Skip to main content

Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite

  • Chapter
The Chemistry of Life’s Origins

Part of the book series: NATO ASI Series ((ASIC,volume 416))

Abstract

Carbonaceous chondrites comprise a unique subset of meteorites. Two classes of carbonaceous chondrites, the so-called CI1 and CM2 chondrites, are particularly interesting, in part because of their relatively high carbon content and the fact that most of this carbon is present as organic matter. This material is largely macromolecular but also contains a complex mixture of organic compounds that include carboxylic acids, dicarboxylic acids, amino acids, hydroxy acids, sulfonic acids, phosphonic acids, amines, amides, nitrogen heterocycles including purines and a pyrimidine, alcohols, carbonyl compounds, and aliphatic, aromatic, and polar hydrocarbons. The organic-rich CI1 and CM2 chondrites also contain an extensive clay mineralogy and other minerals that are believed to be indicative of an early episode of hydrous activity in the meteorite parent body. Recent stable isotope measurements have shown the organic matter in general, to be substantially enriched in deuterium and the discrete organic compounds to be enriched in 15N and somewhat enriched in 13C relative to terrestrial matter. These findings suggest that the organic matter is comprised of, or is closely related to, interstellar organic compounds. The organic chemistry of these meteorites is consistent with a formation scheme in which (1) a parent body was formed from volatile-rich icy planetesimals containing interstellar organic matter, (2) warming of the parent body led to an extensive aqueous phase in which the interstellar organics underwent various reactions, and (3) residual volatiles were largely lost leaving behind the suite of nonvolatile compounds that now characterize these meteorites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A. J., Whittet, D. C. B. and Duley, W. W. (1990) The 3.4-µm interstellar absorption feature in Cyg OB2 no. 12*. Mon. Not. R. astr. Soc. 243, 400–404.

    CAS  Google Scholar 

  • Agarwal, V.K., Schutte, W., Greenberg, J.M., Ferris, J.P., Briggs, R., Connor, S., Van de Bult, C.P.E.M. and Baas, F. (1985) Photochemical reactions in interstellar grains. Photolysis of CO, NH3 and H2O. Origins of Life, 16, 21–40.

    Article  PubMed  CAS  Google Scholar 

  • Allamandola, L.J., Tielens, A. G. G. M. and Barker, J. R. (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands: Auto exhaust along the Milky Way? Astrophys. J. 290, L25–L28.

    Article  CAS  Google Scholar 

  • Allamandola, L.J., Sandford, S.A. and Wopenka, B. (1987) Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites, Science 237, 56–59.

    Article  PubMed  CAS  Google Scholar 

  • Allamandola, L.J., Sandford, S.A. and Valero, G.J. (1988) Photochemical and thermal evolution of interstellar/precometary ice analogs, Icarus, 16, 225–252.

    Article  Google Scholar 

  • Alpern, B. and Benkheiri, Y. (1973) Distribution de la matiére organique dans la météorite d’Orgueil par microscopie en fluorescence. Earth Planet. Sci. Lett. 19, 422–428.

    Article  CAS  Google Scholar 

  • Amari, S., Anders, E., Virag, A. and Zinner, E. (1990) Interstellar graphite in meteorites. Nature 345, 238–240.

    Article  CAS  Google Scholar 

  • Anders, E. (1975) Do stony meteorites come from comets? Icarus 24, 363–371.

    Article  Google Scholar 

  • Anders, E. (1978) Most stony meteorites come from the asteroid belt, in D. Morrison and W. C. Wells (eds.) Asteroids: An Exploration Assessment, NASA CP-2053, U.S. Govt. Printing Office, Washington, D.C., pp. 57–75.

    Google Scholar 

  • Anders, E. (1989) Pre-biotic organic matter from comets and asteroids. Nature 342, 255–256.

    Article  PubMed  CAS  Google Scholar 

  • Bada, J. L., Cronin, J. R., Ho, M.-S., Kvenvolden, K. A., Lawless, J. G., Miller, S. L., Oró, J. and Steinberg, S. (1983) On the reported optical activity of amino acids in the Murchison meteorite, Nature 301, 494–497.

    Article  CAS  Google Scholar 

  • Basile, B. P., Middleditch, B. S. and Oró, J. (1984) Polycyclic aromatic hydrocarbons in the Murchison meteorite. Org. Geochem. 5, 211–216.

    Article  CAS  Google Scholar 

  • Becker, R. H. and Epstein, S. (1982) Carbon, hydrogen and nitrogen isotopes in solventextractable organic matter from carbonaceous chondrites. Geochim. Cosmochim. Acta 46, 97–103.

    Article  CAS  Google Scholar 

  • Beiging, J. H. (1990) Carbon chemistry of circumstellar envelopes, in J. C. Tarter,S. Chang, and D. J. DeFrees (eds.), Carbon in the Galaxy: studies from Earth and Space,NASA Conf. Publ. 3081, pp. 147–158.

    Google Scholar 

  • Belsky, T. and Kaplan, I. R. (1970) Light hydrocarbon gases, 13C, and origin of organic matter in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 257–278.

    Article  CAS  Google Scholar 

  • Bergmann, M. and Stern, F. (1930) Notiz über acetylierung von amino-säuren mittels ketens. Ber 63B, 437–439.

    CAS  Google Scholar 

  • Blake, D.F., Freund, F., Krishnan, K.F.M., Echer, C.J., Shipp, R., Bunch, T.E., Tielens, A.G., Lipari, R.J., Hetherington, C. J.D. and Chang, S. (1988) The nature and origin of interstellar diamond, Nature, 332, 611–613.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, R., Erten, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gomez, C.X. and Schutte, W. (1992) Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins of Life, 22, 287–307.

    Article  PubMed  CAS  Google Scholar 

  • Buhl, P. (1975) An Investigation of organic compounds in the Mighei meteorite. Ph.D. Thesis, Univ. of Maryland, College Park.

    Google Scholar 

  • Bunch, T. E. and Chang, S. (1980) Carbonaceous chondrites: II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmoshim. Acta 44, 1543–1577.

    Article  CAS  Google Scholar 

  • Butchard, I., McFadzean, A. D., Whittet, D. C. B., Geballe, T. R. and Greenberg, J. M. (1986) Three micron spectroscopy of the galactic center source IRS 7. Astron. Astrophys. Lett. 154, L5–L7.

    Google Scholar 

  • Cairns-Smith, A. G. (1982) Genetic takeover and the mineral origins of life, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Cameron, A. G. W. (1973) Interstellar grains in museums? in J. M. Greenberg and H. C. Van de Hulst (eds.), Interstellar dust and related topics, D. Reidel Publishing Co., Dordrecht, pp. 545–547.

    Chapter  Google Scholar 

  • Chang, S., Mack, R. and Lennon, K. (1978) Carbon chemistry of separated phases of Murchison and Allende meteorites. Lunar Planet. Sci. IX, 157–158.

    Google Scholar 

  • Chang, S., Des Marais, D., Mack, R., Miller, S.L. and Strathearn, G.E. (1983) Prebiotic organic synthesis and the origin of life, in Earth’s Earliest Biosphere (J.W. Schopf, ed.), Princeton University Press, pp. 53–92.

    Google Scholar 

  • Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C. (1990) Cometary delivery of organic molecules to the early earth. Science, 249, 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Chyba, C. F. and Sagan, C. (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Clark, B., Mason, L.W., and Kissel, J. (1987) Systematics of the “CHON” and other lightelement particle populations in Comet Halley. Astron. Astrophys. 187, 779–784.

    CAS  Google Scholar 

  • Clayton, R. N. (1978) Isotopic anomalies in the early solar system. Ann. Rev. Nucl. Part. Sci. 28, 501–522.

    Article  CAS  Google Scholar 

  • Cooper, G. W., Onwo, W. M. and Cronin, J. R. (1992) Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite, Geochim. Cosmochim. Acta 56, 4109–4115.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R. and Moore, C. B. (1971) Amino acid analyses of the Murchison, Murray, and Allende carbonaceous chondrites. Science 172, 1327–1329.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R. (1976) Acid-labile amino acid precursors in the Murchison meteorite. I. Chromatographic fractionation. Origins of Life 7, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R., Gandy, W. E. and Pizarello, S. (1981) Amino acids of the Murchison meteorite: I. Six carbon acyclic primary α-amino alkanoic acids. J. Molec. Evol. 17, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R. and Pizzarello, S. (1983) Amino acids in meteorites. Adv. Space Res. 3, 3–18.

    Article  Google Scholar 

  • Cronin, J. R., Pizarello, S. and Yuen, G. U. (1985) Amino acids of the Murchison meteorite: II. Five carbon acyclic primary ß-, γ-, and δ-amino alkanoic acids. Geochim. Cosmochim. Acta 49, 2259–2265.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R. and Pizzarello, S. (1986) Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary α-amino alkanoic acids. Geochim. Cosmochim. Acta 50, 2419–2427.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R., Pizzarello, S. and Frye, J. S. (1987) 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites. Geochim. Cosmochim. Acta 51, 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R., Pizzarello, S. and Cruikshank, D. P. (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets, in J. F. Kerridge and M. S. Matthews (eds.) Meteorites and the Early Solar System, Chap. 10.5, pp. 819–857, Univ. Arizona Press.

    Google Scholar 

  • Cronin, J. R. and Pizzarello, S. (1990) Aliphatic hydrocarbons of the Murchison meteorite. Geochim. Cosmochim. Acta 54, 2859–2868.

    Article  PubMed  CAS  Google Scholar 

  • Cronin, J. R., Pizzarello, S., Epstein, S. and Krishnamurthy, R. V. (1993) Molecular and isotopic analyses of the hydroxy acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • Deamer, D. W. (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 792–794.

    Article  CAS  Google Scholar 

  • Degens, E. T. and Bajor, M. (1962) Amino acids and sugars in the Brudesheim and Murray meteorites. Naturwiss. 49, 605–606.

    Article  CAS  Google Scholar 

  • Dufresne, E. R. and Anders, E. (1962) On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 26, 1085–1114.

    Article  CAS  Google Scholar 

  • Duley, W. W. and Williams, D. A. (1981) The infrared spectrum of interstellar dust: Surface functional groups on carbon. Mon. Not. R. Astron. Soc. 196, 269.

    CAS  Google Scholar 

  • Engel, M. H. and Nagy, B. (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296, 837–840.

    Article  CAS  Google Scholar 

  • Engel, M. H., Macko, S. A. and Silfer, J. A. (1990a) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348, 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Engel, S., Lunine, J.I. and Lewis, J.S. (1990b) Solar nebula origin for volatile gases in Halley’s Comet. Icarus 85, 380–393.

    Article  Google Scholar 

  • Epstein, S., Krishnamurthy, R. V., Cronin, J. R., Pizzarello, S. and Yuen, G. U. (1987) Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326, 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, J. P. and Hagen, W. J. (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 1093–1120.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, J. P. (1992) Chemical markers of prebioltic chemistry in hydrothermal systems. Origins of Life 22, 109–134.

    Article  PubMed  CAS  Google Scholar 

  • Fomenkova, M., Chang, S. and Mukhin, L. (1992) Classification of carbonaceous components in Comet Halley “CHON” particles. Lunar and Planet Sci. XXIII, 379–380.

    Google Scholar 

  • Fox, S. W. (1965) A theory of macromolecular and cellular origins. Nature 205, 328–340.

    Article  PubMed  CAS  Google Scholar 

  • Frenklach, M. and Feigelson, E. D. (1989) Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372–384.

    Article  CAS  Google Scholar 

  • Fuchs, L. H., Olsen, E. and Jensen, K. J. (1973) Mineralogy, crystal chemistry and composition of the Murchison (C2) meteorite. Smithsonian Contrib. Earth Sci. 10, 1–39.

    Article  Google Scholar 

  • Gaffey, M. J., Bell, J. F. and Cruikshank, D. P. (1989) Reflectance spectroscopy and asteroid surface mineralogy. in R. P. Binzel, T. Gehrels, and M. S. Mathews, (eds.), Asteroids II, Univ. Ariz. Press, Tucson, pp. 98–127.

    Google Scholar 

  • Geiss, J. and Reeves, H. (1981) Deuterium in the early solar system. Astron. Astrophys. 93, 189–199.

    CAS  Google Scholar 

  • Gibson, E. K., Moore, C. B. and Lewis, C. F. (1971) Total nitrogen and carbon abundances in carbonaceous chondrites. Geochim. Cosmochim. Acta 35, 599–604.

    Article  CAS  Google Scholar 

  • Gilmour, I. and Pillinger, C. (1992) Isotopic differences between PAH isomers in Murchison. Meteoritics 27, 224–225.

    Google Scholar 

  • Grady, M. M., Wright, I. P., Swart, P. K. and Pillinger, C. T. (1988) The carbon and oxygen isotopic composition of meteoritic carbonates. Geochim. Cosmochim. Acta 52, 2855–2866.

    Article  CAS  Google Scholar 

  • Greenberg, J. M. (1973) Chemical and physical properties of interstellar dust, in M. A. Gordon and L. E. Snyder (eds.), Molecules in the Galactic Environment, Wiley, N.Y., pp. 94–124.

    Google Scholar 

  • Greenberg, J.M. (1977) From dust to comets. in A. H. Delsemme (ed.) Comets, Asteroids, and Meteorites, The University of Toledo, pp. 491–497.

    Google Scholar 

  • Greenberg, J. M. and d’Hendecourt (1985) Evolution of ices from interstellar space to the solar system, in J. Klinger, D. Benest, A. Dollfus and R. Smouluchowski (eds.), Ices in the Solar System, Kluwer, Dordrecht, pp. 185–204.

    Chapter  Google Scholar 

  • Guélin, M., Cernicharo, J., Paubert, G. and Turner, B. E. (1990) Free CP in IRC+ 10216. Astron. Astrophys. 230, L9–L11.

    Google Scholar 

  • Hahn, J. H., Zenobi, R., Bada, J. L. and Zare, R. N. (1988) Application of two-step laser mass spectrometry to cosmogeochemistry: direct analysis of meteorites. Science 239, 1523–1525.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, P. B. (1965) Amino acids on hands. Nature 205, 284–285.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Simoneit, B. R., Burlingame, A. L. and Calvin, M. (1969) Organic analysis on the Pueblito de Allende meteorite. Nature 222, 364–365.

    Article  CAS  Google Scholar 

  • Hayatsu, R., Studier, M. H., Moore, L. P. and Anders, E. (1975) Purines and triazines in the Murchison meteorite. Geochim. Cosmochim. Acta 39, 471–488.

    Article  CAS  Google Scholar 

  • Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. and Anders, E. (1977) Origin of organic matter in the early solar system-VII. The organic polymer in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1325–1339.

    Article  CAS  Google Scholar 

  • Hayatsu, R., Winans, R. E., Scott, R. G., McBeth, R. L., Moore, L. P. and Studier, M. H. (1980) Phenolic ethers in the organic polymer of the Murchison meteorite. Science 207, 1202–1204.

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu, R and Anders, E. (1981) Organic compounds in meteorites and their origins. Topics Curr. Chem. 99, 1–37.

    Article  CAS  Google Scholar 

  • Hayatsu, R., Scott, R. G. and Winans, R. E., (1983) Comparative structural study of meteoritic polymer with terrestrial geopolymers coal and kerogen. Meteoritics 18, 310 (abstract).

    Google Scholar 

  • Hayes, J. M. (1967) Organic constituents of meteorites-A review. Geochim. Cosmochim. Acta 31, 1395–1440.

    Article  CAS  Google Scholar 

  • Herbst, E. (1985) On the formation and observation of complex interstellar molecules. Origins of Life 16, 3–19.

    Article  CAS  Google Scholar 

  • Hoefs, J. (1987) Stable Isotope Geochemistry, 3rd ed. Springer-Verlag.

    Google Scholar 

  • Hollis, J. M., Snyder, L. E., Suenram, R. D. and Lovas, F. J. (1980) Search for the lowestenergy conformer of interstellar glycine. Astrophys. J. 241, 1001–1006.

    Article  CAS  Google Scholar 

  • Injerd, W. G. and Kaplan, I. R. (1974) Nitrogen isotope distribution in meteorites. Meteoritics 9, 352–353.

    Google Scholar 

  • van Ijzendoorn, L. J., Allamandola, L. J., Baas, F., Körnig, S. and Greenberg, J. M. (1986) Laser-induced fluorescence and phosphorescence of matrix-isolated glyoxal: evidence for exciplex formation in the A1Au and a AU states. J. Chem. Phys. 85, 1812–1825.

    Article  Google Scholar 

  • Joyce, G.F. (1986) RNA evolution and the origins of life. Nature 338, 217–225.

    Article  Google Scholar 

  • Joyce, G. F. (1991) The rise and fall of the RNA world. New Biologist 3, 399–407.

    PubMed  CAS  Google Scholar 

  • Jungclaus, G., Cronin, J. R., Moore, C. B. and Yuen, G. U. (1979) Aliphatic amines in the Murchison meteorite. Nature 261, 126–128.

    Article  Google Scholar 

  • Jura, M. (1990) Astronomical observations of solid phase carbon, in J. C. Tarter, S. Chang, and D. J. DeFrees (eds.), Carbon in the Galaxy: studies from Earth and Space, NASA Conf. Publ. 3061, pp. 39–46.

    Google Scholar 

  • Kerridge, J. F., Mackay, A. L. and Boynton, W. V. (1979) Magnetite in CI carbonaceous meteorites: origin by aqueous activity on a planetesimal surface. Science 205, 395–397.

    Article  PubMed  CAS  Google Scholar 

  • Kerridge, J. F., Chang, S. and Shipp, R. (1987) Isotopic characterization of kerogen-like material in the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta 51, 2527–2540.

    Article  PubMed  CAS  Google Scholar 

  • Kerridge, J. F. and Mathews, M. S. (1988) Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson.

    Google Scholar 

  • Kerridge, J. F. (1991) A note on the prebiotic synthesis of organic acids in carbonaceous meteorites, Origins of Life 21, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Kimball, B. A. (1988) Determination of formic acid in chondritic meteorites. M. S. Thesis, Arizona State Univ., Tempe.

    Google Scholar 

  • Klein, H. P. (1992) The Viking biology experiments: epilogue and prologue. Origins of Life 21, 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Kolodny, Y., Kerridge, J. F. and Kaplan, I. R. (1980) Deuterium in carbonaceous chondrites. Earth Planet. Sci. Lett. 46, 149–158.

    Article  CAS  Google Scholar 

  • Kovalenko, L. J., Maechling, C. R., Clemett, S. J., Philippoz, J.-M. and Zare, R. N. (1992) Microscopic organic analysis using two-step laser mass spectrometery: application to meteoritic acid residues. Anal. Chem. 64, 682–690.

    Article  CAS  Google Scholar 

  • Krishnamurthy, R. V., Epstein, S., Cronin, J. R., Pizzarello, S. and Yuen, G. U. (1992) Isotopic and molecular analyses of hydrocarbons and monocarboxylic acids of the Murchison meteorite. Geochim. Cosmochim. Acta 56, 4045–4058.

    Article  CAS  Google Scholar 

  • Kroto, H. W. (1988) The chemistry of the interstellar medium. Phil. Trans. Roy. Soc. A 325, 405–421.

    Article  CAS  Google Scholar 

  • Krueger, F. R., Korth, A. and Kissel, J. (1991) The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses. Space Sci. Rev. 56, 167–175.

    Article  Google Scholar 

  • Kung, C.C. and Clayton, R.N. (1978) Nitrogen abundances and isotopic composition in stony meteorites. Earth Planet. Sci. Lett. 38, 421–435.

    Article  CAS  Google Scholar 

  • Kung, C.C, Hayatsu, R., Studier, M.H. and Clayton, R.N. (1979) Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction. Earth Planet. Sci. Lett. 46, 141–146.

    Article  CAS  Google Scholar 

  • Kvenvolden, K., Lawless, J., Pering, K., Peterson, E., Flores, J., Ponnamperuma, C, Kaplan, I. R. and Moore, C. (1970) Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature 228, 923–926.

    Article  PubMed  CAS  Google Scholar 

  • Kvenvolden, K., Lawless, J. G. and Ponnamperuma, C. (1971) Nonprotein amino acids in the Murchison meteorite. Proc. Natl. Acad. Sci. USA 68, 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Lancet, M. S. and Anders, E. (1970) Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170, 980–982.

    Article  PubMed  CAS  Google Scholar 

  • Lawless, J. G. (1973) Amino acids in the Murchison meteorite. Geochim. Cosmochim. Acta 37, 2207–2212.

    Article  CAS  Google Scholar 

  • Lawless, J. G., Zeitman, B., Pereira, W. E., Summons, R. E. and Duffield, A. M. (1974) Dicarboxylic acids in the Murchison meteorite. Nature 251, 40–41.

    Article  CAS  Google Scholar 

  • Lawless, J. G. and Yuen, G. U. (1979) Quantification of monocarboxylic acids in Murchison carbonaceous meteorite. Nature 282, 396–398.

    Article  CAS  Google Scholar 

  • Lerner, N.R., Peterson, E. and Chang, S. (1993) The Strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • Lewis, R. S., Tang, M., Wacker, J. F., Anders, E. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature 326, 160–162.

    Article  CAS  Google Scholar 

  • Lovering, J. F., LeMaitre, R. W. and Chappell, B. W. (1971) Murchison C2 carbonaceous chondrite and its inorganic composition. Nature 230, 18–20.

    CAS  Google Scholar 

  • Lumpkin, G. R. (1986) Electron microscopy of carbonaceous matter in Allende acid residues. Proc. Lunar Planet. Sci. Conf. 12B, 1153–1166.

    Google Scholar 

  • Lunine, J. I. (1989) The Urey prize lecture: Volatile processes in the outer solar system. Icarus 81, 1–13.

    Article  CAS  Google Scholar 

  • Maher, K. A. and Stevenson, D. J. (1988) Impact frustration of the origin of life. Nature 331, 612–614.

    Article  PubMed  CAS  Google Scholar 

  • Mason, B. (1963) The carbonaceous chondrites. Space Sci. Rev. 1, 621–646.

    Article  CAS  Google Scholar 

  • Meinschein, W. G. (1963) Hydrocarbons in terrestrial samples and the Orgueil meteorite. Space Sci. Rev. 2, 653–679.

    Article  CAS  Google Scholar 

  • Miknis, F. P., Lindner, A. W., Gannon, J., Davis, M. F. and Maciel, G. E. (1984) Solid state 13C NMR studies of selected oil shales from Queensland, Australia. Org. Geochem. 7, 239–248.

    Article  CAS  Google Scholar 

  • Millar, T. J., Bennett, A. and Herbst, E. (1989) Deuterium fractionation in dense interstellar clouds. Ap. J. 340, 906–920.

    Article  Google Scholar 

  • Miller, S. L. (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta 23, 480–489.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. L. and Van Trump, J. E. (1981) The Strecker synthesis in the primitive ocean. in Y. Wolman (ed.), Origin of Life, D. Reidel Publishing Co., Dordrecht, pp. 135–141.

    Chapter  Google Scholar 

  • Monod, J. (1971) Chance and necessity: an essay on the natural philosophy of modern biology, Knopf, New York.

    Google Scholar 

  • Morgan, W. A., Jr., Feigelson, E. D., Want, H. and Frenklach, M. (1991) A new mechanism for the formation of meteoritic kerogen-like material. Science 252, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Mullie, F. and Reisse, J. (1987) Organic matter in carbonaceous chondrites. Topics in Current Chemistry 139, 85–117.

    Article  Google Scholar 

  • Olson, R. J., Oró, J. and Zlatkis, A. (1967) Organic compounds in meteorites: II. Aromatic hydrocarbons. Geochim. Cosmochim. Acta 31, 1935–1948.

    Article  CAS  Google Scholar 

  • Orgel, L. E. (1986) RNA catalysis and the origins of life. J. theor. Biol. 123, 127–149.

    Article  PubMed  CAS  Google Scholar 

  • Oró, J. and Skewes, H. B. (1965) Free amino acids on human fingers: the question of contamination in microanalysis. Nature 207, 1042–1045.

    Article  PubMed  Google Scholar 

  • Oró, J., Gibert, J., Lichtenstein, H., Wikstrom, S. and Flory, D. A. (1971) Amino acids, aliphatic, and aromatic hydrocarbons in the Murchison meteorite. Nature 230, 105–106.

    Article  PubMed  Google Scholar 

  • Peltzer, E. T. and Bada, J. L. (1978) α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272, 443–444.

    Article  CAS  Google Scholar 

  • Peltzer, E. T., Bada, J. L., Schlesinger, G. and Miller, S. L. (1984) The chemical conditions on the parent body of the Murchison meteorite: Some conclusions based on amino, hydroxy, and dicarboxylic acids. Adv. Space Res. 4, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Pering, K. L. and Ponnamperuma, C. (1971) Aromatic hydrocarbons in the Murchison meteorite. Science 173, 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Pillinger, C. T. (1984) Light element stable isotopes in meteorites-From grams to picograms. Geochim. Cosmochim. Acta 48, 2739–2766.

    Article  CAS  Google Scholar 

  • Pizzarello, S., Krishnamurthy, R. V., Epstein, S. and Cronin, J. R. (1991) Isotopic analyses of amino acids from the Murchison meteorite. Geochim. Cosmochim. Acta 55, 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, G. E., Chang, C.-N., Cronin, S. E. and Kvenvolden, K. E. (1975) Stereoisomers of isovaline in the Murchison meteorite. Geochim. Cosmochim. Acta 39, 1571–1573.

    Article  CAS  Google Scholar 

  • Prinn, R.G. and Fegley, B., Jr. (1989) Solar nebula chemistry: origin of planetary, satellite, and cometary volatiles. in S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.) Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, pp. 78–136.

    Google Scholar 

  • Reynolds, J.H., Frick, U., Neil, J.M. and Phinney, D.L. (1978) Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 1775–1797.

    Article  CAS  Google Scholar 

  • Robert, F. and Epstein, S. (1982) The concentration and isotopic composition of hydrogen, carbon, and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95.

    Article  CAS  Google Scholar 

  • Rossignol-Strick, M. and Barghoorn, E. (1971) Extraterrestrial abiogenic organization of organic matter: The hollow spheres of the Orgueil meteorite. Space Life Sci. 3, 89–107.

    PubMed  CAS  Google Scholar 

  • Saito, S., Kawaguchi, K., Yamamoto, S., Ohishi, M., Suzuki, H. and Kaifu, N. (1987) Laboratory detection and astronomical identification of a new free radical, CCS (3∑-)• Astrophys. J. 317, L115–L119.

    Article  CAS  Google Scholar 

  • Schidlowski, M. (1988) A 3800-million year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Article  CAS  Google Scholar 

  • Schopf, J. W. and Packer, B. M. (1987) Early archaen (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona group, Australia. Science 237, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Shimoyama, A., Naroka, H., Komiya, M. and Harada, K. (1989) Analyses of carboxylic acids and hydrocarbons in Antarctic carbonaceous chondrites, Yamato-74662 and Yamato-793321, Geochem. J. 23, 181–193.

    Article  Google Scholar 

  • Shock, B. L. and Schulte, M. D. (1990) Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. W. and Kaplan, I. R. (1970) Endogenous carbon in carbonaceous meteorites. Science 167, 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. F. and Morowitz, H. J. (1982) Between history and physics. J. Molec. Evol. 18, 265–282.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, L. E. (1986) The search for biomolecules in space, in K. I. Kellerman and G. A. Seielstad (eds.), The Search for Extraterrestrial Intelligence, pp. 39–50.

    Google Scholar 

  • Stoks, P. G. and Schwartz, A. W. (1979) Uracil in carbonaceous meteorites. Nature 282, 709–710.

    Article  CAS  Google Scholar 

  • Stoks, P. G. and Schwartz, A. W. (1981a) Nitrogen-heterocyclic componds in meteorites: Significance and mechansim of formation. Geochim. Cosmochim. Acta 45, 563–569.

    Article  CAS  Google Scholar 

  • Stoks, P. G. and Schwartz, A. W. (1981b) Nitrogen componds in meteorites: A reassessment. in Y. Wolman (ed.), Proc. 6th Internati. Conf. on the Origin of Life, D. Reidel, Dordrecht, pp. 59–64.

    Google Scholar 

  • Stoks, P. G. and Schwartz, A. W. (1982) Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta 46, 309–315.

    Article  CAS  Google Scholar 

  • Strecker, A. (1850) Über die künstliche bildung der milchsauer und einem neuen dem glycocoll homologen körper. Ann. Chem. 75, 27.

    Article  Google Scholar 

  • Studier, M. H., Hayatsu, R. and Anders, E. (1972) Origin of organic matter in the early solar system-V. Further studies of meteoritic hydrocarbons and a discussion of their origin. Geochim. Cosmochim. Acta 36, 189–215.

    Article  CAS  Google Scholar 

  • Swart, P. K., Grady, M. M., Pillinger, C. T., Lewis, R. S. and Anders, E. Interstellar carbon in meteorites. Science 220, 406–410.

    Google Scholar 

  • Tang, M., Anders, E., Hoppe, P. and Zinner, E. (1989) Nature 339, 351–354.

    Article  Google Scholar 

  • Tielens, A. G. G. M. (1983) Surface chemistry of deuterated molecules. Astron. Astrophys. 119, 177–184.

    CAS  Google Scholar 

  • Tingle, T. N., Becker, C. H. and Malhotra, R. (1991) Organic compounds in the Murchison and Allende carbonaceous chondrites studied by photoionization mass spectrometry. Meteoritics 26, 117–127.

    CAS  Google Scholar 

  • Turner, B. E. (1980) On the identification of MM-wavelength U-lines, in B. H. Andrew (ed.), Interstellar Molecules, D. Reidel, Dordrecht, pp. 45–46.

    Chapter  Google Scholar 

  • Turner, B. E. (1989) Recent progress in astrochemistry. Space Sci. Rev. 51, 235–337.

    Article  Google Scholar 

  • Van der Velden, W. and Schwartz, A. W. (1977) Search for purines and pyrimidines in the Murchison meteorite. Geochim. Cosmochim. Acta 41, 961–968.

    Article  Google Scholar 

  • Vdovykin, G. P. (1967) Carbonaceous Matter in Meteorites (Organic Compounds, Diamonds, Graphite) (Moscow: Nauka Press). In Russian. Trans. NASA-TT-F-582.

    Google Scholar 

  • de Vries, M.S., Reihs, K., Wendt, H.R., Golden, W.G., Hunziker, H.E., Fleming, R., Peterson, E. and Chang, S. (1993) Search for C60 in the Murchison meteorite. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • Wasson, J. T. (1974) Meteorites, Classification and Properties. Springer-Verlag.

    Google Scholar 

  • Watson, W. D. (1976) Interstellar molecule reactions. Rev. Mod. Phys. 48, 513–552.

    Article  CAS  Google Scholar 

  • Willner, S. R., Russell, R. W., Puetter, R. C., Soifer, B. T. and Harvey, P. M. (1979) The 4–8µ spectrum of the galactic center. Astrophys. J. Lett. 229, L65–L68.

    Article  Google Scholar 

  • Wilson, R. W., Solomon, P. M., Penzias, A. A. and Jefferts, K. B. (1971) Millimeter observations of CO, CN, and CS emission from IRC+ 10216. Astrophys. J. 169, L35–L37.

    Article  CAS  Google Scholar 

  • Wing, M. R. and Bada, J. L. (1991) Geochromatography on the parent body of the carbonaceous chondrite Ivuna. Geochim. Cosmochim. Acta 55, 2937–2942.

    Article  CAS  Google Scholar 

  • Woese, C. R. (1987) Bacterial Evolution. Microbiol. Rev. 51, 221–271.

    CAS  Google Scholar 

  • Wolman, Y., Haverland, W. J. and Miller, S. L. (1972) Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 69, 809–811.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. A. and Chang, S. Eds. (1985) The Cosmic History of the Biogenic Elements and Compounds. NASA-SP-476, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Wood, J.A. and Morfill, G.E. (1988) Solar nebula models. in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, University of Arizona Press, pp. 329–347.

    Google Scholar 

  • Yamamoto, S., Saito, S., Kawaguchi, K., Kaifu, K., Suzuki, H. and Ohishi, M. (1987) Laboratory detection of a new carbon-chain molecule C3S and its astronomical identification. Astrophys. J. 317, L119–L121.

    Article  CAS  Google Scholar 

  • Yang, J. and Epstein, S. (1983) Interstellar organic matter in meteorites. Geochim. Cosmochim. Acta 47, 2199–2216.

    Article  CAS  Google Scholar 

  • Yang, J. and Epstein, S. (1984) Relic interstellar grains in Murchison meteorite, Nature 311, 544–547.

    Article  CAS  Google Scholar 

  • Yang, J. and Epstein (1985) A search for presolar organic matter in meteorites. Geophys. Res. Lett. 12, 73–76.

    Article  CAS  Google Scholar 

  • Yuen, G. and Kvenvolden, K. A. (1973) Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246, 301–302.

    Article  CAS  Google Scholar 

  • Yuen, G., Blair, N., Des Marais, D. J. and Chang, S. (1984) Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–254.

    Article  PubMed  CAS  Google Scholar 

  • Yuen, G. U., Pecore, J. A., Kerridge, J. F., Pinnavaia, T. J., Rightor, E. G., Flores, J., Wedeking, K. M. Mariner, R., Des Marais, D. J. and Change, S. (1991) Carbon isotopic fractionation in Fischer-Tropsch type reactions. Lunar Planet. Sci. 21, 1367–1368.

    Google Scholar 

  • Zeitman, B., Chang, S. and Lawless, J. G. (1974) Dicarboxylic acids from electrical discharge. Nature 251, 42–43.

    Article  CAS  Google Scholar 

  • Zenobi, R., Philippoz, J.-M., Buseck, P. R. and Zare, R. N. (1989) Spatially resolved organic analysis of the Allende meteorite. Science 246, 1026–1029.

    Article  PubMed  CAS  Google Scholar 

  • Zinner, E. (1988) Interstellar cloud material in meteorites. in J. F. Kerridge and M. S. Mathews (eds.) Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, pp. 956–983.

    Google Scholar 

  • Zolensky, M. and McSween, H. Y. (1988) Aqueous alteration. in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, pp. 114–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cronin, J.R., Chang, S. (1993). Organic Matter in Meteorites: Molecular and Isotopic Analyses of the Murchison Meteorite. In: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (eds) The Chemistry of Life’s Origins. NATO ASI Series, vol 416. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1936-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1936-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4856-9

  • Online ISBN: 978-94-011-1936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics