Skip to main content

Anisotropy Measurements and the Deep Structure of a Passive Margin: Southwestern Greenland

  • Chapter
Rifted Ocean-Continent Boundaries

Part of the book series: NATO ASI Series ((ASIC,volume 463))

Abstract

The non-uniqueness of the laboratory measured physical properties (P-wave velocities and densities) can be partly overcome by the inclusion of anisotropy. Seismic anisotropy estimation can constitute an additional constraint in the determination of the mineralogical composition of the deep crust from indirect seismic measurements. Resolution analysis studies reveal that p-and S-wave velocity measurements derived from wide-angle seismic reflection/refraction data are usually characterized by large error estimates (i.e., very low resolution ). These error estimates render physically meaningless Poisson’s ratio profiles. Also the duality in S-wave velocities due to anisotropy complicates the estimation of Poisson’s ratio. The almost general use of single component (vertical) seismic instruments and low resolution of refraction/wide-angle reflection experiments (mostly due to spatial under sampling) have prevented the use of a nisotropy as a constraint for the determination of lower crustal composition in favor of estimates on Poisson’s ratio. Therefore, we suggest that anisotropy estimates can place new and more relevant constraints on the different rock types present in the deep crust. In order to assess indirect seismic anisotropy measurements we employed three component, densely space large aperture (0-250 km offset, at 100-150 m spacing) seismic recordings acquired along the south west coast of Greenland utilizing REFTEK PASSCAL instruments deployed by the University of Wyoming. With the aid of an inversion scheme that uses reflected and converted energy we determined P- and S-wave velocity-depth functio ns for the passive margin of southwestern Greenland. The inversion suggests a P-wave velocity structure characterized by two gradient zones: a relatively high gradient from the surface to approximately 5 km depth where velocities exceed 6.0 km/s, followed by a low gradient to the base of the crust where velocities reach 7.0 km/s. A high P-wave velocity layer (7.2-7.4 km/s) can be identified between 6-8 km above the Moho. GraVity modeling suggests relatively high densities 3 .0-3.1 kg/m3 for this layer. Independent analysis of the radically and transversely polarized horizonta l components revealed average velocities of 4.9 ± 0.1 km/s and 4.5 ± 0.1 km/s respectively suggesting a seismically anisotropic crust. A time delay of 0.25 s between the radial and the transverse horizontal components of the SIS phase is observed at offsets of 70 km. The radically polarized S-wave is parallel to the southwest coast of Greenland. From the S-wave analysis. the ocean-continent transitional crust is clearly seismically anisotropic above a high velocity layer in the lower continental crust. The density and velocity values suggested for this high velocity structure above the Moho, and the anisotropy measured just above it seem to favor an accretion of hot. mafic mantle material (underplating) at the base of the crust during a rifting episode. Possibly. magmatic underplating during Late Cretaceous rifting of the Labrador Sea heated the preexisting lower crust promoting plastic flow and enabling alignment of anisotropic minerals to produce the seismic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., Richards, P.G., 1980. Quantitative Seismology: Theory and Methods, Freeman and Co.

    Google Scholar 

  • Babuska, V., 1981. Anisotropy of Vp and Vs in rock-forming minerals. J. Geophys., 50: 1–6.

    Google Scholar 

  • Babuska, V., Cara, M., 1991. Seismic Anisotropy in the Earth. Kluwer A., Dordrecht, pp 116, 146.

    Book  Google Scholar 

  • Bamford, D., 1977. Pn velocity anisotropy in a continental upper mantle. Geophys J. R. Astro Soc., 49:29–48.

    Article  Google Scholar 

  • Bates, B.C., Kanasewich, E.R., 1976, Inversion of seismic travel times using the tau method, Geophys. J. R. astr. Soc. 47 59–72.

    Article  Google Scholar 

  • Berzon, I.S., 1965. The determination of a model of thinly layered medium by the simultaneous use of amplitude and phase spectrum characteristics of the layer. B. (Izv) Ac. Sc. USSR. 6: 363–367.

    Google Scholar 

  • Bessonova, E.N., Fishman, V.M., Ryaboyi, V.Z., Sitnikova, G.A., 1974. The tau method for inversion of travel times-I. Deep seismic sounding data, Geophys. J. R astr. Soc. 36, 377–398.

    Article  Google Scholar 

  • Birch, F., 1960. The velocity of compressional waves in rocks to 10 kbar. J. Geophys I. 36: 377–398.

    Google Scholar 

  • Boillot, G., Feraud, G., Recq, M., Girardeau, J., 1989. Undercrusting by serpentinite beneath rifted margins: the example of the west Galicia margin (Spain), Nature. 341: 523–525.

    Article  Google Scholar 

  • Boillot, G., Beslir, M.O., Comas. M., 1993, Seismic image of undercrusted serpentinite beneath a rifted margin, Terra Nova, 4: 25–33.

    Article  Google Scholar 

  • Braile, L.W., Chiang., C.S., 1986. The Continental Mohorovicic Discontinuity: Results from near- vertical and wide-angle seismic reflection studies. In: Barazangi, M., Brown, L., (Editors), Reflexion Seismology: Global Perspective. Am. Geophys. Union GeodynSer., 13: 257–272.

    Chapter  Google Scholar 

  • Bridgewater, D., Keto, L., McGregor, V.R., Myers, J.S., 1976. Archean gneiss complex of Greenland. In Escher, A., Watt, W.S., G. Greenland, pp 18–76, G. S. Greenland, Copenhagen.

    Google Scholar 

  • Brown, M., Friend, C.R.L., McGregor, V.R., Perkins, W.T., 1981. The late Archean Qorqut granite complex of southern West Greenland. J. Geophys. Res., 86: 10617–10632.

    Article  Google Scholar 

  • Bruke, M.M., Fountain, D.M., 1990. Seismic properties of rocks from an exposure of extended continental crust new lab measurements from the Ivrea zone. Tectonophys., 182: 119–146.

    Article  Google Scholar 

  • Carbonell, R., Smithson, S.B., 1991a. Large scale anisotropy within the crust in the Basin and Range province. Geology, 19, 698–701.

    Article  Google Scholar 

  • Carbonell, R., Clement, W.P., Smithson, S.B., 1994. Joint P- and S- wave velocity determination from reflected PP, SS and converted PS/Sp phases from large aperture seismic reflection measurements. Tectonophysics, 232: 379–389.

    Article  Google Scholar 

  • Chalmers, J.A., 1991. New evidence on the structure of the Labrador Sea/Greenland continental margin. J. Geol. Soc. London, 148: 899–908.

    Article  Google Scholar 

  • Chian, D., Louden, K., 1992, The structure of Archean-Ketilidian crust along the continental shelf of southwestern Greenland from a seismic refraction profile, Can. J. Earth Sci., 29: 301–313.

    Article  Google Scholar 

  • Christensen, N.I., 1966. Shear wave velocities in metamorphic rocks at pressures to 10 kilobars. J. Geophys. Res. 71: 3549–3556.

    Article  Google Scholar 

  • Christensen, N.I., 1989. Seismic velocities. In: R.S. Carmichael (Editor), Physical Properties of Rocks and Mnerals. CRC Press, Boca Raton, Fl, pp 431–546.

    Google Scholar 

  • Christensen, N.I., Fountain, D.M., 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol. Soc. Am. Bull., 86: 227–236.

    Article  Google Scholar 

  • Christensen, N.I., Zymanski, D.L., 1988. Origin of reflections from the Brevard fault zone. J. Geophys. Res., 93: 1087–1102.

    Article  Google Scholar 

  • Clarke, D.B., Pederson, A.K., 1976. Tertiary volcanic province of west Greenland. In: Escher, A., Watt, W.S., pp. 365–385, Geological Survey of Greenland, Copenhagen.

    Google Scholar 

  • Clarke, D.B., Upton, G.J., 1971. Tertiary basalts of Baffin Island: Field relations and tectonic setting, Can. J. Earth Sci., 8: 248–258.

