Skip to main content

Selection Methods for High-Producing Mammalian Cell Lines

  • Chapter
  • First Online:
Cell Line Development

Part of the book series: Cell Engineering ((CEEN,volume 6))

Abstract

The continually expanding market for biotherapeutics such as recombinant proteins that are produced in mammalian cell cultures and the relatively high clinical doses required of these therapeutics is predicted to lead to a bioreactor capacity crunch. Current estimates suggest that by the turn of the decade worldwide bioreactor capacity, currently standing at approximately 500,000 L, will no longer be able to meet demand. Many advances have been made in process design and medium formulation yet there is still scope to improve specific productivities of these manufacturing cell lines. An important step in this process is the selection of a high producing clone from cell lines that are often highly heterogeneous with regard to productivity this can be a difficult task however given the sheer volume of cells that need to be screened. Here we summarise some of the various methods currently available for the isolation of highly productive clonal cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Rubeai M, Emery AN (1993) Flow cytometry in animal culture. Biotechnology 11:572–574

    Article  PubMed  CAS  Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S (1991) Flow cytometric study of cultured mammalian cells. J Biotechnol 19:67–81

    Article  PubMed  CAS  Google Scholar 

  • Aoki K, Kiyokawa E, Nakamura T, Matsuda M (2008) Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Förster resonance energy transfer. Philos Trans R Soc Lond B Biol Sci 363:2143–2151

    Article  PubMed  CAS  Google Scholar 

  • Assur Z, Schieren I, Hendrickson WA, Mancia F (2007) Two-color selection for amplified co-production of proteins in mammalian cells. Protein Expr Purif 55:319–324

    Article  PubMed  CAS  Google Scholar 

  • Atochina O, Mylvaganam R, Askelband Y, McGrath P (2004) Comparison of results using the gel microdrop cytokine secretion assay with ELISPOT and intracellular cytokine staining assay. Cytokine 27:120–128

    Article  PubMed  CAS  Google Scholar 

  • Ayres KN (1982) High cloning efficiency of human lymphoid cells in agarose without feeder layers. J Natl Cancer Inst 68:919–923

    PubMed  CAS  Google Scholar 

  • Bailey CG, Tait AS, Sunstrom NA (2002) High-throughput clonal selection of recombinant CHO cells using a dominant selectable and amplifiable metallothionein-GFP fusion protein. Biotechnol Bioeng 80:670–676

    Article  PubMed  CAS  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2001) Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnol Bioeng 73:261–270

    Article  PubMed  CAS  Google Scholar 

  • Barnes LM, Moy N, Dickson AJ (2006) Phenotypic variation during cloning procedures: analysis of the growth behaviour of clonal cell lines. Biotechnol Bioeng 94:530–537

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal A, Kuznetzova L, Edelbaum O, Raskin V, Levy M, Sela I (1999) Measurement of green fluorescent protein in plants: quantification, correlation to expression, rapid screening and differential gene expression. Plant Sci 142:93–99

    Article  CAS  Google Scholar 

  • Bogen KT, Enns L, Hall LC, Keating GA, Weinfeld M, Murphy G, Wu RW, Panteleakos FN (2001) Gel microdrop flow cytometry assay for low-dose studies of chemical and radiation cytotoxicity. Toxicology 160:5–10

    Article  PubMed  CAS  Google Scholar 

  • Borth N, Zeyda M, Kunert H, Katinger H (2000) Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 71:266–273

    Article  PubMed  CAS  Google Scholar 

  • Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155

    Article  PubMed  CAS  Google Scholar 

  • Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  PubMed  CAS  Google Scholar 

  • Caron AW, Massie B, Mosser DD (2000) Use of a micromanipulator for high-efficiency cloning of cells co-expressing fluorescent proteins. Methods Cell Sci 22:137–145

    Article  PubMed  CAS  Google Scholar 

  • Carroll S, Al-Rubeai M (2005) ACSD labelling and magnetic cell separation: a rapid method of separating antibody secreting cells from non-secreting cells. J Immunol Methods 296:171–178

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71:528–541

    Article  PubMed  CAS  Google Scholar 

  • Clark IB, Hanania EG, Stevens J, Gallina M, Fieck A, Brandes R, Palsson BØ, Koller MR (2006) Optoinjection for efficient targeted delivery of a broad range of compounds and macromolecules into diverse cell types. J Biomed Opt 11:014034

    Article  PubMed  CAS  Google Scholar 

  • Clarke JB, Spier RE (1980) Variation in the susceptibility of BHK populations and cloned cell lines to three strains of foot-and-mouth disease virus. Arch Virol 63:1–9

    Article  PubMed  CAS  Google Scholar 

  • Coller HA, Coller BS (1986) Poisson statistical analysis of repetitive subcloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121:412–417

    Article  PubMed  CAS  Google Scholar 

  • Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol 24:1591–1597

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Parks DR, Oi VT, Herzenberg LA (1982) Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting. Cytometry 2:395–401

    Article  PubMed  CAS  Google Scholar 

  • Davis JM (1986) A single-step technique for selecting and cloning hybridomas for monoclonal antibody production. Methods Enzymol 121:307–322

    Article  PubMed  CAS  Google Scholar 

  • Davis JM (2002) Basic cell culture – a practical approach, 2nd edn. Oxford University Press.

    Google Scholar 

  • DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, Estes S, Karey KP (2007) Accelerated clone selection for recombinant CHO cells using a FACS-based high-throughput screen. Biotechnol Prog 23:465–472

    Article  PubMed  CAS  Google Scholar 

  • Eagle H, Piez K (1962) The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J Exp Med 116:29–43

    Article  PubMed  CAS  Google Scholar 

  • Eidne KA, Kroeger KM, Hanyaloglu AC (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13:415–421

    Article  PubMed  CAS  Google Scholar 

  • Frykman S, Srienc F (1998) Quantitating secretion rates of individual cells: design of secretion assays. Biotechnol Bioeng 59:214–226

    Article  PubMed  CAS  Google Scholar 

  • Gray F, Kenney JS, Dunne JF (1995) Secretion capture and report web: use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J Immunol Methods 182:155–163

    Article  PubMed  CAS  Google Scholar 

  • Ham RG, McKeehan WL (1979) Media and growth requirements. Methods Enzymol 58:44–93

    Article  PubMed  CAS  Google Scholar 

  • Hamburger A, Salmon SE (1977) Primary assay of human myeloma stem cells. J Clin Invest 60:846–854

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  PubMed  CAS  Google Scholar 

  • Hammill L, Welles J, Carson GR (2000) The gel microdrop secretion assay: identification of a low productivity subpopulation arising during the production of human antibody in CHO cells. Cytotechnology 34:27–37

    Article  PubMed  CAS  Google Scholar 

  • Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BØ, Koller MR (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 91:872–876

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182

    Article  PubMed  CAS  Google Scholar 

  • Hollister JR, Jarvis DL (2001) Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1, 4-galactosyltransferase and α2, 6-sialyltransferase genes. Glycobiology 11:1–9

    Article  PubMed  CAS  Google Scholar 

  • Holmes P, Al-Rubeai M (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230:141–147

    Article  PubMed  CAS  Google Scholar 

  • ICH Guideline (1996) Quality of biotechnological products: analysis of the expression construct in cells used for production of rDNA derived protein products. ICH harmonized tripartite guideline. http://www.fda.gov/cder/guidance/ichq5b.pdf

  • Idusogie EE, Castro JM, Casipit C, Sato A, Terasawa Y, Mulkerrin MG (2008) Development of an antibody screening assay for selection of production cell lines. BioProcess Int 6(4):20–32

    CAS  Google Scholar 

  • Johnson AE (2005) The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett 579:916–920

    Article  PubMed  CAS  Google Scholar 

  • Kacmar J, Srienc F (2005) Dynamics of single cell property distributions in Chinese hamster ovary cell cultures monitored and controlled with automated flow cytometry. J Biotechnol 120:410–420

    Article  PubMed  CAS  Google Scholar 

  • Karawajew L, Micheel B, Behrsing O, Gaestel M (1987) Bi-specific antibody producing hybrid hybridomas selected by a fluorescence activated cell sorter. J Immunol Methods 96:265–270

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J Mol Biol 159:601–621

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ, Bertino JR, Schimke RT (1978) Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. Use of a fluorescence activated cell sorter. J Biol Chem 253:5852–5860

    PubMed  CAS  Google Scholar 

  • Kenney JS, Gray F, Ancel MH, Dunne JF (1995) Production of monoclonal antibodies using a secretion capture report web. Biotechnology (NY) 13:787–790

    Article  CAS  Google Scholar 

  • Kim NS, Kim SJ, Lee GM (1998) Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol Bioeng 60:679–688

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Byun TH, Lee GM (2001) Key determinants in the occurrence of clonal variation in humanized antibody expression of CHO cells during dihydrofolate reductase mediated gene amplification. Biotechnol Prog 17:69–75

    Article  PubMed  CAS  Google Scholar 

  • Koller MR, Hanania EG, Stevens J, Eisfeld TM, Sasaki GC, Fieck A, Palsson BØ (2004) High-throughput laser-mediated in situ cell purification with high purity and yield. Cytometry A 61A:153–161

    Article  Google Scholar 

  • Leno M, Merten OW, Vuillier F, Hache J (1991) IgG production in hybridoma batch culture: kinetics of IgG mRNA, cytoplasmic-, secreted-, and membrane bound antibody levels. J Biotechnol 20:301–311

    Article  PubMed  CAS  Google Scholar 

  • Mancia F, Patel SD, Rajala MW, Scherer PE, Nemes A, Schieren I, Hendrickson WA, Shapiro L (2004) Optimization of protein production in mammalian cells with a coexpressed fluorescent marker. Structure 12:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Manz R, Assenmacher M, Pflüger E, Miltenyi S, Radbruch A (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92:1921–1925

    Article  PubMed  CAS  Google Scholar 

  • Marder P, Maciak RS, Fouts RL, Baker RS, Starling JJ (1990) Selective cloning of hybridoma cells for enhanced immunoglobulin production using flow cytometric cell sorting and automated laser nephelometry. Cytometry 11:498–505

    Article  PubMed  CAS  Google Scholar 

  • McKinney KL, Dilwith R, Belfort G (1995) Optimizing antibody production in batch hybridoma culture. J Biotechnol 40:31–48

    Article  PubMed  CAS  Google Scholar 

  • Meilhoc E, Wittrup KD, Bailey JE (1989) Application of flow cytometric measurement of surface IgG in kinetic analysis of monoclonal antibody synthesis and secretion by murine hybridoma cells. J Immunol Methods 121:167–174

    Article  PubMed  CAS  Google Scholar 

  • Meng YG, Liang J, Wong WL, Chisolm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242:201–207

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-mediated first gene expression in a bicistronic vector. Mol Ther 1:376–382

    Article  PubMed  CAS  Google Scholar 

  • Parks DR, Bryan VM, Oi VT, Herzenberg LA (1979) Antigen-specific identification and cloning of hybridomas with a fluorescence activated cell sorter. Proc Natl Acad Sci USA 76:1962–1966

    Article  PubMed  CAS  Google Scholar 

  • Plautz JD, Day RN, Dailey GM, Welsh SB, Hall JC, Halpain S, Kay SA (1996) Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene 173:83–87

    Article  PubMed  CAS  Google Scholar 

  • Powell KT, Weaver JC (1990) Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Biotechnology (NY) 8:333–337

    Article  CAS  Google Scholar 

  • Racher A, Singh R (2003) Method for selecting antibody producing cells. Pub. No. WO/2003/012449.

    Google Scholar 

  • Rittenberg MB, Buenafe A, Brown M (1986) A simple method for cloning hybridoma cells in 20-µl hanging drops. Methods Enzymol 121:327–331

    Article  PubMed  CAS  Google Scholar 

  • Sanford KK, Earle WR, Likely GD (1948) The growth in vitro of single isolated tissue cells. J Natl Cancer Inst 9:229–246

    PubMed  CAS  Google Scholar 

  • Sanford KK, Covalesky AB, Dupree LT, Earle WR (1961) Cloning of mammalian cells by a simplified capillary technique. Exp Cell Res 23:361–372

    Article  PubMed  CAS  Google Scholar 

  • Sarramegna V, Talmont F, Seree de Roch M, Milon A, Demange P (2002) Green fluorescent protein as a reporter of human µ-opioid receptor overexpression and localization in the methylotrophic yeast Pichia pastoris. J Biotechnol 99:23–29

    Article  PubMed  CAS  Google Scholar 

  • Sato G, Fisher HW, Puck TT (1957) Molecular growth requirements of single mammalian cells. Science 126:961–964

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Hu WS, Srienc F (1990) Flow cytometric study of hybridoma cell culture: correlation between cell surface fluorescence and IgG production rate. Enzyme Microb Technol 12:571–576

    Article  PubMed  CAS  Google Scholar 

  • Seth G, Charaniya S, Wlaschin KF, Hu WS (2007) In pursuit of a super producer – alternative pathways to high producing recombinant mammalian cells. Curr Opin Biotechnol 18:557–564

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346

    Article  PubMed  CAS  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Sitton G, Srienc F (2008) Mammalian cell culture scale-up and fed-batch control using automated flow cytometry. J Biotechnol 135:174–180

    Article  PubMed  CAS  Google Scholar 

  • Sitton G, Hansgate A, Srienc F (2006) Transient gene expression in CHO cells monitored with automated flow cytometry. Cytotechnology 52:13–24

    Article  PubMed  CAS  Google Scholar 

  • Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NA (2008) Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 99:578–587

    Article  PubMed  CAS  Google Scholar 

  • Stühmeier F, Hillisch A, Clegg RM, Diekmann S (2000) Fluorescence energy transfer analysis of DNA containing several bulges and their interaction with CAP. J Mol Biol 302:1081–1100

    Article  PubMed  Google Scholar 

  • Subramanian S, Srienc F (1996) Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J Biotechnol 49:137–151

    Article  PubMed  CAS  Google Scholar 

  • Suzuki J, Fukuda M, Kawata S, Maruoka M, Kubo Y, Takeya T, Shishido T (2006) A rapid protein expression and purification system using Chinese hamster ovary cells expressing retrovirus receptor. J Biotechnol 126:463–474

    Article  PubMed  CAS  Google Scholar 

  • Szaniszlo P, Rose WA, Wang N, Reece LM, Tsulaia TV, Hanania EG, Elferinck CJ, Leary JF (2006) Scanning cytometry with a LEAP: laser-enabled analysis and processing of live cells in situ. Cytometry A 69:641–651

    PubMed  Google Scholar 

  • Turcanu V, Williams NA (2001) Cell identification and isolation on the basis of cytokine secretion: a novel tool for investigating immune responses. Nat Med 7:373–376

    Article  PubMed  CAS  Google Scholar 

  • Underwood PA, Bean PA (1988) Hazards of the limiting-dilution method of cloning hybridomas. J Immunol Methods 107:119–128

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24:769–776

    Article  PubMed  CAS  Google Scholar 

  • Weaver JC (1986) Gel microdroplets for microbial measurement and screening: basic principles. Biotech Bioeng Symp 17:185–195

    CAS  Google Scholar 

  • Weaver JC, McGrath P, Adams S (1997) Gel microdrop technology for rapid isolation of rare and high producer cells. Nat Med 3:583–585

    Article  PubMed  CAS  Google Scholar 

  • Wewetzer K, Seilheimer B (1995) Establishment of a single-step hybridoma cloning protocol using an automated cell transfer system: comparison with limiting dilution. J Immunol Methods 179:71–76

    Article  PubMed  CAS  Google Scholar 

  • Wildy P, Stoker M (1958) Multiplication of solitary HeLa cells. Nature 181:1407–1408

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2001) Flow cytometry: an improved method for the selection of highly productive gene-amplified CHO cells using flow cytometry. Biotechnol Bioeng 74:435–442

    Article  PubMed  CAS  Google Scholar 

  • Zeyda M, Borth N, Kunert R, Katinger H (1999) Optimization of sorting conditions for the selection of stable, high-producing mammalian cell lines. Biotechnol Prog 15:953–957

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Natarajan A, Srienc F (1999) A flow injection flow cytometry system for on-line monitoring of bioreactors. Biotechnol Bioeng 62:609–617

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank James C. Weaver, Division of Health Sciences and Technology, MIT; Tim Ward, The Automation Partnership; and James Fandl, Regeneron Pharmaceuticals for provision of information. We also thank Science Foundation Ireland (SFI) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Al-Rubeai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Browne, S.M., Al-Rubeai, M. (2009). Selection Methods for High-Producing Mammalian Cell Lines. In: Al-Rubeai, M. (eds) Cell Line Development. Cell Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2245-5_7

Download citation

Publish with us

Policies and ethics