Skip to main content

Proteomic Approaches for Urine Biomarker Discovery in Bladder Cancer

  • Chapter
  • First Online:
Bioinformatics of Human Proteomics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 3))

  • 2471 Accesses

Abstract

Bladder cancer is the most common urological cancer with higher incidence rate in the endemic areas of blackfoot disease (BFD) in southern Taiwan. Urine, a blood filtrate produced by the urinary system, is readily collected and is an important source of information for bladder cancers because it is directly exposed to bladder epithelium. Global analysis of the human urinary proteome is important for understanding urinary tract diseases. The aim of this chapter was to utilize the proteomic approach to establish urinary protein patterns of bladder cancer. The experimental results showed that most patients with bladder cancer had proteinuria or albuminuria. In the proteomic analysis, the urinary proteome was identified by nano-high-performance liquid chromatography electrospray ionization tandem mass spectrometry (nano-HPLC-ESI-MS/MS) followed by peptide fragmentation pattern analysis. ADAM28, identified by proteomic approaches and confirmed by ELISA, showed significant differences compared with normal individuals. The upregulation of urinary ADAM28 in bladder cancer was revealed, so it may be a biomarker of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaboe M, et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res. 2006;66(7):3434–42.

    Article  PubMed  CAS  Google Scholar 

  • Bane BL, Rao JY. Pathology and staging of bladder cancer. Semin Oncol. 1996;23(5):549–70.

    Google Scholar 

  • Beetham R, Cattell WR. Proteinuria: pathophysiology, significance and recommendations for measurement in clinical practice. Ann Clin Biochem. 1993;30(Pt 5):425–34.

    PubMed  Google Scholar 

  • Castagna A, et al. Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res. 2005;4(6):1917–30.

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, et al. Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. J Urol. 1996;155(6):2105–12.

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, et al. Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas. Mol Cell Proteomics. 2002;1(4):269–79.

    Article  PubMed  CAS  Google Scholar 

  • Celis JE, et al. Impact of proteomics on bladder cancer research. Pharmacogenomics. 2004;5(4):381–94.

    Article  PubMed  CAS  Google Scholar 

  • Delanghe J. Use of specific urinary proteins as diagnostic markers for renal disease. Acta Clin Belg. 1997;52(3):148–53.

    PubMed  CAS  Google Scholar 

  • Delden CJ, et al. Heparinization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance. Biomaterials. 1997;18(12):845–52.

    Article  PubMed  Google Scholar 

  • Fujii K, et al. Multidimensional protein profiling technology and its application to human plasma proteome. J Proteome Res. 2004;3(4):712–18.

    Article  PubMed  CAS  Google Scholar 

  • Grossman HB. New methods for detection of bladder cancer. Semin Urol Oncol. 1998;16(1):17–22.

    PubMed  CAS  Google Scholar 

  • Guo Y, et al. 1-DE MS and 2-D LC-MS analysis of the mouse bronchoalveolar lavage proteome. Proteomics. 2005;5(17):4608–24.

    Article  PubMed  CAS  Google Scholar 

  • Hamler RL, et al. A two-dimensional liquid-phase separation method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification. Proteomics. 2004;4(3):562–77.

    Article  PubMed  CAS  Google Scholar 

  • Hampel DJ, et al. Toward proteomics in uroscopy: urinary protein profiles after radiocontrast medium administration. J Am Soc Nephrol. 2001;12(5):1026–35.

    PubMed  CAS  Google Scholar 

  • Hong SS, Kwon SW. Profiling of urinary proteins by nano-high performance liquid chromatography/tandem mass spectrometry. J Liq Chromatogr Relat Technol. 2005;28(6):805–22.

    Article  CAS  Google Scholar 

  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics. 2004;4(1):59–77.

    Article  PubMed  CAS  Google Scholar 

  • Jürgens M, et al. Towards characterization of the human urinary peptidome. Comb Chem High Throughput Screen. 2005;8(8):757–65.

    Article  PubMed  Google Scholar 

  • Kageyama S, et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clin Chem. 2004;50(5):857–66.

    Article  PubMed  CAS  Google Scholar 

  • Kang IK, et al. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials. 1993;14(10):787–92.

    Article  PubMed  CAS  Google Scholar 

  • Konety BR, Williams RD. Superficial transitional (Ta/T1/CIS) cell carcinoma of the bladder. BJU Int. 2004;94(1):18–21.

    Article  PubMed  Google Scholar 

  • Kuijpers AJ, et al. In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials. 2000;21(17):1763–72.

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, et al. ADAM28 is a serological and histochemical marker for non-small-cell lung cancers. Int J Cancer. 2010;127(8):1844–56.

    Article  PubMed  CAS  Google Scholar 

  • Lafitte D, et al. Optimized preparation of urine samples for two-dimensional electrophoresis and initial application to patient samples. Clin Biochem. 2002;35(8):581–9.

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Lee KI, Kim JY. Revealing urologic diseases by proteomic techniques. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;815(1–2):203–13.

    PubMed  CAS  Google Scholar 

  • Lwaki H, et al. Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis. Cancer Sci. 2004;95(12):955–61.

    Article  Google Scholar 

  • Marshall T, William KM. Clinical analysis of human urinary proteins using high resolution electrophoretic methods. Electrophoresis. 1998;19(10):1752–70.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui Y, et al. ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res. 2006;66(20):9913–20.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 2007;98(5):621–8.

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki S, Okada Y. ADAM28 as a target for human cancers. Curr Pharm Des. 2009;15(20):2349–58.

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan C, et al. High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform. 2002;3(3):275–84.

    Article  PubMed  Google Scholar 

  • Oh J, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics. 2004;4(11):3485–97.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer. 2006;118(2):263–73.

    Article  PubMed  CAS  Google Scholar 

  • Okada Y. Modulation of the microenvironment and adhesion of cancer cells by ADAMs (a disintegrin and metalloproteinase). Verh Dtsch Ges Pathol. 2007;91:29–38.

    PubMed  CAS  Google Scholar 

  • Park MR, et al. Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics. 2006;6(3):1066–76.

    Article  PubMed  CAS  Google Scholar 

  • Pieper R, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4(4):1159–74.

    Article  PubMed  CAS  Google Scholar 

  • Poliness AE, et al. Proteomic approaches in endometriosis research. Proteomics. 2004;4(7):1897–902.

    Article  PubMed  CAS  Google Scholar 

  • Ramakumar S, et al. Comparison of screening methods in the detection of bladder cancer. J Urol. 1999;161(2):388–94.

    Article  PubMed  CAS  Google Scholar 

  • Rocks N, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90(2):369–79.

    Article  PubMed  CAS  Google Scholar 

  • Ru OC, et al. Proteomic profiling of human urine using multidimensional protein identification technology. J Chromatogr A. 2006;1111(2):166–74.

    Article  PubMed  CAS  Google Scholar 

  • Smith G, et al. Development of a high-throughput method for preparing human urine for two-dimensional electrophoresis. Proteomics. 2005;5(9):2315–18.

    Article  PubMed  CAS  Google Scholar 

  • Tantipaiboonwong P, et al. Different techniques for urinary protein analysis of normal and lung cancer patients. Proteomics. 2005;5(4):1140–9.

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V, Malasit P. Renal and urinary proteomics: current applications and challenges. Proteomics. 2005;5(4):1033–42.

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V, et al. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int. 2002;62(4):1461–9.

    Article  PubMed  CAS  Google Scholar 

  • Thongboonkerd V, et al. Sodium loading changes urinary protein excretion: a proteomic analysis. Am J Physiol Renal Physiol. 2003;284(6):F1155–63.

    PubMed  CAS  Google Scholar 

  • Tolson JP, et al. Differential detection of S100A8 in transitional cell carcinoma of the bladder by pair wise tissue proteomic and immunohistochemical analysis. Proteomics. 2006;6(2):697–708.

    Article  PubMed  CAS  Google Scholar 

  • Tyan YC, et al. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces. Biomaterials. 2002;23(1):65–76.

    Article  PubMed  CAS  Google Scholar 

  • Tyan YC, et al. Proteomic profiling of human urinary proteome using nano-high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Chim Acta. 2006;579(2):158–76.

    Article  PubMed  CAS  Google Scholar 

  • Tyers M, Mann M. From genomics to proteomics. Nature. 2003;422(6928):193–7.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, et al. Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis. 1996;17(5):830–8.

    Article  PubMed  CAS  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification ­technology for shotgun proteomics. Anal Chem. 2001;73(23):5683–90.

    Article  PubMed  CAS  Google Scholar 

  • Zerefos PG, et al. Characterization of the human urine proteome by preparative electrophoresis in combination with 2-DE. Proteomics. 2006;6(15):4346–55.

    Article  PubMed  CAS  Google Scholar 

  • Zhang YF, et al. Tree analysis of mass spectral urine profiles discriminates transitional cell ­carcinoma of the bladder from noncancer patient. Clin Biochem. 2004;37(9):772–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to S. Sheldon MT (ASCP) of Oklahoma University Medical Center Edmond (USA) for fruitful discussions. This work was supported by research grants NSC-099-2811-E-22-002 and NSC-100-2320-B-037-007-MY3 from the National Science Council and NSYSUKMU 101-015 from NSYSU-KMU Joint Research Project, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chang Tyan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yang, MH., Tyan, YC. (2013). Proteomic Approaches for Urine Biomarker Discovery in Bladder Cancer. In: Wang, X. (eds) Bioinformatics of Human Proteomics. Translational Bioinformatics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5811-7_14

Download citation

Publish with us

Policies and ethics