Skip to main content

Photon dependence of inorganic nitrogen transport by phytoplankton in perennially ice-covered antarctic lakes

  • Chapter
High Latitude Limnology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 49))

  • 117 Accesses

Abstract

15N was used to examine the influence of Photosynthetic Photon Flux Density (PPFD) on NO3 and NH4 + transport by phytoplankton in the shallow and deep-chlorophyll layers of Lakes Fryxell and Vanda, Antarctica. The response observed in Lake Vanda could be modelled with a four parameter equation previously used to model photosynthesis. Only the 9 m NH4 + transport experiments in Lake Fryxell could be modelled with this equation. Other experiments in Lake Fryxell showed either no response to PPFD or a linear increase with no saturation at the PPFD levels used. Distinct trends were observed in transport parameters both between depths and between nitrogen species. Overall, the parameters indicate that phytoplankton in these lakes possess nitrogen transport affinities similar to those reported for other aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cota, G., 1985. Photo adaptation of high Arctic ice algae. Nature 219:222–224.

    Google Scholar 

  • Dugdale, R C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12:196–206.

    Article  CAS  Google Scholar 

  • Glibert, P. M., F. Lipsehultz, J. J. McCarthy & M. A. Altabet, 1982. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27:639–650.

    Article  CAS  Google Scholar 

  • Goldman, C. R, 1964. Primary productivity studies in Antarctic Lakes. Primary Symp. S.C.A.R. Paris, 2-8 Sep. 1962. Hermann Ltd., England. 651 p.

    Google Scholar 

  • Lewis, W. M. & S. N. Levine, 1984. The light response of nitrogen fixation in Lake Valencia, Venezuela. Limnol. Oceanogr. 29:894–900.

    Article  CAS  Google Scholar 

  • MacIsaac, J. J. & R C. Dugdale. 1972. Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res. 19:209–232.

    CAS  Google Scholar 

  • MacIsaac, J. J., R C. Dugdale & G. Slawyk. 1974. Nitrogen uptake in the northwest Africa upwelling area: results from Cinceca-Charcot II cruise. Tethys 6:69–76.

    CAS  Google Scholar 

  • Miflin, B. J. & P. J. Lea. 1977. Amino acid metabolism. Ann. Rev. Plant Physiol. 28:299–329.

    Article  CAS  Google Scholar 

  • Neess, J. C., R C. Dugdale, V. A. Dugdale & J. J. Goering, 1962. Nitrogen metabolism in lakes. I. Measurement of nitrogen fixation with 15N. Limnol. Oceanogr. 7:163–169.

    CAS  Google Scholar 

  • Nelson, D. M. & H. L. Conway, 1979. Effects of the light regime on nutrient assimilation by phytoplankton in the Baja California and northwest Africa upwelling systems. J. Mar. Res. 37:301–318.

    CAS  Google Scholar 

  • Palmisano, A. C., J. B. Soohoo & C. W. Sullivan, 1985. Photosynthesis-irradiance relationships in sea ice microalgae from McMurdo Sound. Antarctica. J. Phycol. 21:341–346.

    Article  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblage of marine phytoplankton. J. Mar. Res. 38:687–701.

    Google Scholar 

  • Priscu, J. C., 1984. A comparison of nitrogen and carbon metabolism in the shallow and deep-water phytoplankton populations of a subalpine lake: Response to photosynthetic photon flux density. J. Plankton Res. 6:733–749.

    Article  CAS  Google Scholar 

  • Priscu, J. C., L. R. Priscu, W. F. Vincent & C. Howard-Williams, 1987. Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnol. Oceanogr. 32:260–270.

    Article  CAS  Google Scholar 

  • Sakshaug, E. & O. Holm-Hansen, 1986. Photoadaptation in Antarctic phytoplankton: Variation in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8:459–473.

    Article  Google Scholar 

  • Segel, I. H., 1976. Biochemical calculations, 2nd Ed. Wiley. 441 p.

    Google Scholar 

  • Slawyk, G., 1979. 13C and 15N uptake by phytoplankton in the Antarctic upwelling area: results from the Antipod I cruise in the Indian Ocean sector. Aust. J. mar. Freshwat. Res. 30:431–448.

    Article  CAS  Google Scholar 

  • Syrett, P. J., 1981. Nitrogen metabolism of microalgae, p. 182–210. Int: T. Platt (ed.) Physiological Basis of Phytoplankton Ecology. Can. Bull. Fish. aquat. Sci. 210:346 p.

    Google Scholar 

  • Talling, J. F., 1957. The phytoplankton population as a compound photosynthetie system. New Phytol. 56:133–149.

    Article  Google Scholar 

  • Terry, K. L., 1982. Nitrate uptake and assimilation in Thalassiosira weissfloggi and Phacdoctylum tricornutum: Interactions with photosynthesis and with the uptake of other ions. Mar. Biol. 69:21–30.

    Article  CAS  Google Scholar 

  • Tilzer, M. M., B. von Bodungen & V. Smetacek, 1985. Light dependence of phytoplankton photosynthesis in the Antarctic Oeean; Implications for regulating productivity, In: W. R. Siegfried, P. R. Condy & R. M. Laws (eds.), Proceedings of the 4th SCAR Symposium on Antarctic Biology, Wilderness, Sept. 1983, Springer-Verlag, Berlin, pp. 60–69.

    Google Scholar 

  • Timperley, M. H. & J. C. Priscu, 1986. Nitrogen-15 analysis by optical emission spectrometry using an atomic absorption spectrometer. Analyst 3:23–28.

    Article  Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62:1215–1224.

    Article  Google Scholar 

  • Vincent, W. F. & C. L. Vincent, 1982. Factors controlling phytoplankton production in Lake Vanda (77° S). Can. J. Fish aquat. Sci. 39:1602–1609.

    Article  Google Scholar 

  • Wetzei, R. G., 1975. Limnology. Saunders, 743 p.

    Google Scholar 

  • Whalen, S. C. & V. Alexander, 1984. Influence of temperature and light on rate of inorganic nitrogen transport by algae in an arctic lake. Can. J. Fish. aquat. Sci. 41:1310–1318.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Priscu, J.C. (1989). Photon dependence of inorganic nitrogen transport by phytoplankton in perennially ice-covered antarctic lakes. In: Vincent, W.F., Ellis-Evans, J.C. (eds) High Latitude Limnology. Developments in Hydrobiology, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2603-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2603-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7674-6

  • Online ISBN: 978-94-009-2603-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics