similar to Ci) to (y similar to diY', or "IF x is similar
to Ci (and F(x, y) THEN Y is similar to d/'. We know that in each model
M as above the formula (V'x, y)(F(x, y) -+ Ai((x ~ Ci) -+ (y ~ di)))
is I-true, thus S is a subrelation of the fuzzy relation defined by Ai (x ~

Ci -+ Y ~ di) (which itself need not be a ~ mapping); on the other hand, the
formula Vi(x ~ Ci) &y ~ di) defines in M a ~-fuzzy mapping h which is a
subrelation of S and satisfies h(Ui, vd = 1.

Lemma 7.2.12 says that for each U E M I , V E M 2 , the degree in which
U satisfies Vi(x ~ Ci)2 (i. e. which U is very similar to an Ui, i = 1, ... , n)
is a lower bound for the degree in which (u,v) satisfies MAMD(x,y) ==
RULES(x,y).

We should ask the following: What if we just have Mi' similarities ri and
(potential) examples (Ui, Vi)? What must be assumed to be sure that there is
a fuzzy mapping S (w.r.t. ri) such that s(Ui, Vi) = I? The following lemma
gives the answer.

Lemma 7.2.14 Let T be a theory with two sorts and similarity predicates
~I, ~2 of the respective sorts; let C1, ... ,Cn be constants of the first sort and
dl , ... , dn constants of the second sort. If T f- Ci ~ Cj -+ di ~ dj for each
i,j (indices at ~ deleted) and T f- MAMD(x,y) == Vi(x ~ Ci&Y ~ dd
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then MAMD defines a ~-function in T and T I- MAMD(Ci,di) for i =
1, ... ,n.

Proof" Extensionality as above.
Functionality: T proves the following chain of implications.
[MAMD(x, yI) & M AMD(x, Y2)] -+
[(Vi X ~ Ci &Yl ~ di) & Vj(x ~ Cj &Y2 ~ dj )] -+
[Vi,j(x ~ Ci&X ~ Cj &Yl ~ di &Y2 ~ dj )]-+
[Vi,j(Ci ~ Cj & Yl ~ di & Y2 ~ dj )] -+
[Vi,j(di ~ dj &Yl ~ di & Y2 ~ dj )] -+ Yl ~ Y2·
Examples: Obviously, T I- (Ci ~ Ci &di ~ di ), thus T I- M AMD(Ci, dd.
o

*

Proof" Let us be still more modest: let us have M 1 , M2 and fuzzy subsets
r Ai of Ml, rEi of M2. We ask under which conditions we may assume

- similarities 81 on M1 and 82 on M2 with respect to which r Ai' rEi are
extensional,

- elements U 1, ... ,Un E M 1, VI, ... ,Vn E M2 such that such that r Ai

are "fuzzy singletons given by Ui with respect to 81" and similarly for
rEi' Vi, 82,

- a 81, 82-fuzzy mapping rF "sending Ui to vi".

We shall answer these questions.

Lemma 7.2.15 41 Let T be a theory, Ai unary predicates of the same sort
(i=I, ... ,n).

(1) Define a binary predicate.~ as follows:

(\fx,x')(x ~ x' == I\(Ai(x) == Ai(x')).
i

The resulting extension T' of T is conservative, ~ is a similarity in T' and T'
proves all Ai to be extensional.

(2) Add new constants Ci and axioms (\fX)(Ai(X) == x ~ cd). The result
ing theory T" is a conservative extension of T' iff T' proves all formulas

(3x)Ai(x),

(3x)(Ai(x) & Aj(x)) -+ (\fx)(Ai(x) == Aj(X)).

41 See [118] 4.13.
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Proof" (1) T' is a conservative extension of T by 5.2.15; the proof that in
T' :::::: is a similarity making all Ai extensional is an easy variant of 5.6.14.

(2) First assume Til to be a conservative extension of T'; then it suffices
to prove the above formulas in Til.

Til ~ Ci :::::: Ci thus Til ~ (3x)(x :::::: Ci) and Til ~ (3x)Ai (x). Furthermore,
Til ~ (3x)(Ai (x) & Aj(x)) = (Ci :::::: Cj) (since Til ~ Ci :::::: Cj -+ (Ci ::::::
Ci &Ci :::::: Cj) and Til ~ (x :::::: Ci &x :::::: Cj) -+ Ci :::::: Cj); and Til ~ Ci ::::::

Cj -+ (x:::::: Ci = x :::::: Cj). Thus Til ~ (3x)(Ai(X)&Aj(x)) -+ (V'x)(Ai(x) =
Aj(x)).

Conversely, assume that T' proves the above formulas. Then we may ex
tend T' conservatively by all axioms Ai (Ci); call the resulting theory Till.
Till ~ x :::::: Ci -+ Ai(x) immediately from the definition of::::::; on the other
hand, Till ~ Ai(x) -+ (Ai(Ci) =Ai(X)) (since Ai(Ci) is provable),
Till ~ (Ai(x) &Aj(x)) -+ (V'z)(Ai(z) =Aj(z)),
Till ~ Ai(X) -+ (Aj(x) -+ (Ai(Ci) =Aj(Ci))),
Til' ~ Ai(x) -+ (Aj(x) -+ Aj(Ci)) (since Till ~ Ai(Ci)
and also
Till f- (Ai(Ci)&Aj(Ci) -+ (Ai(x) = Aj(x))
Till ~ Aj(Ci) -+ (Ai(x) -+ Aj(x))
thus all together,
Till ~ Ai(x) -+ /\j(Aj(x) =Aj(Ci)), hence
Til' ~ Ai(x) -+ x :::::: Ci.
Thus Til' is stronger than Til (in fact equivalent to Til) and hence Til is a
conservative extension of T'. 0

Theorem 7.2.16 Let T be a theory, Ai unary predicates of one sort, Bi unary
predicates of another sort. Assume

T ~ (3x)Ai (x), T ~ (3y)Bi (y),

T ~ (3x)(Ai (x)&Aj (x)) -+ (V'x)(A(x) = Aj(x)),

T ~ (3y)(Bi (y)&Bj (y)) -+ (V'y)(Bi(y) =Bj(y)).

Add definitions Xl :::::: x2 = /\i(Ai(xd = Ai (X2)), Yl :::::: Y2 = /\i(Bi(Yl) =
Bi(Y2)), new constants Ci, di and axioms
Ai(x) =x :::::: Ci, Bi(y) =Y :::::: di.
Finally add the definition

MAMD(x,y) =VAi(x)&Bi(y).
i

The resulting theory T M is a conservative extension of T and ::::::1,::::::2 are
similarities.



ON APPROXIMATE INFERENCE 187

M AMD defines in T M a fuzzy mapping w.r.t. ~1, ~2 with the examples
(Ci, dd iff

Proof We only put things together. Adding ~i, Ci, di and the axioms con
cerning them to T is conservative and the extension proves similarity ax
ioms by the preceding lemma. Also recall that Ci ~ Cj is equivalent to
(3x)(Ai(x)&A j (x)) and similarly for di ~ dj . Thus the fact that
M AMD(x, y) defines a fuzzy mapping follows by 7.2.14. 0

*

7.2.17 After having discussed fuzzy functions at large, let us ask what we
can say about the (logical) principles of fuzzy control in general, without
relating it to the notion of similarity. (We again restrict ourselves to just one
"input" variate X, a generalization to more input variates being easy.) The
heartof the matter is as follows: We have n rules "IF X is Ai THEN Y is
B/' ri = 1", . ,n, Ai unary predicates of the same sort, Bi predicates, all of
the same sort (possibly different from the former sort). Let us write the rules
as Ai (x) ~ B i (y) cf. 7.1.1). We use Ai and Bi to define a binary predicate
MAMDby

(Mamd)

and, given another unary predicate A* of the first sort, define a B* from A*,
via the compositional rule of inference, i. e.

(Vy)(B*(y) == (3x)(A*(x)&MAMD(x,y))). (B*)

Given a model M = (Dx, Dy, rAi' rBi) this defines a functional associating
to each fuzzy subset rA. of Dx the corresponding fuzzy subset r B. of Dy.
(Note that in fuzzy control this is used to define a crisp mapping of D x into
D y : one first uses a fuzzification operation, associating to each u E Dx
a fuzzy set r A. ("approximately u"), then applies the functional to get rB.

and finally applies a defuzzification procedure converting the fuzzy set rB.

into a crisp output v. We shall disregard the operations of fuzzification and
defuzzification.)

Our question now reads: is there any logic here? Let us try a positive
answer, as general as possible. To this end we shall make the above formulas
axioms of a theory of fuzzy control:
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Definition 7.2.18 FC is a two-sorted theory having unary predicates AI, ... ,
... An, A* of sort 1, unary predicates B I , ... ,Bn,B* of sort 2 a binary pred
icate MAMD of the type (1,2). The axioms are the formulas (Mamd), (B*)
above (defining MAMD from Ai, B i and defining B* from A*,MAMD).
In addition, FC has two constants: X of sort 1 and Y of sort 2.

Theorem 7.2.19 FC proves the following (over BLV):

V\(Ai(X) --t Bi(Y»& V(Ai)2(X)] --t (A*(X) --t B*(Y» :
i

7.2.20 Before we prove the theorem let us discuss its meaning. It says that,
under the asumptions as how B* is obtained, if the current value of the vari
ate X (denoted by the constant X) satisfies, together with the current value
the variate Y, all the rules Ai(X) --t Bi(Y) and (sharp and) X satisfies
Vi Ai

2(X) then A*(X) implies B*(Y). In particular, assume [...] to be 1
true in M. Then IIAi (X)IIM ::; IIBi (Y)IIM for all i and IIA i (X)IIM = 1 for
at least one i. The conclusion is IIA*(X)IIM ::; IIB*(Y)IIM.

But this is not all. Assume the value of the antecedent [...] to be 2 r,
i.e. the rules are sufficiently true and X sufficiently satisfies one of Ai's. The
conclusion is that IIB*(Y)IIM is not much less than IIA*(X)IIM. For example,
if the rules are I-true then IIB*(Y)IIM 2 IIA*(X)IIM * II VA;(X»IIM (*
being the interpretation of &). We shall come back to this discussion in a
moment.

7.2.21 Proofof 7.2.19.
FCf- (Ai(X)&(Ai(X) --t Bi(Y») --t Bi(Y), thus
FCf- (A;(X)& !\i(Ai(X) --t Bi(Y») --t (Ai(X)&Bi(Y)), thus
FCf- [A;(X)& !\i(Ai(X) --t Bi(Y»&A*(X)] --t A*(X)&MAMD(X, Y).
Consequently,
FCf- (A;(X)&RULES(X, Y» --t (A*(X) --t
--t (3x)(A*(x)&MAMD(x, Y»),
which gives the result by the definition of B*.

Now let us see what happens if we assume A* to be equivalent to A(

Theorem 7.2.22 FC proves (over BLV) the following:

[(Vx)(A*(x) == Ai (x»&(3x)Ay(x)] --t (Vy)(Bi(Y) --t B*(y»,

[(Vx)(A* (x) == Ai(x) )&(Vx)( /\ -.(Ai(x)&Aj (x»)] --t
if:.j

--t (Vy )(B* (y) --t Bi (y».
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Proof (i)
FCf- (A;(x)&(Ai(x) == A*(x))&Bi(y)) --+ A*(x)&Ai(x)&Bi(y),
FCf- [(:3x)(A;(x)&(Ai (x) == A*(x))&Bi(y)) --+
--+ (:3x)(A* (x)& Vj(Aj (x )&Bj(Y))),
FCf- [(:3x)A;(x)&(Vx)(Ai (x) == A*(x)] --+ (:3x)(A;(x)&(A(x) == A*(x))),
FCf- [(:3x)A;(x)&(Vx)(Ai (x) == A*(x))&Bi(Y)] --+
--+ (:3x)(A*(x)&MAMD(x, y)),
FCf- [(:3x)A;(x)&(Vx)(Ai (x) == A*(x))] --+ (Bi(y) --+ B*(y)).
Now we prove (ii).
Write Dsjnt(Ai ) for (Vx) Ajii -,(Ai(x)&Aj(x)),
Equiv(Ai , A*) for (Vx)(A*lx) == Ai(x)).
FCf- (B*(y)&Equiv(A*, Ai)) --+ (:3x)(Ai (x)& Vj(Aj(x)&Bj(y))),
FCf- Dsjnt(Ai ) --+ [(Ai(x)& Vj(Aj~x)&Bj(Y)) --+ A;(x)&Bi(Y)]
(since Ai(x)&Aj(x)&Bj(Y) implies 0 for i i- j), i. e.
FCf- [Dsjnt(Ai)&Equiv(A*, A)&B*(y)] --+ (:3x)(A;(x)&Bi(Y))'
FCf- [Dsjnt(Ai)&Equiv(A*, A)) --+ (B*(y) --+ Bi(Y)),
which gives the result by generalizing (by (Vy)) and moving (Vy). 0

Remark 7.2.23 (1) Again read the formulas as true in a model- first with the
antecedent I-true and then with the antecedent sufficiently true. We see that

(i) if A*(x) is sufficiently near to Ai and Ai is (sufficiently) non-empty
then Bi is sufficiently included in B*;

(ii) if Ai is sufficiently disjoint from all the other Aj's and A * is suffi
ciently near to Ai then B* is sufficiently included in Bi. Obviously, these are
fuzzy readings; the precise meaning is given by the formulas proved and may
be expressed in greater detail again as an exercise.

(2) Let us repeat once more that instead of antecedent of the form Ai(X)
we could investigate Ail(X1)& ... &Aik(Xk) or AidX1 ) /\ ... /\ Aik(Xk);
this brings no problems but is more cumbersome.

(3) On the other hand, replacing & by /\ in the definition on M AMD does
bring additional problems (unless your logic is GV - Godel). We shall not go
into them here.

7.3. AN ALTERNATIVE APPROACH TO FUZZY RULES

7.3.1 Up to now, we have worked with two variates X, Y with domains
D x, Dy respectively; syntactically, we had just two sorts, predicates Ai, A*
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of the first sort and Bi ,B* of the second. X and Y were understood as object
constants (for the actual value of the respective variate) and we had rules of
the form Ai(X) -+ Bi(Y) saying "if the actual value of X is Ai then the
actual value of Y is B/'. X and Y thus denoted possibly unknown but crisp
elements of the respective domains.

Let us now try to be still more fuzzy and let X, Y denote fuzzy subsets of
the respective domains, giving some vague information on the actual values of
our variates. Syntactically this means that X and Y become unary predicates
of the respective sorts. Then it is natural to formalize the assertation "X is Ai"
to be just the formula (\fx)(X(x) -+ Ai(x)) (briefly, X ~ Ai). Indeed, the
formula is I-true if for each element m of Dx, the degree in which m satisfies
X is a lower bound of the degree in which m satisfies Ai. (The reader may
state in words the meaning of X ~ Ai if this formula is r-true.) We shall
reconsider the generalized modus ponens and the inference in fuzzy control
in this new setting.42

Definition 7.3.2 (l) If X, A are unary predicates of the same sort then X ~

A stands for (\fx)(X(x) -+ A(x)). Similarly, if cp, 'IjJ are formulas with ex
actly one free variable x then cp ~ 'IjJ stands for (\fx)(cp(x) -+ 'IjJ{x))

(2) Given A*, A, B, B** ofthe obvious sort, CompMPA (alternative com
position for generalized modus ponens) stands for the formula

(\fy)(B**(y) == [(\fx)(A*(x) -+ A(x)) -+ B(y)]))

or, briefly,
B**(y) == [(A* ~ A) -+ B(y)].

Remark 7.3.3 Recall CompMP, i. e. the formula

(\fy)(B*(y) == (3x)(A*(x)&(A(x) -+ B(y)))

and observe that, over BL\f, ComPMP, CompMPA I- B* ~ B**. Indeed,
assuming B*,B** to be defined by CompMP,CompMPA respectively, we
can prove the following:

B**(y) == ((\fx)(A*(x) -+ A(x)) -+ B(y)),

B**(y) == (3x)((A*(x) -+ A(x)) -+ B(y)),

B*(y) == (3x)(A*(x)&(A(x) -+ B(y))),

[A*(x)&(A(x) -+ B(y))] -+ [(A*(x) -+ A(x)) -+ B(y)]

42 Cf. [63,62].



ON APPROXIMATE INFERENCE

(note that the last formula is equivalent to the provable formula

[A*(x)&(A*(x) -t A(x))&(A(x) -t B(y))] -t B(y)),

(3x)(A*(x)&(A(x) -t B(y)) -t (3x)((A*(x) -t A(x)) -t B(y)),

B*(y) -t B**(y).
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Theorem 7.3.4 Let ComPMPA be as in 7.3.2, i. e. (Vy)(B**(y) == (A* ~

A) -t B(y))). Then BLV proves

[CompMPA&(X ~ A*)&((X ~ A) -t (Y ~ B))] -t Y ~ B**

Proof Observe that it suffices to prove, in BLV, the formula

[(X ~ A*)&((X ~ A) -t (Y ~ B))] -t Y ~ [(A* ~ A) -t B] (1)

Indeed, having (l) we get
[(X ~ A*)&((X ~ A) -t (Y ~ B))&CompMPA -t (Y ~ [(A* ~ A) -t

B]&[(A* ~ A) -t B] ~ B** which gives the result by (provable) transitivity
of~. Thus we prove the formula (1).

First observe that, by our axiom on quantifiers, the following chain of
implications is provable:

[(Vx)(X(x) -t A(x)) -t (Vy)(Y(y) -t B(y))J -t

-t (Vy)[(Vx)(X(x) -t A(x)) -t (Y(y) -t B(y))] -t

-t (Vy)[Y(y) -t ((Vx)(X(x) -t A(x)) -t B(y))]. (2)

on the other hand, by the (provable) properties of implication,

(X (x) -t A*(x)) -t [((X(x) -t A(x)) -t B(y)) -t

-t ((A*(x) -t A(x)) -t B(y))],

thus
X ~ A* -t [(3x)((X(x) -t A(x)) -t B(y)) -t

-t (3x)((A*(x) -t A(x)) -t B(y))],

and
X ~ A* -t [((Vx)(X(x) -t A(x)) -t B(y)) -t

-t ((Vx)(A*(x) -t A(x)) -t B(y))];

in short,

X ~ A* -t ([(X ~ A) -t B] ~ [(A* ~ A) -t BD (3)



192 CHAPTER SEVEN

The implications in (2) prove

((X ~ A) -+ (Y ~ B)) -+ (Y~ [(X ~ A) -+ BD; (4)

and (3) and (4) give

[(X ~ A -+ Y ~ B)&(X ~ A*)]-+

-+ (Y ~ [X ~ A) -+ B] & ([(X ~ A) -+ B] ~ [(A* ~ A) -+ BD;

by transitivity of ~ we get our formula (1); this completes the proof of the
theorem. 0

Remark 7.3.5 (1) This remark is analogous to 7.1.9: we may visualize the
result as a rule

ComPMPA,X ~ A*, (X ~ A) -+ (Y ~ B)
Y ~ B**

Thus if the assumptions are I-true in a structure M then so is the conclu
sion. But again, let us stress that 7.3.4 gives more:

IICompMPA&(X ~ A*)&((X ~ A) -+ (Y ~ B))IIM :S IIY ~ B**IIM
(2) Observe that taking A for A* CompMPA becomes equivalent to B ~

B**, thus we get the trivial rule (modus ponens)

X~A-+Y~B,X~A

Y~B

as a particular case.
(3) More generally, assume M to be a model; iff IIA* ~ AIIM = 1 then

in M, CompMPA is equivalent to B ~ B**, if IIA* ~ AIIM = r < 1 then
II CompMPAil M = 1 iff for each m from the common domain of Y, B, B** ,
rB** (m) ?: min(l, rB(m) + 1 - r).

(4) Furthermore, we show that the rule in (1) becomes ill (non-sound) if
we replace CompMPA (the alternative composition for modus ponens) by
CompMP (see 7.3.3) and B** by B*. We exhibit the simple example of a
structure in which CompMP, X ~ A*, X ~ A -+ Y ~ B are I-true but
Y ~ B* is not. Let D x = {xo, xd, Dy = {Yo}. (The example works in any
of the logics LV, GV, rrv.)

The following tables give the interpretation of X, A, A* and Y, B, B* :

A

I

o

A*

1
2"

Yo I I

B

1
2"

B*

1
2"
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1
2'

One trivially verifies IIComPMPl1 = IIX ~ A*II = 1, IIX ~ All =
IIY ~ BII = !' thus /I(X ~ A) ~ (Y ~ B)/I = 1, but IIY ~ B*II
Note also 11(3x)X(x)1I = 1.

Thus the rule

CompMP, (3x)X(x), (X ~ A*), (X ~ A) ~ (Y ~ B)

Y~B*

is not sound (in LV, av, IN). The reader may show as an exercise that the
last rule is sound in the Boolean logic BooN.

(5) Finally, observe that if ~ a similarity predicate in T and T proves
A, B, A*, B* to be extensional (i.e. proves congruence axioms for them) and
for some constants c, d, the theory T proves (Vx)(X (x) == x ~ c) and
(Vy)(Y(y) == y ~ d) i.e. X, Y define fuzzy singletons) then T I- (X ~

A) == A(c), T I- (X ~ A*) ~ A*(c), T I- (Y ~ B) == Y(d) etc. and
T I- (ComPMPA&(X ~ A*)&((X ~ A) ~ Y ~ B))] --t (Y ~ B*). Thus
we get, in this particular case, again the result of 7.1.8.

*

Let us now tum to fuzzy control. We just restrict ourselves to one result (re
lating the Mamdani formula to the rules in our new sense).

Theorem 7.3.6 Let Ai, A*, X be unary predicates of one sort, B i , B*, Y
unary predicates of another sort. Let M AMD (x, y) stand for the formula
Vi(Ai(X)&Bi(Y)) (as above) and let ComPMAMD be the formula

(Vy)(B*(y) == (3x)(A*(x)&MAMD(x,y))

Then BLV proves

[CompMAMD&X ~ A*& /\((X ~ Ai) ~ Y ~ Bi))&
i

&(3x)X2(x)& V(X ~ Ai )2] ~ Y ~ B*.
i

Remark 7.3.7 Before we prove the theorem let us comment on its meaning.
The inference pattern of the Mamdani-like fuzzy control mechanism can be
formulated as

"if X is A*, B* is defined from Ai, B i using the Mamdani formula, and
Y corresponds to X then Y is B*".
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We have analyzed this pattern as a sound deduction rule (or, better, as a
provable implication) in the preceding section. The question is what it means
that Y corresponds to X. In the theorem this is understood as the assumption
that the pair (X, Y) satisfies all the rules (!\i((X ~ Ai) -+ (Y ~ Bi)). Al
ternatively we replace this assumption by the assumption that (X, Y) satisfies
an analogon of the Mamdani formula Vi(x ~ Ai&Y ~ Bi). We shall do this
in the next lemma and then show how this gives our Theorem.

Lemma 7.3.8 Under the assumptions of7.3.6, BL'v' proves

Proof BL'v' proves
[(3x)(X(x)&X(x)&(X ~ A*)&(X ~ Ai)] -+ (3x)(A*(x)&Ai (x)), thus
(Xi ~ Ai&Y ~ Bi ) -+
-+ [(X ~ A*&(3x(X*2(x)&Y(y)) -+ (3x)(A*(x)&Ai (x)&Bi(Y))], and
(3x) (A* (x)&Ai(x)&Bi(Y)) -+ (3x )(A* (x)& Vi(Ai(x)&Bi(y)), thus
Vi((X ~ Ad -+ [((X ~ A*)&(3x)X2(x)&Y(y)) -+
-+ (3x)(A*(x)&MAMD(x, y))] thus
[CompMAMD&X ~ A*&(3x)X2(x)& Vi(X ~ Ai&Y ~ Bi )] -+
-+ (Y(y) -+ B*(y)),
which gives the result. 0

7.3.9 Proof of7.3.6. The theorem follows from our lemma by observing the
provability of

[V(X ~ Ai )2& 1\ (X ~ Ai -+ Y ~ Bi )] -+ V((X ~ Ai)&(Y ~ Bi))
iii

(which is an easy exercise in propositional calculus).