    Article  Google Scholar 

  • Crampin, S., 1984. Effective elastic constants for wave propagation through craked solids. Geophys. J.R. Astron. Soc., 76: 135–145.

    Article  Google Scholar 

  • Crampin, S., 1989. Suggestions for a consistent terminology for seismic anisotropy. Geophys. Prospect., 37: 735–770.

    Article  Google Scholar 

  • Crampin, S., Chesnokov, E.M., Hipkin, R.G., 1984, Seismic anisotropy -the state of the art II. Geophy. J. R. astro. Soc., 70: 1–16.

    Article  Google Scholar 

  • Denham, L.R., 1974. Offshore geology of northen West Greenland (69° to 75° N), Rep. Geol. Surv. Greenland, 63.

    Google Scholar 

  • Díaz, J., Hirn, A., Gallart, J., Senos, L., 1993. Evidence for azimuthal anisotropy in southwest Iberia from deep seismic sounding data. Physics of the Earth and Planetary Interiors, 78: 193–206.

    Article  Google Scholar 

  • Fountain, D.M., Christensen, N.I., 1989. Composition of the continental crust and upper mantle; a review. In: Pakiser, L.C., Mooney, W.D., (Eds), Geophysical Framework of the Continental United States. Geol. Soc. Am. Mem., 172: 711–742.

    Google Scholar 

  • Fountain, D.M., 1989. Growth and modification of lower continental crust in extended terrains: The role of extension and magmatic underplating. In: Mereu, R.F., Mueller, S., Fountain, D.M., (Ed) Properties and Processes of Earth’s Lower Crust, Geophysical Monograph, Ser. 51; 6: 287–299.

    Chapter  Google Scholar 

  • Friend, C.R.L., Nutman, A.P., 1991. Refolded napppes formed during late Archean terrane assembly, Godthaabsfjord, southern west Greenland, J. Geol. Soc. Lon. 148, 507–519.

    Article  Google Scholar 

  • Fuchs, K., 1983. Recently formed elastic anisotropy and penological models for the continental subcrustal litosphere in southern Germany. Phys. Earth Planet. Int., 31: 93–118.

    Article  Google Scholar 

  • Furlong, K.P., Fountain, D.M., 1986. Continental crustal underplating; Thermal considerations and seismic-petrologic consequences. J. Geophys. Res., 91: 8285–8294.

    Article  Google Scholar 

  • Geological Survey of Greenland, 1982. Geological map of Greenland, sheet 2, Frederikshaab Isblink- Soendre Stroemfjord, Geol. Surv. of Greenland, scale 1:500,000.

    Google Scholar 

  • Gohl, K., 1991. Seismic Wide-Angle Studies of Early Archean and Proterozoic Crust in Greenland, Minnesota, and Wyoming. Ph.D. theisis, Univ. Wyoming, Laramie, WY, 189 pp.

    Google Scholar 

  • Gohl, K., Smithson, S.B., 1993. Structure of the Archean crust and passive margin of southwestern Greenland from seismic wide-angle data J. Geophys. Res. 98: 6623–6638.

    Article  Google Scholar 

  • Gohl, K., Hawman, R.B., Smithson, S.B., Kristoffersen, Y., 1991. The structure of the Archean crust in sw Greenland from seismic wide-angle data: a preliminary analysis. In: Meissner, R., Brown, L., Durbaum, H.-J., Franke, W., Fuchs, K., Seifert, F., (Eds), Continental Lithosphere: Deep Crustal Reflections. Am. Geophys. Union Geodyn. Ser., 22: 53–57.

    Chapter  Google Scholar 

  • Hawman, R.B., Colburn, R.H., Walker, D.A., Smithson, S.B., 1990. Processing and inversion of refraction and wide-angle reflection data from the 1986 Nevada PASSCAL experiment. J. Geophys. Res., 95: 4657–4691.

    Article  Google Scholar 

  • Hawman, R.B., Phinney, R.A., 1991. Analysis of sparse wide-angle reflection data in the tau-p domain, Bull. Seism. Soc. Am. 81, 202–221.

    Google Scholar 

  • Hawman, R.B., (1988). Wide-angle reflection studies of the crust and upper mantle beneath eastern Pennsylvania, Ph.D. thesis, Princeton University, Princeton, N.J.

    Google Scholar 

  • Hawman, R.B., Phinney, R.A., (1992). Structure of the crust and upper mantle beneath the Great Valley and Allegheny Plateau of eastern Pennsylvania. 1. Comparison of linear inversion methods from sparse wide-angle reflection data, J. Geophys. Res. 97, 371–391.

    Article  Google Scholar 

  • Hinz, K., Schlueter, H.-U., Grant, A.C., Srivastava, P.S., Umpleby, D., 1979. Geophysical transects of the Labrador Sea: Labrador to southwest Greenland. Tectonophysics, 59: 151–183.

    Article  Google Scholar 

  • Hirn, A., 1977. Anisotropy in the continental upper mantle possible evidence from explosion seismology. Geophys. J. R. Soc., 49: 49–58.

    Article  Google Scholar 

  • Hoffman, P., 1989. Precambrian geology and tectonic history of Nort America. In: Bally, A.W., Palmer, A.R., (Eds), The Geology of North America. Geol. Soc. Am., Boulder, CO. 447–551.

    Google Scholar 

  • Holbrook, W.S., Gajeski, D., Prodehl, C., 1987. Shear-wave velocity and Poisson’s ratio structure of the upper lithosphere in Southwestern Germany. Geopys. Res. Lett., 14: 231–234.

    Article  Google Scholar 

  • Holbrook, W.S., Gajeski, D., Krammer, A., Prodehl, C., 1988. An interpretation of wide-angle compressional and shear wave data in Southwestern Germany: Poisson’s ratio and petrological implications. J. Geophys. Res., 93: 12081–12106.

    Article  Google Scholar 

  • Holbrook, W.S., Mooney, W.D., Cristensen, N.I., 1992. The seismic velocity structure of the deep continnental crust. In: Fountain. D.M., Arculus R.J., Kay, R.M. (Editors), The Lower Continental Crust. Elsevier, Amsterdam, pp. 1–43.

    Google Scholar 

  • Hyndman, R.D., 1973. Evolution of the Labrador Sea. Can. J. Earth Sci., 10: 637–664.

    Article  Google Scholar 

  • Hyndman, R.D., 1975. Marginal basins of the Labrador Sea and the Davis Strait hot spot. Can. J. Earth Sci., 12: 1041–1045.

    Article  Google Scholar 

  • Hyndman, R.D., Kelmperer, S.L., 1989. Lower-crustal porosity from electrical measurements and inferences about composition from seismic velocities. Geophys, Res. Lett., 16: 255–258.

    Article  Google Scholar 

  • Jackson, D.D., Matsu’ura, M., (1985). A bayesian approach to nonlinear inversion, J. Geophys. Res. 90,581–591.

    Article  Google Scholar 

  • Ji, S., Mainprice, D., 1988. Natural deformation fabrics of plagioclase: Implication for slip systems and seismic anisotropy. Tectonophysics, 147: 145–163.

    Article  Google Scholar 

  • Ji, S., Salisbury, M.S., 1992, Sear-wave velocities, anisotropy and splitting in high grade mylonites. Tectonophysics, 221: 453–473.

    Article  Google Scholar 

  • Johnson, G.L., Sirivastava, S.P., Campsie, J., Rasmussen, M., 1982 Volcanic rocks in the Labrador Sea and environs and their relationship to the evolution of the Labrador Sea In: Current research, Part B. Pap. Geol. Sur. Canada, 82–1B 7–20 Geological Survey of Canada.

    Google Scholar 

  • Keen, C.E., Keen, M.J., Barret, D.L., Heffler, D.E., 1975. Some aspects of the ocean-continent transition at the continental margin of eastern North America In: van den Linden, W.J.M., Wade, J.A., Offshore Geology of Eastern Canada. Geol. Sun;. Can. Pap. 74–30: 189–197.

    Google Scholar 

  • Keen, C.E., Potter, P., Srivastava, S.P., 1994, Deep seismic reflection lata across the conjugate margins of the Labrador Sea, Can. J. Earth Sci., (in press).

    Google Scholar 

  • LASE Study Greoup, 1986. Deep structure of the U.S. East Coast passive margin from large aperture seismic experiments (LASE). Mar. Petrol. Geol., 3: 234–242.

    Article  Google Scholar 

  • Mainprice, D., Nicolas, A., 1989. Development of shape and lattice prefferred orientations: application to the seismic anisotropy of the lower crust. J. Struct, Geol.,11: 175–189.

    Article  Google Scholar 

  • Manghnani, M.H., Ramananantoandro, R., Clark, Jr., S.P., 1974. Compressional and shear wave velocities in granulite facies rocks and eclogites to 10 kbar. J. Geophys. Res., 79:5427–5446.

    Article  Google Scholar 

  • McGregor, V.R., 1973. The early Precambrian gneisses of the Godthaab distrie, West Greenland. Philos. Trans. R. Soc. London A, 273: 343–358.

    Article  Google Scholar 

  • McGregor, V.R., 1979. Archean gray gneisses and the origin of the continental crust: Evidence from the Godhaab region, West Greenland. In: Barker, F., (Editor), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam, pp. 169–205.

    Google Scholar 

  • McGregor, V.R., Nutman, A.P., Friend, C.R.L., 1986. The Archean geology of the Godthaabsfjord region, southern West Greenland. Lun. Planet. Inst. Tech. Rep., 86–04, pp. 113–169.

    Google Scholar 

  • McKenzie, D.P., Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. J. Petrology, 29: 625–679.

    Article  Google Scholar 

  • McMechan, G.A, Ottolini, R., 1980. Direct observation of p-t curve in a slant-stacked wave-field, Bull. Seism. Soc. Am., 70, 775–790.

    Google Scholar 

  • Menke, W., 1984. Geophysical data analysis: Discrete inverse theory, Academic Press, Inc.

    Google Scholar 

  • Nicolas, A., Christensen, N.I., 1987. Formation of anisotropy in upper mantle peridotites. A review. In: Fuchs, K., Froidevaux, C., (Editors), Composition, Structure and Dynamics of the Lithosphere-Asthenosphere System. Am. Geophys. U. Geophys. Ser. 16, A.G.U. Washington, DC, pp 137–154.

    Google Scholar 

  • Nur, A.M., Simmons, G., 1968. Stress-induced velocity anisotropy in rock: an experimental study. J. Geophys. Res., 74: 6667–6674.

    Article  Google Scholar 

  • Nutman, A.F., Friend, C.R.L., Baadsgaard, H., McGregor, V.R., 1989. Evolution and assembly of Archean gneiss terranes in the Godthaabfjord region southern west Greenland: structural, metamorphic and isotopic evidence. Tectonics, 8: 573–589.

    Article  Google Scholar 

  • Phinney, R.A., Chowdhury, K.R, Frazer, L.N., (1981) Transformation and analysis of record sections, J. Geophys. Res., 86, 359–377.

    Article  Google Scholar 

  • Roest, W.R., Srivastava, S.P., 1989. Sea-floor spreading in the Labrador Sea: A new reconstruction, Geology 17: 1000–1003.

    Article  Google Scholar 

  • Savage, M.K., Silver, P.G., Meyers, R.P., 1990. Observations of teleseismic shear-wave splitting in the Basin and Range from portable and permanent stations. Geophys. Res. Lett., 17: 21–24.

    Article  Google Scholar 

  • Sheridan, R.E., Musser, D.L, Glover, L.III., Talwani, M., Ewing, J.I., Holbrook, W.A., Purdy, G.M., Hawman, R.B., Smithson, S.B., 1993. Deep seismic reflection data of EDGE U.S. Mid-Atlantic continental margin experiment; implications for Appalachian sutures and Mezozoic rifting and magmatic underplating. Geology, 21: 563–567.

    Article  Google Scholar 

  • Siegesmund, S., Kruhl, J.H., 1991. The effect of plagioclase textures on velocity anisotropy and shear wave splitting at deeper crustal levels. Tectonophysics, 191: 147–154.

    Article  Google Scholar 

  • Siegesmund, S., Vollbrecht, A., 1991. Complete seismic properties obtained from microcrak fabrics and textures in an amphibolite from the Ivrea zone, Western Alps. Tectonophys. 199: 13–24.

    Article  Google Scholar 

  • Silver, P.G., Chan, W.W., 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 355: 34–39.

    Article  Google Scholar 

  • Speece, M.A., 1992. Geophysical Studies of Precambrian Regions: The Laramie Mountains, Wyoming and Godthaabsfjord Area, South West Greenland. Ph.D. thesis, Univ. of Wyoming, Laramie, WY. 110 pp.

    Google Scholar 

  • Srivastava, P.S., 1983. Davis Strait: Structures, origin and evolution, In: Bott, M.H.P., Saxov, S., Talwani, M., Thiede, J., (Editors), Structure and Development of the Greenland-Scotland Ridge. Plenum, New York, NY, pp., 159–189.

    Google Scholar 

  • Srivastava, P.S., Tapscott, C.R., 1986. Plate kinematics of the North Atlantic. In: Vogt, P.R., Tucholke, B.E., (Editors), The Western North Atlantic Region. The Geology of North America, M. Geol. Soc. Am., Boulder, CO, pp. 379–404.

    Google Scholar 

  • Stergiopoulos, A.B., 1984. Geophysical crustal studies of the southwest Greenland margin, M.S. thesis, pp, 158.

    Google Scholar 

  • Stoffa, P.L., Buhl, P., Diebold, J.B., Wenzel, F., (1981). Direct mapping of seismic data to the domain of intercept time and ray parameter: a plane wave decomposition. Geoph. 46, 255–267.

    Article  Google Scholar 

  • Suetnova, I.E, Carbonell, R., Smithson, S.B., 1994. Bright seismic reflections and fluid movement by porous flow in the lower crust, Earth Planet. Sci. Lett., 126: 161–169.

    Google Scholar 

  • Talwani, M., Nutter, J.C., Houtz, R., Konig, M., 1979. The crustal structure underlying the magnetic quite zone on the margin of South Australia. In: Watkins, L., Montandert, L., Dickerson, P.W., Geological and Geophysical Investigations of Continental Margins, Am. Assoc. Petrol. Geolo. Mem., 29: 151–176.

    Google Scholar 

  • Tullis, J., Yund, R.A: 1987. Transition from cataclastic flow to dislocation creep of feldspar: Mechanics and microstructures. Geology, 15: 606–609.

    Article  Google Scholar 

  • Walden, J., Nur, A., 1984. Porosity reductionand crustal pore pressure development. J. Geophys. Res., 89: 11539–11548.

    Article  Google Scholar 

  • White, R., McKenzie, D., 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res., 94: 7685–7729.

    Article  Google Scholar 

  • Woodside, J.M., Verhoef, 1989. Geological and tectonic framework of eastern Canada as interpreted from potential field imagery. Pap. Geol. Sur. Canada. 88–26.

    Google Scholar 

  • Zoback, M.L., 1992. First- and second-order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res., 97: 11703–11728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carbonell, R., Speece, M.A., Clement, W.P., Smithson, S.B. (1995). Anisotropy Measurements and the Deep Structure of a Passive Margin: Southwestern Greenland. In: Banda, E., Torné, M., Talwani, M. (eds) Rifted Ocean-Continent Boundaries. NATO ASI Series, vol 463. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0043-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4024-2

  • Online ISBN: 978-94-011-0043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics