Skip to main content

The Beginnings of Life on Earth: Evidence from the Geological Record

  • Chapter
The Chemistry of Life’s Origins

Part of the book series: NATO ASI Series ((ASIC,volume 416))

Abstract

With the currently available geological record at hand, there is no doubt that microbial (prokaryotic) ecosystems have been prolific on the Archaean Earth since 3.5, if not 3.8 Gyr ago. While the information encoded in the oldest record (>3.5 Gyr) is blurred by a metamorphic overprint, the paleontological and biogeochemical evidence pertinent to the existence of life at times < 3.5 Gyr is so firmly established as to be virtually unassailable. In spite of the marked impairment of the oldest sedimentary record, the residual evidence preserved is more than adequate to build a cogent case for the initiation of life processes as early as 3.8 Gyr ago, with the concomitant establishment of a biogeochemical carbon cycle based on the operation of (photo)autotrophic carbon fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaart, J.H. (1976) ‘The pre-3760 Myr old supracrustal rocks of the Isua area, central West Greenland, and the associated occurrence of quartz-banded ironstone’, in B.F. Windley (ed.), The Early History of the Earth, Wiley, London, pp. 177–189.

    Google Scholar 

  • Arneth, J.D., Schidlowski, M., Sarbas, B., Goerg, U. and Amstutz, G.C. (1985) ‘Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya’, Geochim. Cosmochim. Acta 49, 1553–1560.

    Article  CAS  Google Scholar 

  • Awramik, S.M. (1982) ‘The pre-Phanerozoic fossil record’, in H.D. Holland and M. Schidlowski (eds.), Mineral Deposits and the Evolution of the Biosphere, Springer, Berlin, pp. 67–81.

    Chapter  Google Scholar 

  • Awramik, S.M., Schopf, J.W. and Walter, M.R. (1983) ‘Filamentous fossil bacteria from the Archaean of Western Australia’, in B. Nagy, R. Weber, J.C. Guerrero and M. Schidlowski (eds.), Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere (Developments in Precambrian Geology 7), Elsevier, Amsterdam, pp. 249–266.

    Google Scholar 

  • Baker, A.J. and Fallick, A.E. (1989) ‘Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water’, Nature 337, 352–354.

    Article  CAS  Google Scholar 

  • Barghoorn, E.S. and Tyler, S.A. (1965) ‘Microorganisms from the Guntflint chert’, Science 147, 563–577.

    Article  PubMed  CAS  Google Scholar 

  • Bottinga, Y. (1969) ‘Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite — carbon dioxide — graphite — methane — hydrogen — water vapor’, Geochim. Cosmochim. Acta 33, 49–64.

    Article  CAS  Google Scholar 

  • Bridgwater,D.,Allaart,J.H.,Schopf,J.W.,Klein,C.,Walter,M.R., Barghoorn, E.S., Strother, P., Knoll, A.H. and Gorman, B.E. (1981) ‘Microfossil-like objects from the Archaean of Greenland:A cautionary note’, Nature 289, 51–53.

    Article  Google Scholar 

  • Buick, R. (1984) ‘Carbonaceous filaments from North Pole, Western Australia: Are they fossil bacteria in Archaean stromatolites?’, Precambrian Res. 24, 157–172.

    Article  Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987) ‘Microbialites:Organosedimentary deposits of benthic microbial communities’, Palaios 2, 241–254.

    Article  Google Scholar 

  • Byerly, G.R., Lowe, D.R. and Walsh, M.M. (1986) ‘Stromatolites from the 3.300-3.500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa’, Nature 319, 489–491.

    Article  CAS  Google Scholar 

  • Cloud, P.E. (1965) ‘Significance of the Guntflint (Precambrian) microflora’, Science 148, 27–45.

    Article  PubMed  Google Scholar 

  • Cloud, P.E. (1976) ‘Beginnings of biospheric evolution and their biogeochem-ical consequences’, Paleobiology 2, 351–387.

    CAS  Google Scholar 

  • Cohen,Y., Aizenshtat,Z., Stoler,A. and Jorgensen,B.B.(1980)‘The microbial geochemistryofSolarLake,Sinai’,in J.B.Ralph,P.A. Trudinger and M.R. Walter (eds.), Biogeochemistry of Ancient and Modern Environments, Springer, Berlin, pp. 167–172.

    Chapter  Google Scholar 

  • Corliss, J.B., Baross, J.A. and Hoffman, S.E. (1981) ‘ A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth’, Oceanol. Acta 4 (Suppl.), 59–69.

    Google Scholar 

  • Craig, H. (1953) ‘The geochemistry of stable carbon isotopes’, Geochim. Cosmochim. Acta 3, 53–92.

    CAS  Google Scholar 

  • Deines, P. (1980) ‘The isotopic composition of reduced organic carbon’, in P. Fritz and J.C. Fontes (eds.), Handbook of Environmental Isotope Geochemistry 1, Elsevier, Amsterdam, pp. 329–406.

    Google Scholar 

  • Dunlop, J.S.R., Muir, M.D., Milne, V.A. and Groves, D.I. (1978) ‘A new microfossil assemblage from the Archaean of Western Australia’, Nature 274, 676–678.

    Article  Google Scholar 

  • Durand, B. (ed.)(1980) Kerogen-Insoluble Organic Matter from Sedimentary Rocks, Editions Technip, Paris, 519 pp.

    Google Scholar 

  • Eichmann, R. and Schidlowski, M. (1975) ‘Isotopic fractionation between coexisting organic carbon-carbonate pairs in Precambrian sediments’, Geochim. Cosmochim. Acta 39, 585–595.

    Article  CAS  Google Scholar 

  • Garrels, R.M. and Mackenzie, F.T. (1971) Evolution of Sedimentary Rocks, Norton, New York, 397 pp.

    Google Scholar 

  • Glaessner, M.F. (1983) ‘The emergence of Metazoa in the early history of life’,in B.Nagy,R. Weber,J.C.Guerrero and M.Schidlowski (eds.), Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere (Developments in Precambrian Geology 7), Elsevier, Amsterdam, pp. 319–333.

    Google Scholar 

  • Glaessner, M. (1984) The Dawn of Animal Life, Cambridge University Press, Cambridge, XI + 244 pp.

    Google Scholar 

  • Greenberg, J.M. (1984) ‘The structure and evolution of interstellar grains’, Scient. Am. 250, 124–135.

    Article  CAS  Google Scholar 

  • Greenberg, J.M., Zhao, N. and Hage,J. (1989) ‘Chemical evolution of interstellar dust, comets and the origins of life’, Ann. Phys. Pr. 14, 103– 133.

    Article  CAS  Google Scholar 

  • Hayes, J.M., Kaplan, I.R. and Wedeking, K.W. (1983) ‘Precambrian organic geochemistry: Preservation of the record’, in J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., pp. 93–134.

    Google Scholar 

  • Hoering, T.C. and Navale, V. (1987) ‘A search for molecular fossils in the kerogen of Precambrian sedimentary rocks’, Precambrian Res. 34, 247–267.

    Article  CAS  Google Scholar 

  • Hofmann, H.J. (1973) ‘Stromatolites:Characteristics and utility’, Earth Science Rev. 9, 339–373.

    Article  Google Scholar 

  • Irvine, W.M. and Knacke, R.F. (1989) ‘The chemistry of interstellar gas and grains’, in S.K. Atreya, J.B. Pollack and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, pp. 3–34.

    Google Scholar 

  • Junge, C.E., Schidlowski, M., Eichmann, R. and Pietrek, H. (1975) ‘Model calculations for the terrestrial carbon cycle: Carbon isotope geochemistry and evolution of photosynthetic oxygen’, J. Geophys. Res. 80, 4542–4552.

    Article  CAS  Google Scholar 

  • Kazmierczak, J. (1979) ‘The eukaryotic nature of Eosphaera-like ferriferous structures from the Precambrian Gunflint Iron Formation, Canada:A comparative study’, Precambrian Res. 9, 1–22.

    Article  Google Scholar 

  • Kissel, J. and Krueger, F.R. (1987) ‘The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1’, Nature 326, 755–760.

    Article  CAS  Google Scholar 

  • Knoll, A.H. and Barghoorn, E.S. (1977) ‘Archean microfossils showing cell division from the Swaziland System of South Africa’, Science 198, 396–398.

    Article  PubMed  CAS  Google Scholar 

  • Kreulen, R. and Van Beek, P.C.J.M. (1983) ‘The calcite-graphite isotope thermometer;data on graphite bearing marbles from Naxos,Greece’, Geochim. Cosmochim. Acta 47, 1527–1530.

    Article  CAS  Google Scholar 

  • Krumbein,W.E. and Cohen,Y.(1977)‘Primary production,mat for mation and lithification changes of oxygenic and facultative anoxygenie cyanophytes (cyanobacteria)’, in E. Flügel (ed.), Fossil Algae, Springer, Berlin, pp. 37–56.

    Chapter  Google Scholar 

  • Lowe, D.R. (1980) ‘Stromatolites 3.400-Myr old from the Archean of Western Australia’, Nature 284, 441–443.

    Article  Google Scholar 

  • MacGregor,A.M.(1940)‘APrecambrianalgallimestoneinSouthern Rhodesia’, Trans. Geol. Soc. S. Afr. 43, 9–15.

    Google Scholar 

  • Mason, T.R. and von Brunn, V. (1977) ‘3-Gyr-old stromatolites from South Africa’, Nature 266, 47–49.

    Article  Google Scholar 

  • McKirdy, D.M. and Imbus, S.W. (1992) ‘Precambrian petroleum: A decade of changing perceptions’, in M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources, Springer, Berlin, pp. 176–192.

    Google Scholar 

  • Miller, S.L. (1955) ‘Production of some organic compounds under possible primitive Earth conditions’, J. Am. Chem. Soc. 77, 2351–2361.

    Article  CAS  Google Scholar 

  • Miller, S.L. Urey, H.C. and Oró, J. (1976) ‘Origin of organic compounds on the primitive Earth and in meteorites’, J. Mol. Evol. 9, 59–72.

    Article  PubMed  CAS  Google Scholar 

  • Monty, C. (1984) ‘Stromatolites in Earth history’, Terra cognita 4, 423–430.

    Google Scholar 

  • Moorbath, S., O’Nions, R.K. and Pankhurst, R.J. (1973) ‘Early Archaean age for the Isua iron-formation, West Greenland’, Nature 245, 138–139

    Article  CAS  Google Scholar 

  • Muir, M.D. and Grant, P.R. (1976) ‘Micropaleontological evidence from the Onverwacht Group, South Africa’, in B.F. Windley (ed.), The Early History of the Earth, Wiley, London, pp. 595–604.

    Google Scholar 

  • Murphey, B.F. and Nier, A.O. (1941) ‘Variations in the relative abundance of the carbon isotopes’, Phys. Rev. 59, 771–772.

    Article  CAS  Google Scholar 

  • Nier, A.O. and Gulbransen, E.A. (1939) ‘Variations in the relative abundance of the carbon isotopes’, J. Am. Chem. Soc. 61, 697–698.

    Article  CAS  Google Scholar 

  • O’Leary, M.H. (1981) ‘Carbon isotope fractionation in plants’, Phytochem-istry 20, 553–567.

    Article  Google Scholar 

  • Oró, J., Miller, S.L. and Lazcano, A. (1990) ‘The origin and early evolution of life on Earth’, Ann. Rev. Earth Planet. Sci. 18, 317–356.

    Article  Google Scholar 

  • Orpen, J.L. and Wilson, J.F. (1981) ‘Stromatolites at ~3.500 Myr and a greenstone-granite unconformity in the Zimbabwean Archaean’, Nature 291, 218–220.

    Article  Google Scholar 

  • Park, R. and Epstein,S.(1960)‘Carbon isotope fractionation during photosynthesis’, Geochim. Cosmochim. Acta 21, 110–126.

    Article  CAS  Google Scholar 

  • Pflug, H.D. (1978) ‘Yeast-like microfossils detected in the oldest sediments of the Earth’, Naturwissenschaften 65, 611–615.

    Article  Google Scholar 

  • Pflug, H.D. (1987) ‘Chemical fossils in early minerals’, Topics in Current Chemistry 139, 1–55.

    Article  CAS  Google Scholar 

  • Pflug, H.D. and Jaeschke-Boyer, H. (1979) ‘Combined structural and chemical analysis of 3.800-Myr-old microfossils’, Nature 280, 483–486.

    Article  CAS  Google Scholar 

  • Pflug, H.D. and Reitz, E. (1985) ‘Earliest phytoplankton of eukaryotic affinity’, Naturwissenschaften 72, 656–657.

    Article  Google Scholar 

  • Pflug, H.D. and Reitz, E. (1992) ‘Palynostratigraphy in Phanerozoic and Precambrian metamorphic rocks’, in M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (eds.),Early Organic Evolution:Implications for Mineral and Energy Resources, Springer, Berlin, pp. 508–518.

    Google Scholar 

  • Rankama, K. (1948) ‘New evidence of the origin of Pre-Cambrian carbon’, Geol. Soc. Amer. Bull. 59, 389–416.

    Article  CAS  Google Scholar 

  • Robbins, E.I. (1987)Appelella ferrifera, a possible new iron-coated microfossil in the Isua iron-formation, southwestern Greenland’, in P.W.U. Appel andG.L.LaBerge(eds.),Precambrian Iron-Formations,Theophrastus Publications, Athens, pp. 141–154.

    Google Scholar 

  • Roedder, E. (1981) ‘Are the 3.800-Myr-old Isua objects microfossils, limonite-stained fluid inclusions, or neither?’, Nature 293, 459–462.

    Article  Google Scholar 

  • Ronov, A.B. (1958) ‘Organic carbon in sedimentary rocks (in relation to the presence of petroleum)’, Geochemistry 1958, 510–536.

    Google Scholar 

  • Ronov, A.B. (1980) ‘Osadochnaya Obolochka Zemli (Earth’s Sedimentary Shell). 20th Vernadsky Lecture’, Izdatel’stvo Nauka, Moscow, 97 pp. (in Russian).

    Google Scholar 

  • Schidlowski, M. (1978) ‘Evolution of the Earth’s atmosphere: Current state and exploratory concepts’, in H. Noda (ed,), Origin of Life, Center Acad. Publ. Japan, Tokyo, pp. 3–20.

    Google Scholar 

  • Schidlowski, M. (1982) ‘Content and isotopic composition of reduced carbon in sediments’, in H.D. Holland and M. Schidlowski (eds.), Mineral Deposits and the Evolution of the Biosphere, Springer, Berlin, pp. 103–122.

    Chapter  Google Scholar 

  • Schidlowski,M.(1987)‘Application of stable carbon isotopes to early biochemical evolution on Earth’, Ann. Rev. Earth Planet. Sci. 15, 47–72.

    Article  CAS  Google Scholar 

  • Schidlowski, M. (1988) ‘A 3.800-million-year isotopic record of life from carbon in sedimentary rocks’, Nature 333, 313–318.

    Article  CAS  Google Scholar 

  • Schidlowski, M. (1990) ‘Life on the early Earth: Bridgehead from Cosmos or autochthonous phenomenon?’, in K. Goplalan, V.K. Gaur, B.L.K. Somayajulu and J.D. MacDougall (eds.), From Mantle to Meteorites (Festschrift for Devendra Lal), Indian Academy of Sciences, Bangalore, pp. 189–199.

    Google Scholar 

  • Schidlowski, M., Eichmann, R. and Junge C.E. (1975) ‘Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget’, Precambrian Res. 2, 1–69.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Eichmann, R. and Junge, C.E. (1976) ‘Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia’, Geochim. Cosmochim. Acta 40, 449–455.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Appel, P.W.U., Eichmann, R. and Junge, C.E. (1979) ‘Carbon isotope geochemistry of the 3.7 x 109 yr old Isua sediments, West Greenland: Implications for the Archaean carbon and oxygen cycles’, Geochim. Cosmochim. Acta 43, 189–199.

    Article  CAS  Google Scholar 

  • Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983) ‘Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen and nitrogen’, in J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., pp. 149–186.

    Google Scholar 

  • Schoell, M. and Wellmer, F.W. (1981) ‘Anomalous 13C depletion in Early Precambrian graphites from Superior Province, Canada’, Nature 290, 696–699.

    Article  CAS  Google Scholar 

  • Schopf, J.W. (1968) ‘Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia’, J. Paleont. 42, 651–688.

    Google Scholar 

  • Schopf, J.W. (ed.) (1983) Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., XXV + 543 pp.

    Google Scholar 

  • Schopf, J.W. and Oehler, D.Z. (1976) ‘How old are the eukaryotes?’, Science 193, 47–49.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W. and Walter, M.R. (1983) ‘Archean microfossils: New evidence of ancient microbes’, in J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., pp. 214–239.

    Google Scholar 

  • Schopf, J.W. and Packer, B.M. (1987) ‘Early Archaean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia’, Science 237, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, S.M. (1981) The New Evolutionary Timetable, Basic Books Inc., New York, 222 pp.

    Google Scholar 

  • Summons, R.E. and Powell, T.G. (1992) ‘Hydrocarbon composition of the Late Proterozoic oils of the Siberian Platform: Implications for the depositional environment of source rocks’, in M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy and P.A. Trudinger (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources, Springer, Berlin, pp. 296–307.

    Google Scholar 

  • Trask, P.D. and Patnode, H.W. (1942) Source Beds of Petroleum, American Association of Petroleum Geologists, Tulsa, 566 pp.

    Google Scholar 

  • Valley, J.W. and O’Neil, J.R. (1981) ‘13C/12C exchange between calcite and graphite: A possible thermometer in Grenville marbles’, Geochim. Cosmochim. Acta 45, 411–419.

    Article  CAS  Google Scholar 

  • Veizer, J. and Hoefs, J. (1976) ‘The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks’, Geochim. Cosmochim. Acta 40,1387–1395.

    Article  CAS  Google Scholar 

  • Wada, H. and Suzuki, K. (1983) ‘Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures’, Geochim. Cosmochim. Acta 47,697–706.

    Article  CAS  Google Scholar 

  • Walker, J.C.G., Klein, C., Schidlowski, M., Schopf, J.W., Stevenson, D.J. and Walter, M.R. (1983) ‘ Environmental evolution of the Archean-Early Proterozoic Earth’, in J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., pp. 260–290.

    Google Scholar 

  • Walsh, M.M. (1992) ‘Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa’,Precambrian Res. 54, 271–293.

    Article  PubMed  CAS  Google Scholar 

  • Walter, M.R. (1977) ‘Interpreting stromatolites’, Am. Sci. 65, 563–571.

    Google Scholar 

  • Walter, M.R. (1983) ‘Archean stromatolites: Evidence of the Earth’s earliest benthos’, in J.W. Schopf (ed.), Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J., pp. 187–213.

    Google Scholar 

  • Walter, M.R., Buick, R. and Dunlop, J.S.R. (1980) ‘Stromatolites 3.400 -3.500 Myr old from the North Pole area, Western Australia’, Nature 284,443–445.

    Article  Google Scholar 

  • Weber, F., Schidlowski, M. Arneth, J.D. and Gauthier-Lafaye, F. (1983)‘Carbon isotope geochemistry of the Lower Proterozoic Francevillian Series of Gabon (Africa)’, Terra cognita 3, 220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schidlowski, M. (1993). The Beginnings of Life on Earth: Evidence from the Geological Record. In: Greenberg, J.M., Mendoza-Gómez, C.X., Pirronello, V. (eds) The Chemistry of Life’s Origins. NATO ASI Series, vol 416. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1936-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1936-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4856-9

  • Online ISBN: 978-94-011-1936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics