Skip to main content

Early Evolution of the Atmosphere and Ocean

  • Chapter
The Chemistry of Life’s Origins

Part of the book series: NATO ASI Series ((ASIC,volume 416))

Abstract

The early evolution of the atmosphere and oceans is discussed with particular emphasis on factors relevant to the origin of life. Both the atmosphere and ocean formed early as a consequence of impact degassing of planetesimals during accretion. The post-accretionary atmosphere was probably denser than the present atmosphere and was dominated by carbon compounds, principally CO2 and CO. The greenhouse effect of this atmosphere could have kept the early Earth significantly warmer than today despite reduced solar luminosity at that time. The atmosphere is believed to have been weakly reducing; that is, it contained tens to hundreds of parts per million of H2 and very little free O2. Highly reduced gases such as methane and ammonia are generally considered to have been present in only minute quantities. However, several different lines of evidence, including Mars’ climate history, theoretical factors affecting hydrogen escape, and new evidence bearing on the early mantle redox state, all indicate that reduced gases may have been more plentiful than is usually assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benz, W., Slattery, W.L., Cameron, A.G. W. (1986) ‘The origin of the Moon and the single impact hypothesis’, Icarus 66, 515–535.

    Article  Google Scholar 

  • Berkner, L.V., Marshall, L.C. (1965) ‘On the origin and rise of oxygen concentration in the Earth’s atmosphere’, J. Atmos. Sci. 22, 225–261.

    Article  CAS  Google Scholar 

  • Boothroyd, A.I., Sackmann, I.-J., Fowler, W.A. (1991) ‘Our Sun II. Early mass loss of 0.1 Mo and the case of the missing lithium’, Ap. J. 377, 318–329.

    Article  CAS  Google Scholar 

  • Borowska, Z., Mauzerall, D. (1988) ‘Photoreduction of carbon dioxide by aqueous ferrous iron: An alternative to the strongly reducing atmosphere for the chemical origin of life’, Proc. Natl. Acad. Sci. 85, 6577–6580.

    Article  PubMed  CAS  Google Scholar 

  • Braterman, P.S., Cairns-Smith, A.G., Sloper, R.W. (1983) ‘Photooxidation of hydrated Fe+2 -significance for banded iron formations’, Nature 303, 163–164.

    Article  CAS  Google Scholar 

  • Brinkman, R.T. (1969) ‘Dissociation of water vapor and evolution of oxygen in the terrestrial atmosphere’, J. Geophys. Res. 74, 5355–5368.

    Article  Google Scholar 

  • Canuto, V.M., Levine, J., Augustsson, T., Imhoff, C. (1982)‘UV radiation from the young Sun and oxygen levels in the pre-biological paleoatmosphere’, Nature 296, 816–820.

    Article  CAS  Google Scholar 

  • Chamberlain, J. W., Hunten, D. M. (1987) Theory of Planetary Atmospheres, Academic Press, Orlando, 481 pp.

    Google Scholar 

  • Chameides, W.L., Walker, J.C. G. (1981) ‘Rates of fixation by lightning of carbon and nitrogen in possible primitive terrestrial atmospheres’, Origins of Life 11, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Chyba, C.F. (1987) ‘The cometary contribution to the oceans of primitive Earth’, Nature 330, 632–635.

    Article  Google Scholar 

  • Dreibus, G., Wanke, H. (1989) ‘Supply and loss of volatile constituents during the accretion of terrestrial planets’, in S.K. Atreya, J.B. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, pp. 268–288, University of Arizona Press, Tucson.

    Google Scholar 

  • Eggler, D., Kasting, J.F. ‘Diamond sulfides and redox of Archean mantle’, manuscript in preparation.

    Google Scholar 

  • Frakes, L. A. (1979) Climates Throughout Geologic Time, Elsevier, New York, 310 pp.

    Google Scholar 

  • Francois, L.M., Walker, J.C. G. (1992) ‘Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater’, manuscript in preparation.

    Google Scholar 

  • Gilliland, R.L. (1989) ‘Solar evolution’, Global Planet. Change 1, 35–55.

    Article  Google Scholar 

  • Gough, D.O. (1981) ‘Solar interior structure and luminosity variations’, Solar Phys. 74, 21–34.

    Article  CAS  Google Scholar 

  • Graedel, T.E., Sackmann, I.-J., Boothroyd, A.I. (1991) ‘Early solar mass loss: A potential solution to the weak sun paradox’, Geophys. Res. Lett. 18, 1881–1884.

    Article  CAS  Google Scholar 

  • Holland, H. D. (1984) The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, 582 pp.

    Google Scholar 

  • Holland, H. D. (1978) The Chemistry of the Atmosphere and Oceans, Wiley, New York, 351 pp.

    Google Scholar 

  • Holland, H.D. (1962) ‘Model for the evolution of the Earth’s atmosphere’, In A.E.J. Engel, H.L. James, B.F. Leonard, Petrologic Studies: A Volume to Honor A.F. Buddington 447–477, Geol. Soc. Am., New York.

    Google Scholar 

  • Hunten, D.M. (1973) ‘The escape of light gases from planetary atmospheres’, J. Atmos. Sci. 30, 1481–1494.

    Article  CAS  Google Scholar 

  • Karhu, J., Epstein, S. (1986) ‘The implication of the oxygen isotope records in coexisting cherts and phosphates’, Geochim. Cosmochim. Acta 50, 1745–1756.

    Article  CAS  Google Scholar 

  • Kasting, J.F. (1987) ‘Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere’, Precambrian Res. 34, 205–229.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F. (1989) ‘Long-term stability of the Earth’s climate’, Palaeogeogr., Palaeoclimat., Palaeoecol. 75, 83–95.

    Article  CAS  Google Scholar 

  • Kasting, J.F. (1990) ‘Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere’, Origins of Life 20, 199–231.

    Article  CAS  Google Scholar 

  • Kasting, J.F. (1991) ‘CO2 condensation and the climate of early Mars’, Icarus 94, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F., Ackerman, T.P. (1986) ‘Climatic consequences of very high CO2 levels in the earth’s early atmosphere’, Science 234, 1383–1385.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F., Grinspoon, D.H. (1991) ‘The faint young sun problem’, in C.P. Sonett, M.S. Giampapa, M.S. Matthews (eds.), The Sun in Time, pp. 447–462, University of Arizona Press, Tucson.

    Google Scholar 

  • Kasting, J.F., Holm, N.G. (1992) ‘What determines the volume of the oceans?’, Earth Planet. Sci. Lett., in press.

    Google Scholar 

  • Kasting, J.F., Zahnle, K.J., Walker, J.C. G. (1983) ‘Photochemistry of methane in the Earth’s early atmosphere’, Precambrian Res. 20, 121–148.

    Article  CAS  Google Scholar 

  • Kasting, J.F., Zahnle, K.J., Pinto, J.P., Young, A.T. (1989) ‘Sulfur, ultraviolet radiation, and the early evolution of life’, Origins of Life 19, 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Knauth, L.P., Epstein, S. (197 6) ‘Hydrogen and oxygen isotope ratios in nodular and bedded cherts’, Geochim. Cosmochim. Acta 40, 1095–1108.

    Article  CAS  Google Scholar 

  • Kuhn, W.R., Atreya, S.K. (1979) ‘Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth’, Icarus 37, 207–213.

    Article  CAS  Google Scholar 

  • Kumar, S., Hunten, D.M., Pollack, J.B. (1983) ‘Nonthermal escape of hydrogen and deuterium from Venus and implica tions for loss of water’, Icarus 55, 369–389.

    Article  CAS  Google Scholar 

  • Lange, M.A., Ahrens, T.J. (1982) ‘The evolution of an impact generated atmosphere’, Icarus 51, 96–120.

    Article  CAS  Google Scholar 

  • Levine, J.S. (1982) ‘The photochemistry of the paleoatmosphere’, J. Molec. Evol. 18, 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. S., Prinn, R. G. (1984) Planets and Their Atmospheres: Origin and Evolution, Academic Press, Orlando, Florida, 470 pp.

    Google Scholar 

  • Matsui, T., Abe, Y. (1986) ‘Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth’, Nature 319, 303–305.

    Article  CAS  Google Scholar 

  • McGovern, P.J., Schubert, G. (1989) ‘Thermal evolution of the Earth: effects of volatile exchange between the atmosphere and interior’, Earth Planet. Sci. Lett. 96, 27–37.

    Article  CAS  Google Scholar 

  • Meade, C., Jeanloz, R. (1991) ‘Deep-focus earthquakes and recycling of water into the Earth’s mantle’, Science 252, 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, V.R. (1991) ‘Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach’, Science 253, 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M.J., Rood, R.T. (1977) ‘Implications of solar evolution for the earth’s early atmosphere’, Science 198, 1035–1037.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, J.P., Gladstone, C.R., Yung, Y.L. (1980) ‘Photochemical production of formaldehyde in the earth’s primitive atmosphere’, Science 210, 183–185.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, J.B., Kasting, J.F., Richardson, S.M., Poliakoff, K. (1987) ‘The case for a wet, warm climate on early Mars’, Icarus 71, 203–224.

    Article  PubMed  CAS  Google Scholar 

  • Ringwood, A.E. (1990) ‘Earliest history of the Earth-Moon system’, in H.E. Newsom, J.H. Jones (eds.), Origin of the Earth, pp. 101–134, Oxford University Press, New York.

    Google Scholar 

  • Sagan, C., Mullen G. (1972) ‘Earth and Mars: Evolution of atmospheres and surface temperatures’, Science 177, 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W., Packer, B.M. (1987) ‘Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia’, Science 237, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, G., Turcotte, D.L., Solomon, S.C., Sleep, N.H. (1989) .‘Coupled evolution of the atmospheres and inte riors of planets and satellites’, In S.K. Atreya, J.B. Pollack, M.S. Matthews, (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, pp. 450–483, University of Arizona Press, Tucson, Arizona.

    Google Scholar 

  • Staudigal, H., Hart, S.R., Schmincke, H.U., Smith, B.M. (1989) ‘Cretaceous ocean crust at DSDP site 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing’, Geochim. Cosmochim. Acta. 53, 3091–3094.

    Article  Google Scholar 

  • Stevenson, D.J. (1983) ‘The nature of the Earth prior to the oldest known rock record: the Hadean Earth’, In J.W. Schopf, Earth’s Earliest Biosphere: Its Origin and Evolution, pp. 32–40, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Stribling, R., Miller, S.L. (1987) ‘Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean’, Origins of Life 17, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Towe, K.M. (1990) ‘Aerobic respiration in the Archaean?’, Nature 348, 54–56.

    Article  PubMed  CAS  Google Scholar 

  • Towe, K.M. (1981) ‘Environmental conditions surrounding the origin and early Archean evolution of life: a hypothesis’, Precambrian Res. 16, 1–10.

    Article  Google Scholar 

  • Towe, K.M. (1983) ‘Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model’, Precambrian Res. 20, 161–170.

    Article  CAS  Google Scholar 

  • Urey, H.C. (1952) The Planets: Their Origin and Development, Yale University Press, New Haven, Conn., 245 pp.

    Google Scholar 

  • Walker, J.C.G. (1985) ‘Carbon dioxide on the early Earth’/ Origins of Life 16, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.C.G. (1977) Evolution of the Atmosphere, Macmillan, New York.

    Google Scholar 

  • Weissman, P.R. (1985) ‘Dynamical evolution of the Oort cloud’, in A. Carusi, G.B. Valsecchi (eds.), Dynamics of Comets: Their Origin and Evolution, pp. 87–96, D. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Wetherill, G.W. (1991) ‘Occurrence of Earth-like bodies in planetary systems’, Science 253, 535–538.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelms, D.E. (1984) in M.H. Carr (ed.), The Geology of the Terrestrial Planets 107–205, NASA SP-469.

    Google Scholar 

  • Willson, L.A., Bowen, G.H., Struck-Marcell, C. (1987) ‘Mass loss on the main sequence’, Comments Astrophys. 12, 17–34.

    CAS  Google Scholar 

  • Zahnle, K.J. (1986) ‘Photochemistry of methane and the forma tion of hydrocyanic acid (HCN) in the Earth’s early atmosphere’, J. Geophys. Res. 91, 2819–2834.

    Article  CAS  Google Scholar 

  • Zahnle, K.J., Kasting, J.F., Pollack, J.B. (1988) ‘Evolution of a steam atmosphere during Earth’s accretion’, Icarus 74, 62–97.

    Article  PubMed  CAS  Google Scholar 

  • Zahnle, K.J., Walker, J.C. G. (1982) ‘The evolution of solar ultraviolet luminosity’, Rev. Geophys. Space Phys. 20, 280–292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kasting, J.F. (1993). Early Evolution of the Atmosphere and Ocean. In: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (eds) The Chemistry of Life’s Origins. NATO ASI Series, vol 416. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1936-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1936-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4856-9

  • Online ISBN: 978-94-011-1936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics