Skip to main content

Isolated Corneal Epithelial Stem Cells Derived from Limbal Biopsies: Use of Lectin as a Marker for Identifying Transient Amplifying Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells,Volume 3

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 3))

Abstract

The human transplant of in vitro expanded Limbal Stem Cells (LSCs) represents one of the few available practices using Stem Cells (SCs) for clinical purpose. In certain pathologies as well as accidental injuries, the partial or complete destruction of cornea with the adjacent LSCs result in the vision impairment. A transplant of in vitro-produced corneal epithelium may restore a good eye-sight. Long term restoration of visual function requires renewal of the corneal epithelium, through the continue replacement from SC population. Thus, evaluation of the SC percentage in the engineered cell sheet before transplantation, is very important. In the last years, progress has been done towards the development of molecular markers that could distinguish SCs in vitro, thus being considered unambiguous for LSCs. Indeed nowadays, two markers are used for the identification of LSCs. The first is the ATP Binding Cassette transporter protein subtype G2 (ABCG2) that, however, is not specific only for LSCs. The other marker is the Lycopersicon esculentum Lectin (LEL), that binds N-Acetyl-Glucosamine (GlcNAc) oligomers, labelling intensely only the cell surface of a subphenotype of the LSCs, called early Transient Amplifying Cells (eTACs). Thus, this lectin is an useful and easy-to-use marker for the in vitro identification of Transient Amplifying Cells (TACs). In this review we will discuss the importance of LSCs, and the new methodologies for their isolation, cultivation and in vitro identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCG2/BCRP1:

ATP Binding Cassette transporter protein, subtype G2 also known as Breast Cancer Resistant Protein 1

AMT:

Amniotic Membrane Transplantation

BM40/SPARC:

40-kDa Basement Membrane protein also known as Secreted Protein, Acidic and Rich in Cysteine

CD:

Cluster of Differentiation;

Cx:

Connexin

ECM:

Extracellular Matrix

EGF-R:

Epidermal Growth Factor-Receptor

eTAC:

early Transient Amplifying Cell

Gal:

Galactose

GlcNAc:

N-Acetyl-Glucosamine

HAM:

Human Amniotic Membrane

HGF-R/met:

Hepatocyte Growth Factor-Receptor also known as mesenchymal-epithelial transition factor

HLA:

Human Leukocyte Antigen

IFITM1:

Interferon-Induced Transmembrane protein 1

ITM2A:

Integral Membrane protein 2A

K:

Keratin

KGF-R bek:

Keratinocyte Growth Factor-Receptor and bacterially expressed kinase

KS:

Keratan Sulfate

LEL:

Lycopersicon esculentum Lectin

LSC:

Limbal Stem Cell;

lTAC:

late Transient Amplifying Cell

MAA:

Maakia amurensis Agglutinin

NGF-R TrkA:

Nerve Growth Factor-Receptor and Tropomyosin-receptor kinase A

PKC-γ:

Protein Kinase C-gamma isoform

PNA:

Peanut Agglutinin

SC:

Stem Cell

SPRRs:

Small Proline-Rich Region proteins;

TAC:

Transient Amplifying Cell

TCF4:

Transcription Factor 4

TGF-β-RI, TGF-β-RII:

Transforming Growth Factor-beta-Receptor, type I and II

References

  • Acarin L, Vela JM, González B, Castellano B (1994) Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J Histochem Cytochem 42:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Bian F, Liu W, Yoon KC, Lu R, Zhou N, Ma P, Pflugfelder SC, Li DQ (2010) Molecular signatures and biological pathway profiles of human corneal epithelial progenitor cells. Int J Biochem Cell Biol 42:1142–1153

    Article  PubMed  CAS  Google Scholar 

  • Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435

    Article  PubMed  CAS  Google Scholar 

  • Bissett DL, McPhail SJ, Farmer TL, Robinson HK, Tiesman SP, Reichling TD (2006) Topical N-acetylglucosamine affects pigmentation-relevant genes in in vitro genomics testing. Pig Cell Res 19:373

    Google Scholar 

  • Budak MT, Alpdogan OS, Zhou M, Lavker RM, Akinci MAM, Wolosin JM (2005) Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci 118:1715–1724

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Chen HL, Lai JY, Chen CC, Tsai YJ, Kuo MT, Chu PH, Sun CC, Chen JK, Ma DH (2009) Persistence of transplanted oral mucosal epithelial cells in human cornea. Invest Ophthalmol Vis Sci 50:4660–4668

    Article  PubMed  Google Scholar 

  • Chen B, Mi S, Wright B, Connon CJ (2010) Investigation of K14/K5 as a stem cell marker in the limbal region of the bovine cornea. PLoS One 5:e13192

    Article  PubMed  Google Scholar 

  • Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC (2011) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 5:537–548

    Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv ophthalmol 44:415–425

    Article  PubMed  CAS  Google Scholar 

  • Funderburgh JL, Funderburgh ML, Mann MM, Conrad GW (1991) Physical and biological properties of keratan sulphate proteoglycan. Biochem Soc Trans 19:871–876

    PubMed  CAS  Google Scholar 

  • Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, Kerkis A, Cerruti H, Kerkis I (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 51:1408–1414

    Google Scholar 

  • Gu S, Xing C, Han J, Tso MO, Hong J (2009) Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis 15:99–107

    PubMed  CAS  Google Scholar 

  • Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Ann Rev Biochem 50:733–764

    Article  PubMed  CAS  Google Scholar 

  • Higa K, Shimmura S, Miyashita H, Shimazaki J, Tsubota K (2005) Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells. Exp Eye Res 81:218–223

    Article  PubMed  CAS  Google Scholar 

  • Ho JH, Ma WH, Tseng TC, Chen YF, Chen MH, Lee OK (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng Part A 17:255–266

    Article  PubMed  CAS  Google Scholar 

  • Horenstein AL, Sizzano F, Lusso R, Besso FG, Ferrero E, Deaglio S, Corno F, Malavasi F (2009) CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus. Mol Med 15:76–84

    Article  PubMed  CAS  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722

    PubMed  CAS  Google Scholar 

  • Kim MK, Lee JL, Shin KS, Jung GA, Wee WR, Lee JH, Park KS, Son YS (2006) Isolation of putative corneal epithelial stem cells from cultured limbal tissue. Kor J Ophthalmol 20:55–61

    Article  Google Scholar 

  • Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock AJ (2000) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci 41:2506–2513

    PubMed  CAS  Google Scholar 

  • Kusanagi R, Umemoto T, Yamato M, Matsuzaki Y, Nishida K, Kobayashi Y, Fukai F, Okano T (2009) Nectin-3 expression is elevated in limbal epithelial side population cells with strongly expressed stem cell markers. Biochem Biophys Res Commun 389:274–278

    Article  PubMed  CAS  Google Scholar 

  • Mazzetti S, Frigerio S, Gelati M, Salmaggi A, Vitellaro-Zuccarello L (2004) Lycopersicon esculentum lectin: an effective and versatile endothelial marker of normal and tumoral blood vessels in the central nervous system. Eur J Histochem 4:423–428

    Google Scholar 

  • Miri A, Al-Deiri B, Dua HS (2010) Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 117:1207–1213

    Article  PubMed  Google Scholar 

  • Nachbar MS, Oppenheim JD, Thomas JO (1980) Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum. J Biol Chem 10:2056–2061

    Google Scholar 

  • Ojeda JL, Icardo JM (2006) Basement membrane heterogeneity during chick development as shown by tomato (Lycopersicon esculentum) lectin binding. Histol Histopathol 21:237–248

    PubMed  CAS  Google Scholar 

  • Pajoohesh-Ganji A, Stepp MA (2005) In search of markers for the stem cells of the corneal epithelium. Biol Cell 97:265–276

    Article  PubMed  CAS  Google Scholar 

  • Porter GA, Palade GE, Milici AJ (1990) Differential binding of the lectins Griffonia simplicifolia I and Lycopersicon esculentum to microvascular endothelium: organ-specific localization and partial glycoprotein characterization. Eur J Cell Biol 51:85–95

    PubMed  CAS  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lesson for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  • Rodríguez FD, Vecino E (2011) Stem cell plasticity, neuroprotection and regeneration in human eye diseases. Curr Stem Cell Res Ther 6:73–81

    Article  PubMed  Google Scholar 

  • Sangwan VS (2001) Limbal stem cells in health and disease. Biosci Rep 21:385–405

    Article  PubMed  CAS  Google Scholar 

  • Schlötzer-Schrehardt U, Kruse FE (2005) Identification and characterization of limbal stem cells. Exp Eye Res 81:247–264

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT (2007) Transplantation of ex-vivo cultured limbal epithelial stem cells – a review of current techniques and clinical results. Surv Ophthalmol 52:483–502

    Article  PubMed  Google Scholar 

  • Sudha B, Madhavan HN, Sitalakshmi G, Malathi J, Krishnakumar S, Mori Y, Yoshioka H, Abraham S (2006) Cultivation of human corneal limbal stem cells in Mebiol gel® – a thermo-reversible gelation polymer. Indian J Med Res 124:655–664

    PubMed  CAS  Google Scholar 

  • Takacs L, Toth E, Losonczy G, Szanto A, Bahr-Ivacevic T, Benes V, Berta A, Vereb G (2011) Differentially expressed genes associated with human limbal epithelial phenotypes: new molecules that potentially facilitate selection of stem cell enriched populations. Invest Ophthalmol Vis Sci 52:1252–1260

    Google Scholar 

  • Tsai RJ, Sun TT, Tseng SC (1990) Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits. Ophthalmology 97:446–455

    PubMed  CAS  Google Scholar 

  • Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    PubMed  CAS  Google Scholar 

  • Vergallo C, Fonseca T, Pizzi G, Dini L (2010) Lycopersicon esculentum lectin is a marker of transient amplifying cells in in vitro cultures of isolated limbal stem cells. Tissue Cell 42:259–265

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Tao T, Tang J, Mao YH, Li W, Peng J, Tan G, Zhou YP, Zhong JX, Tseng SC, Kawakita T, Zhao YX, Liu ZG (2009) Importin 13 serves as a potential marker for corneal epithelial progenitor cells. Stem Cells 27:2516–2526

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Yamato M, Nishida K, Hayashida Y, Shimizu T, Kikuchi A, Tano Y, Okano T (2006) Corneal epithelial stem cell delivery using cell sheet engineering: not lost in transplantation. J Drug Target 14:471–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Dini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dini, L., Vergallo, C. (2012). Isolated Corneal Epithelial Stem Cells Derived from Limbal Biopsies: Use of Lectin as a Marker for Identifying Transient Amplifying Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells,Volume 3. Stem Cells and Cancer Stem Cells, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2415-0_12

Download citation

Publish with us

Policies and ethics