Skip to main content

Permafrost – Physical Aspects, Carbon Cycling, Databases and Uncertainties

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOGCMs:

Atmosphere-Ocean General Circulation Models

C:

carbon

CO2 :

carbon dioxide

CAVM:

Circum Arctic Vegetation Map

CALM:

Circumpolar Active Layer Monitoring network

C4MIP:

Coupled Carbon Cycle Climate Model Intercomparison Project

DOC:

dissolved organic carbon

ECHAM:

European Centre/Hamburg Model

GTN-P:

Global Terrestrial Network for Permafrost

GHG:

greenhouse gas

IPCC:

Intergovernmental Panel on Climate Change

MAAT:

mean annual air temperatures

CH4 :

methane

OM:

organic matter

Pg C:

1 Pg = 1 billion metric tons = 1015 g = 1 Gt

RCM:

Regional Climate Model

SOC:

soil organic carbon

SOM:

soil organic matter

References

  • Abnizova A, Siemens J, Langer M et al (2012) Small ponds with major impact: the relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Glob Biogeochem Cycles (in review)

    Google Scholar 

  • ACIA (2004) Impacts of a warming Arctic. Cambridge University Press, Cambridge

    Google Scholar 

  • Anisimov O, Nelson F (1996) Permafrost distribution in the Northern Hemisphere under scenarios of climatic change. Global Planet Change 14(1–2):59–72

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47(2):151–163

    Article  CAS  Google Scholar 

  • Blok D, Heijmans PD, Schaepman-Strub G et al (2010) Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biol 16:1296–1305. doi:10.1111/j.1365-2486.2009.02110.x

    Article  Google Scholar 

  • Boike J, Roth K, Overduin PP (1998) Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour Res 34(3):355–363

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008) The meteorology, and energy and water balances of polygonal tundra in the Lena Delta, Siberia during wet and dry years. J Geophys Res 113:G03025. doi:10.1029/2007JG000540

    Article  Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Chang 29(2):145–167

    Article  Google Scholar 

  • Bowden WB, Gooseff MN, Balser A et al (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res 113:G02026. doi:10.1029/2007JG000470

    Article  CAS  Google Scholar 

  • Brown J, Ferrians O Jr, Heginbottom J et al (1997) Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, Boulder

    Google Scholar 

  • CAVM (2003) Circumpolar arctic vegetation map, scale 1:7,500,000, conservation of Arctic Flora and Fauna (CAFF), Map No. 1. U.S., Fish and Wildlife Service, Anchorage, AK

    Google Scholar 

  • Chapin FS III, Sturm M, Serreze MC et al (2005) Role of land-surface changes in Arctic summer warming. Science 310(5748):657–660. doi:10.1126/science.1117368

    Article  PubMed  CAS  Google Scholar 

  • Chapman W, Walsh J (2007) Simulations of Arctic temperature and pressure by global coupled models. J Climate 20(4):609–632

    Article  Google Scholar 

  • Ciais P (2010) Soil map digs under the tundra. Nature 467(7311):30–31. doi:10.1038/467030a

    Article  CAS  Google Scholar 

  • Cox P, Betts R, Bunton C et al (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15(3):183–203

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. doi:10.1038/nature04514

    Article  PubMed  CAS  Google Scholar 

  • de Vries D (1952) The thermal conductivity of soil. Mededelingen van de Landbouwhogeschool te Wageningen 52(1):1–73

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Einarsson N, Larsen E, Nilsson A et al (2004) Arctic human development report. Stefansson Arctic Institute, Akureyi

    Google Scholar 

  • Eugster W, Rouse WR, Pielke RA et al (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6(1):84–115

    Article  Google Scholar 

  • Fan SM, Wofsy SC, Bakwin PS et al (1992) Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J Geophys Res 97(D15):16627–16643. doi:10.1029/91JD02531

    Article  CAS  Google Scholar 

  • Farouki O (1981) The thermal properties of soils in cold regions. Cold Reg Sci Technol 5(1):67–75

    Article  Google Scholar 

  • Fleming K, Johnston P, Zwartz D et al (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet Sci Lett 163(1–4):327–342

    Article  CAS  Google Scholar 

  • Frey KE, Smith LC (2007) How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Global Biogeochem Cycles 21:GB1016. doi:10.1029/2006GB002706

    Article  CAS  Google Scholar 

  • Friborg T, Christensen T, Hansen B et al (2000) Trace gas exchange in a high-arctic valley 2. Landscape CH4 fluxes measured and modeled using eddy correlation data. Global Biogeochem Cycles 14(3):715–723

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Ginsburg G, Soloviev V (1995) Submarine gas hydrate estimation: theoretical and empirical approaches. In: 27th annual OTC, Houston, TX, 1–4 May 1995

    Google Scholar 

  • Global Land Cover (2000) Modified Global Land Cover 2000 database. European Commission Joint Research Centre. http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed 21 Sept 2011

  • Grosse G, Romanovsky V, Walter K et al (2008) Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia. In: Proceedings of the 9th international conference on permafrost, University of Alaska Fairbanks, June 29–July 3 2008, pp 551–556

    Google Scholar 

  • Grosse G, Harden J, Turetsky M et al (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116:G00K06. doi:10.1029/2010JG001507

    Article  Google Scholar 

  • Gutowski WJ, Wei H, Vörösmarty CJ et al (2007) Influence of arctic wetlands on arctic atmospheric circulation. J Climate 20(16):4243–4254. doi:10.1175/JCLI4243.1

    Article  Google Scholar 

  • Hayes D, McGuire A, Kicklighter D et al (2011) Is the northern high-latitude land-based CO2 sink weakening? Global Biogeochem Cycles 25(3):GB3018. doi:10.1029/2010GB003813

    Article  CAS  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR et al (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Chang 72:251–298. doi:10.1007/s10584-005-5352-2

    Article  Google Scholar 

  • Hinzman LD, Gieck RE, Kane DL (2008) Spatial and temporal variation of soil temperatures and arctic hydrology in the Kuparuk River Basin, Alaska. In: Proceedings of the 9th international conference on permafrost, University of Alaska Fairbanks, June 29–July 3 2008, pp 713–715

    Google Scholar 

  • Hollesen J, Elberling B, Jansson PE (2010) Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Global Change Biol 17(2):911–926

    Article  Google Scholar 

  • Howarth Burnham J, Sletten RS (2010) Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores. Global Biogeochem Cycles 24:GB3012. doi:10.1029/2009GB003660

    Article  CAS  Google Scholar 

  • Hugelius G, Kuhry P, Tarnocai C et al (2010) Soil organic carbon pools in a periglacial landscape: a case study from the central Canadian Arctic. Permafr Periglac Process 21(1):16–29. doi:DOI:10.1002/ppp.677

    Article  Google Scholar 

  • Jenkinson D, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59(2):400–413

    Article  Google Scholar 

  • Johnstone JF, Chapin FS, Hollingsworth TN et al (2010) Fire, climate change, and forest resilience in interior Alaska. Can J Forest Res 40(7):1302–1312

    Article  Google Scholar 

  • Khvorostyanov DV, Ciais P, Krinner G et al (2008) Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys Res Lett 35:L10703. doi:10.1029/2008GL033639

    Article  CAS  Google Scholar 

  • Koven C, Friedlingstein P, Ciais P et al (2009) On the formation of high-latitude soil carbon stocks: effects of cryoturbation and insulation by organic matter in a land surface model. Geophys Res Lett 36:1–5

    Article  CAS  Google Scholar 

  • Kuhry P, Hugelius G, Dorrepaal E et al (2010) Short communication: potential remobilization of belowground permafrost carbon under future global warming. Permafr Periglac Process 21(2):208–214

    Article  Google Scholar 

  • Kutzbach L, Wille C, Pfeiffer EM (2007) The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia. Biogeosci Discuss 4(3):1953–2005

    Article  Google Scholar 

  • Lachenbruch AH, Sass JH, Lawver LA et al (1982) Depth and temperature of permafrost on the Alaskan arctic slope: preliminary results. U.S. Geological Survey, Reston

    Google Scholar 

  • Langer M, Westermann S, Boike J (2010) Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia – implications for MODIS LST based permafrost monitoring. Remote Sens Environ 114(9):2059–2069. doi:10.1016/j.rse.2010.04.012

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S et al (2011a) The surface energy balance of a polygonal tundra site in northern Siberia – part 1: Spring to fall. The Cryosphere 5:151–171

    Article  Google Scholar 

  • Langer M, Westermann S, Muster S et al (2011b) The surface energy balance of a polygonal tundra site in northern Siberia – part 2: Winter. The Cryosphere 5:509–524

    Article  Google Scholar 

  • Lantuit H, Overduin P, Couture N et al (2011) The Arctic Coastal Dynamics database. A new classification scheme and statistics on arctic permafrost coastlines. Estuaries Coasts. doi:10.1007/s12237-010-9362-6

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E et al (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–1793

    Article  PubMed  CAS  Google Scholar 

  • Lloyd CR, Harding RJ, Friborg T et al (2001) Surface fluxes of heat and water vapour from sites in the European Arctic. Theor Appl Climatol 70:19–33

    Article  Google Scholar 

  • Marchenko S, Romanovsky V, Tipenko G (2008) Numerical modeling of spatial permafrost dynamics in Alaska. In: Proceedings of the ninth international conference on Permafrost, Fairbanks, AK, 29 June–3 July 2008, pp 1125–1130

    Google Scholar 

  • Mastepanov M, Sigsgaard C, Dlugokencky EJ et al (2008) Large tundra methane burst during onset of freezing. Nature 456:628–631. doi:10.1038/nature07464

    Article  PubMed  CAS  Google Scholar 

  • McGuire AD, Apps M, Chapin FS et al (2004) Land cover disturbances and feedbacks to the climate system in Canada and Alaska. In: Gutman G, Janetos AC, Justice CO et al (eds) Land change science. Springer, Dordrecht, pp 139–161

    Google Scholar 

  • McGuire AD, Chapin FS, Wirth C et al (2007) Responses of high latitude ecosystems to global change: potential consequences for the climate system. Terrestrial ecosystems in a changing world, global change – the IGBP series. Springer, New York. doi:10.1007/978-3-540-32730-1_24

  • McGuire AD, Anderson LG, Christensen TR et al (2009) Sensitivity of the carbon cycle in the arctic to climate change. Ecol Monogr 79(4):523–555

    Article  Google Scholar 

  • McGuire AD, Hayes DJ, Kicklighter DW et al (2010) An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus B 62:455–474

    Article  CAS  Google Scholar 

  • Muster S, Langer M, Heim B et al (2012) Scaling land cover of arctic polygonal tundra and its effects on evapotranspiration. Tellus B (in press)

    Google Scholar 

  • Nicolsky DJ, Shakhova N (2010) Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait. Environ Res Lett 5:015006. doi:10.1088/1748-9326/5/1/015006

    Article  Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Alexeev VA et al (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett 34(8):L08501. doi:10.1029/2007GL029525

    Article  Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Panteleev G (2009) Estimation of soil thermal properties using insitu temperature measurements in the active layer and permafrost. Cold Reg Sci Technol 55(1):120–129

    Article  Google Scholar 

  • Nisbet E (2007) Earth monitoring: Cinderella science. Nature 450(6):789–790. doi:10.1038/450789a

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell JA, Harden JW, McGuire AD et al (2011) Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem. Biogeosciences 8:1367–1382. doi:10.5194/bg-8-1367-2011

    Article  CAS  Google Scholar 

  • Oelke C, Zhang T (2004) A model study of circum-Arctic soil temperatures. Permafr Periglac Process 15:103–121

    Article  Google Scholar 

  • Ohmura A (1982) Climate and energy balance on the Arctic tundra. J Climatol 2:65–84

    Article  Google Scholar 

  • Osterkamp TE (2007) Causes of warming and thawing permafrost in Alaska. Eos Trans AGU 88(48):522–523

    Article  Google Scholar 

  • Overduin PP, Hubberten H-W, Rachold V et al (2007) The evolution and degradation of coastal and offshore permafrost in the Laptev and East Siberian Seas during the last climatic cycle. In: Harff J, Hay WW, Tetzlaff DM (eds) Coastline changes: interrelation of climate and geological processes, Geological Society of America, special paper 426, pp 97–111. doi:10.1130/2007.2426(07)

    Chapter  Google Scholar 

  • Peters-Lidard C, Blackburn E, Liang X et al (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55:1209–1224

    Article  Google Scholar 

  • Petrescu AMR, van Beek LPH, Van Huissteden J et al (2010) Modeling regional to global CH4 emissions of boreal and arctic wetlands. Global Biogeochem Cycles 24(4):GB4009. doi:10.1029/2009GB003610

    Article  CAS  Google Scholar 

  • Ping CL, Michaelson GJ, Jorgenson MT et al (2008) High stocks of soil organic carbon in the North American Arctic region. Nat Geosci 1:615–619. doi:10.1038/ngeo284

    Article  CAS  Google Scholar 

  • Rachold V, Eicken H, Gordeev VV et al (2003) Modern terrigenous organic carbon input to the Arctic Ocean. In: Stein R, Macdonald RW (eds) Organic carbon cycle in the Arctic Ocean: present and past. Springer, Berlin, pp 33–55

    Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM et al (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cycles 21(4):GB4011. doi:10.1029/2007GB002934

    Article  CAS  Google Scholar 

  • Rinke A, Kuhry P, Dethloff K (2008) Importance of a soil organic layer for Arctic climate: a sensitivity study with an Arctic RCM. Geophys Res Lett 35:L13709. doi:10.1029/2008GL034052

    Article  Google Scholar 

  • Riseborough D, Shiklomanov N, Etzelmuller B et al (2008) Recent advances in permafrost modeling. Permafr Periglac Process 19(2):137–156

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L et al (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology report 349, 127 pp

    Google Scholar 

  • Romanovskii NN, Hubberten H, Gavrilov AV et al (2004) Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quartenary Sci Rev 23:1359–1369

    Article  Google Scholar 

  • Romanovskii NN, Hubberten H, Gavrilov AV et al (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo Mar Lett 25:167–182. doi:10.1007/s00367-004-0198-6

    Article  CAS  Google Scholar 

  • Romanovsky V, Osterkamp T (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):1–22

    Article  Google Scholar 

  • Romanovsky VE, Osterkamp TE (2000) Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr Periglac Process 11:219–239

    Article  Google Scholar 

  • Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Process 21(2):106–116. doi:10.1002/ppp.689

    Article  Google Scholar 

  • Rouse WR, Blanken PD, Duguay CR et al (2007) Climate–lake interactions. In: Woo MK (ed) Cold region atmospheric and hydrologic studies: the Mackenzie GEWEX experience, vol. 2: hydrologic processes. Springer, New York

    Google Scholar 

  • Sachs T, Wille C, Boike J et al (2008) Environmental controls on ecosystem-scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G00A03. doi:10.1029/2007JG000505

    Article  CAS  Google Scholar 

  • Sachs T, Giebels M, Boike J et al (2010) Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Global Change Biol 16:1–16. doi:10.1111/j.1365-2486.2010.02232.x

    Article  Google Scholar 

  • Sannel ABK, Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake complexes. J Geophys Res 116:G03035. doi:10.1029/2010JG001635

    Article  Google Scholar 

  • Schaefer K, Zhang T, Bruhwiler L et al (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63:165–180. doi:10.1111/j.1600-0889.2011.00527.x

    Article  CAS  Google Scholar 

  • Schirrmeister L, Grosse G, Wetterich S et al (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. J Geophys Res 116:G00M02. doi:10.1029/2011JG001647

    Article  Google Scholar 

  • Schneider von Deimling T, Meinshausen M, Levermann A et al (2011) Estimating the permafrost-carbon feedback on global warming. BG Discuss 8:4727–4761. doi:10.5194/bgd-8-4727-2011

    Article  Google Scholar 

  • Schneider J, Grosse G, Wagner D (2009) Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions. Remote Sens Environ 113:380–391. doi:10.1016/j.rse.2008.10.013

    Article  Google Scholar 

  • Schuur EAG, Bockheim JG, Canadell JG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714. doi:10.1641/B580807

    Article  Google Scholar 

  • Semiletov I, Pipko I (2007) Sinks and sources of carbon dioxide in the Arctic Ocean: results of direct instrumental measurements. Dokl Earth Sci 414(1):642–645

    Article  CAS  Google Scholar 

  • Shakhova N, Semiletov IP, Salyuk A et al (2010) Extensive methane venting to the atmosphere from sediments of the east Siberian Arctic Shelf. Science 327:1246–1250. doi:10.1126/science.1182221

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM (2007) A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafr Periglac Process 18:201–208. doi:10.1002/ppp.581

    Article  Google Scholar 

  • Stendel M, Romanovsky VE, Christensen JH et al (2007) Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics. Global Planet Change 56(1–2):203–214

    Article  Google Scholar 

  • Sturm M, Racine C, Tape K (2001) Increasing shrub abundance in the Arctic. Nature 411:546–547. doi:10.1038/35079180

    Article  PubMed  CAS  Google Scholar 

  • Sturm M, Douglas T, Racine C et al (2005) Changing snow and shrub conditions affect albedo with global implications. J Geophys Res 110:G01004. doi:10.1029/2005JG000013

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C (2006) The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biol 12:686–702. doi:10.1111/j.1365-2486.2006.01128.x

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23(2):GB2023. doi:10.1029/2008GB003327

    Article  CAS  Google Scholar 

  • Tchebakova NM, Parfenova E, Soja AJ (2009) The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ Res Lett 4:1–9

    Google Scholar 

  • Trenberth K (2010) More knowledge, less certainty. Nature 4:20–21. doi:10.1038/climate.2010.06

    Google Scholar 

  • van Everdingen R (1998) Multi-language glossary of permafrost and related ground-Ice terms, revised May 2005. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder

    Google Scholar 

  • van Huissteden J, Berrittella C, Parmentier FJW et al (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Climate Change 1(2):119–123. doi:10.1038/nclimate1101

    Article  CAS  Google Scholar 

  • Viterbo P, Beljaars A, Mahfouf J et al (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteor Soc 125:2401–2426

    Article  Google Scholar 

  • Wagner D, Gattinger A, Embacher A et al (2007) Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biol 13:1089–1099. doi:10.1111/j.1365-2486.2007.01331.x

    Article  Google Scholar 

  • Walker A, Raynolds MK, Daniels DJ et al (2005) The cirumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP et al (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7):71–75. doi:10.1038/nature05040

    Article  PubMed  CAS  Google Scholar 

  • Walter KM, Edwards M, Grosse G et al (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–636. doi:10.1126/science.1142924

    Article  PubMed  CAS  Google Scholar 

  • Wania R, Ross I, Prentice IC (2009a) Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Global Biogeochem Cycles 23(3):1–19

    Google Scholar 

  • Wania R, Ross I, Prentice IC (2009b) Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Global Biogeochem Cycles 23:1–15

    Google Scholar 

  • Washburn AL (1979) Geocryology – a survey of periglacial processes and environments. Edward Arnold, London

    Google Scholar 

  • Westermann S, Lüers J, Langer M et al (2009) The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway. The Cryosphere 3:245–263

    Article  Google Scholar 

  • Westermann S, Langer M, Boike J (2011) Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard – implications for MODIS LST based permafrost monitoring. Remote Sens Environ 115(3):908–922

    Article  Google Scholar 

  • Wille C, Kutzbach L, Sachs T et al (2008) Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biol 14:1395–1408. doi:10.1111/j.1365-2486.2008.01586.x

    Article  Google Scholar 

  • Wilson M, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. Int J Climatol 5(2):119–143

    Article  Google Scholar 

  • Yershov ED (2004) General geocryology. Cambridge University Press, Cambridge

    Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr Periglac Process 14:151–160

    Article  Google Scholar 

  • Yoshikawa K, Bolton WE, Rbomanovsky VR et al (2003) Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J Geophys Res 108(D1):8141. doi:10.1029/2001JD000438

    Google Scholar 

  • Zhang Y, Chen W, Cihlar J (2003) A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J Geophys Res 108:4695. doi:10.1029/2002JD003354

    Article  Google Scholar 

  • Zhang Y, Chen W, Riseborough DW (2008) Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100. Geophys Res Lett 35:L02502. doi:10.1029/2007GL032117

    Article  Google Scholar 

  • Zimov SA, Voropaev YV, Semiletov IP et al (1997) North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277(5327):800–802. doi:10.1126/science.277.5327.800

    Article  CAS  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin FS III (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Boike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boike, J. et al. (2012). Permafrost – Physical Aspects, Carbon Cycling, Databases and Uncertainties. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_8

Download citation

Publish with us

Policies and ethics