Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 337))

Abstract

A brief survey of the mathematical and numerical modelling of ice sheet and ice shelf flows is presented, emphasising the developments over the last decade. For the very slow gravity driven flow of natural ice masses over time scales of thousands of years, the ice is modelled by an incompressible non-linearly viscous fluid with a temperature dependent rate factor. The conservation laws of mass, linear momentum and energy are formulated, together with the free surface conditions and basal conditions for a grounded sheet and a floating shelf. A systematic reduction of the equations for both sheet and shelf is developed by the introduction of dimensionless variables and stretched co-ordinates, which are motivated by the forms of the sheet profiles sought, and the necessary assumptions are drawn out. Analytic progress is made for restricted flow configurations. The failure of depth-integrated equations to provide a valid approximation in more general configurations is noted. A binary mixture theory is developed for co-existing ice and water in extensive melt zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972).

    MATH  Google Scholar 

  • Bentley, C. R.: Antarctic ice streams: a review. J. Geophys. Res. (1987) 92, 8843–8851.

    Article  ADS  Google Scholar 

  • Blatter, H. and Hutter, K.: Polythermal conditions in Arctic glaciers. J. Glaciology (1991) 37, 261–269.

    ADS  Google Scholar 

  • Bodvardsson, G.: On the flow of ice sheets and glaciers. Jökull (1955) 5, 1–8.

    Google Scholar 

  • Boulton, G. S., Smith, G. D. and Morland, L. W.: The reconstruction of former ice sheets and their mass balance characteristics using a non-linearly viscous model. J. Glaciology (1984) 30, 140–152.

    ADS  Google Scholar 

  • Budd, W. F.: The Dynamics of Ice Masses. Australian Nat. Antarctic Res. Expeds Rep. A (IV) No 108 (1969).

    Google Scholar 

  • Budd, W. F.: Ice flow over bedrock perturbations. J. Glaciology (1970) 9, 29–48.

    ADS  Google Scholar 

  • Budd, W. F.: Stress variations with ice flow over undulations. J. Glaciology (1971) 10, 177–195.

    ADS  Google Scholar 

  • Collins, I. F.: On the use of the equilibrium equation and flow law in relating the surface and bed topography of glaciers and ice sheets. J. Glaciology (1968) 7, 199–204.

    ADS  Google Scholar 

  • Fowler, A. C.: Glacier Dynamics. D. Phil. Thesis (1977) Oxford University.

    Google Scholar 

  • Fowler, A. C.: A mathematical approach to the theory of glacier sliding. J. Glaciology (1979) 23, 131–141.

    ADS  Google Scholar 

  • Fowler, A. C.: The use of a rational model in the mathematical analysis of a polythermal glacier. J. Glaciology (1979) 24, 443–456.

    ADS  Google Scholar 

  • Fowler, A. C.: A theoretical treatment of the sliding of glaciers in the absence of cavitation. Phil. Trans. Roy. Soc. (1981) 298, 637–685.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Fowler, A. C.: On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dynamics (1984) 28, 99–140.

    Article  MATH  ADS  Google Scholar 

  • Fowler, A. C.: Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dynamics (1991) to appear.

    Google Scholar 

  • Fowler, A. C. and Larson, D. A.: On the flow ofpolythermal glaciers. I. Model and preliminary analysis. Proc. Roy. Soc. A. (1978) 363, 217–242.

    Article  MathSciNet  ADS  Google Scholar 

  • Glen, J. W.: The creep of polycrystalline ice. Proc. Roy. Soc. A (1955) 228, 515–538.

    ADS  Google Scholar 

  • Glen, J. W.: The flow law of ice. A discussion of the assumptions made in glacier theory, their experimental foundations and consequences. Proc. Iash Symp. 47, Chamonix (1958), 171–183.

    Google Scholar 

  • Herterich, K.: On the flow within the transition zone between ice sheet and ice shelf. Proc. Workshop Dynamics of The West Antarctic Ice Sheet, Utrecht 1985. Ed. Van der Veen, C. J. and Oerlemans, J. Reidel, Dordrecht (1987), 185–202.

    Google Scholar 

  • Herterich, K.: A three-dimensional model of the Antarctic Ice Sheet. Annals of Glaciology (1988) 11, 32–35.

    ADS  Google Scholar 

  • Hindmarsh, R. C. A.: Modelling the dynamics of ice sheets. Prog. Phys. Geog. ( 1992 submitted).

    Google Scholar 

  • Hindmarsh, R. C. A., Morland, L. W., Boulton, G. S. and Butter, K.: The unsteady plane flow of ice sheets: a parabolic problem with two moving boundaries. Geophys. Astrophys. Fluid Dynamics (1987), 39, 183–225.

    Article  MATH  ADS  Google Scholar 

  • Hindmarsh, R. C. A., Boulton, G. S. and Hutter, K.: Modes of operation of thermomechanically coupled ice sheets. Annals of Glaciology (1989) 12, 57–69.

    ADS  Google Scholar 

  • Hindmarsh, R. C. A. and Hutter, K.: Numerical fixed domain mapping solution of free-surface flows coupled with an evolving interior field. Int. J. Num. Anal. Meth. Geomech. (1988) 12, 437–459.

    Article  MATH  Google Scholar 

  • Hughes, T. J.: Is the West Antarctic Ice Sheet distintegrating? J. Geophys. Res. (1973) 78, 7884–7910.

    Article  ADS  Google Scholar 

  • Hughes, T. J.: The West Antarctic Ice Sheet: instability, disintegration and initiation of ice ages. Rev. Geophys. Space Phys. (1975) 13, 502–526.

    Article  ADS  Google Scholar 

  • Hutter, K.: The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched co-ordinates. J. Glaciology (1981) 27, 39–56.

    ADS  Google Scholar 

  • Hutter, K.: Dynamics of glaciers and large ice masses. Ann. Rev. Fluid Mech. (1982) 14, 87–130.

    Article  MathSciNet  ADS  Google Scholar 

  • Hutter, K.: A mathematical model of polythermal glaciers and ice sheets. Geophys. Astrophys. Fluid Dynamics (1982b) 21, 201–224.

    Article  MATH  ADS  Google Scholar 

  • Hutter, K.: Theoretical Glaciology, Reidel, Dordrecht (1983).

    Book  Google Scholar 

  • Hutter, K.: Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate. J. Glaciology in press (1993).

    Google Scholar 

  • Hutter, K., Blatter, H. and Funk, M.: A model computation of moisture content in polythermal glaciers. J. Geophys. Res. (1988) 93, 12205–12214.

    Article  ADS  Google Scholar 

  • Nutter, K., Legerer, F. and Spring, U.: First order stresses and deformation in glaciers and ice sheets. J. Glaciology (1981) 27, 227–270.

    ADS  Google Scholar 

  • Nutter, K., YaicowItz, S. and SzIdarovsiy, F.: A numerical study of plane ice sheet flow. J. Glaciology (1986) 32, 139–160.

    ADS  Google Scholar 

  • Nutter, K., Yakowitz, S. and Szidarovsky, F.: Coupled thermomechanical response of an axisymmetric cold ice sheet. Water Resources Res. (1987) 23, 1327–1339.

    Article  ADS  Google Scholar 

  • Huybrecits, P.: The Antarctic Ice Sheet and environmental change: a three-dimensional modelling study. Reports on Polar Research 99, Alfred Wegener Institute for Polar and Marine Research (1992).

    Google Scholar 

  • Johnson, R. E. and Mcmeeking, R. M.: Near-surface flow in glaciers obeying Glen’s law. Quart. J. Mech. Appl. Math. (1984) 37, 273–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Kamb, W. B.: Sliding motion of glaciers: theory and observation. Rev. Geophys. Space Phys. (1970) 8, 673–728.

    Article  ADS  Google Scholar 

  • Lliboutry, L. A.: General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciology (1968) 7, 21–58.

    ADS  Google Scholar 

  • Macayeal, D. R.: Ice shelf back pressure: form drag versus dynamics drag. Proc. Workshop Dynamics of The West Antarctic Ice Sheet, Utrecht 1985. Ed. Van der Veen, C. J. and Oerlemans, J. Reidel, Dordrecht (1987), 141–160.

    Google Scholar 

  • Macayeal, D. R. and Barcilon, V.: Ice shelf response to ice stream discharge fluctuations, I Unconfined ice tongues. J. Glaciology (1988) 34, 121–127.

    ADS  Google Scholar 

  • Macayeal, D. R. and Lange, M. A.: Ice shelf response to ice stream discharge fluctuations, II Ideal rectangular basin. J. Glaciology (1988) 34, 128–135.

    ADS  Google Scholar 

  • Mellor, M. and Testa, R.: Effect of temperature on the creep of ice. J. Glaciology (1969) 8, 131–145.

    ADS  Google Scholar 

  • Mellor, M.: Mechanical properties of polycrystalline ice. Proc. Iutam Symp. Physics and Mechanics of Ice, Copenhagen 1979. Ed. Tryde, P. Springer-Verlag, Berlin (1980), 217–245.

    Google Scholar 

  • Mercer, J. H.: West Antarctic Ice Sheet and CO2 greenhouse effect: a threat of disaster. Nature (1978) 271, 321–325.

    Article  ADS  Google Scholar 

  • Morland, L. W.: Glacier sliding down an inclined wavy bed. J. Glaciology (1976) 17, 447–462.

    ADS  Google Scholar 

  • Morland, L. W.: Glacier sliding down an inclined wavy bed with friction. J. Glaciology (1976) 17, 463–477.

    Google Scholar 

  • Morland, L. W.: Constitutive laws for ice. Cold Reg. Sci. Tech. (1979) 1, 101–108.

    Google Scholar 

  • Morland, L. W.: Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dynamics (1984) 29, 237–266.

    Article  MATH  ADS  Google Scholar 

  • Morland, L. W.: Unconfined ice sheet flow. Proc. Workshop Dynamics of The West Angarctic Ice Sheet, Utrecht 1985. Ed. Van der Veen, C. J. and Oerlemans, J. Reidel, Dordrecht (1987), 99–116.

    Google Scholar 

  • Morland, L. W.: Non-linear viscoelastic response of ice. Applied Oceans Research (1992) 13, 31–38.

    Google Scholar 

  • Morland, L. W.: Flow of viscous fluids through a porous deformable matrix. Surveys in Geophys. (1992) 13, 209–268.

    Article  ADS  Google Scholar 

  • Morland, L. W. and Johnson, I. R.: Steady motion of ice sheets. J. Glaciology (1980) 25, 229–246.

    ADS  Google Scholar 

  • Morland, L. W. and Johnson, I. R.: Effects of bed inclination and topography on steady isothermal ice sheets. J. Glaciology (1982) 28, 71–90.

    ADS  Google Scholar 

  • Morland, L. W. and Shoemaker, E. M.: Ice shelf balances. Cold Reg. Sci. Tech. (1982) 5, 235–251.

    Article  Google Scholar 

  • Morland, L. W. and Smith, G. D.: Influence of non-uniform temperature distribution on the steady motion of ice sheets. J. Fluid Mech. (1984) 140, 113–133.

    Article  MATH  ADS  Google Scholar 

  • Morland, L. W., Smith, G. D. and Boulton, G. S.: Basal sliding relations deduced from ice sheet data. J. Glaciology (1984) 30, 131–139.

    ADS  Google Scholar 

  • Morland, L. W. and Spring, U.: Viscoelastic fluid relation for the deformation of ice. Cold Reg. Sci. Tech. (1981) 4, 225–268.

    Google Scholar 

  • Morland, L. W. and Spring, U.: Single integral representations for non-linear viscoelastic solids. Mech. Mat. (1982) 1, 161–170.

    Article  Google Scholar 

  • Morland, L. W. and Zainuddin, R.: Plane and radial ice-shelf flow. Proc. Workshop Dynamics of The West Antarctic Ice Sheet, Utrecht 1985. Ed. Van der Veen, C. J. and Oerlemans, J. Reidel, Dordrecht (1987), 117–140.

    Google Scholar 

  • Nye, J. F.: The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfrau firn borehole experiments. Proc. Roy. Soc. A (1953) 219, 477–489.

    Article  ADS  Google Scholar 

  • Nye, J. F.: The motion of ice sheets and glaciers. J. Glaciology (1959) 3, 493–507.

    ADS  Google Scholar 

  • Nye, J. F.: A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. Roy. Soc. A (1969) 311, 445–467.

    Article  ADS  Google Scholar 

  • Nye, J. F.: The effect of longitudinal stress on the shear stress at the base of an ice sheet. J. Glaciology (1969) 8, 207–213.

    ADS  Google Scholar 

  • Nye, J. F.: Glacier sliding without cavitation in a linear viscous approximation. Proc. Roy. Soc. A (1970) 315, 381–403.

    Article  ADS  Google Scholar 

  • Oerlemans, J.: Some basic experiments with a vertically integrated ice sheet model. Tellus (1981) 33, 1–11.

    Article  ADS  Google Scholar 

  • Paterson, W. S. B.: The Physics of Glaciers ( 2nd ed. ). Pergamon, Oxford (1969).

    Google Scholar 

  • Reeh, N.: A flow-line model for calculating the surface profile and velocity, strain-rate, and stress fields in an ice sheet. J. Glaciology (1988) 34, 46–54.

    ADS  Google Scholar 

  • Robin, G. Q.: Surface topography of ice sheets. Nature (1967) 215, 1029–1032.

    Article  ADS  Google Scholar 

  • Robin, G. Q.: Formation, flow, and disintegrations of ice shelves. J. Glaciology (1979) 24, 259–271.

    ADS  Google Scholar 

  • Robin, G. DE Q. and Swithinbank, C.: Fifty years of progress in understanding ice sheets. J. Glaciology (1987) Special Issue, 33–47.

    Google Scholar 

  • Sanderson, T. J. O.: Equilibrium profiles of ice shelves. J. Glaciology (1979) 22, 435–459.

    ADS  Google Scholar 

  • Sanderson, T. J. O. and Doake, C. S. M.: Is vertical shear in an ice shelf negligible ? J. Glaciology (1979) 22, 285–292.

    ADS  Google Scholar 

  • Shoemaker, E. M. and Morland, L. W.: A glacier flow model incorporating longitudinal devia.toric stresses. J. Glaciology (1984) 30, 334–340.

    ADS  Google Scholar 

  • Smith, G. D. and Morland, L. W.: Viscous relations for the steady creep of polycrystalline ice. Cold Reg. Sci. Tech. (1981) 5, 141–150.

    Google Scholar 

  • Spring, U. and Morland, L. W.: Viscoelastic solid relations for the deformation of ice. Cold Reg. Sci. Tech. (1982) 5, 221–234.

    Google Scholar 

  • Spring, U. and Morland, L. W.: Integral representations for the viscoelastic deformation of ice. Cold Reg. Sci. Tech. (1983) 6, 185–193.

    Google Scholar 

  • Steinemann, S.: Flow and recrystallisation of ice. Proc. Iash Symp. 39, Rome (1958), 449–462.

    Google Scholar 

  • Thomas, R. H.: Flow law of Antarctic ice shelves. Nature, Physical Sciences (1971) 232, 85–87.

    Article  ADS  Google Scholar 

  • Thomas, R. H.: The creep of ice shelves: theory. J. Glaciology (1973) 12, 45–53.

    ADS  Google Scholar 

  • Thomas, R. H.: The creep of ice shelves: interpretation of observed behaviour. J. Glaciology (1973) 12, 55–70.

    MATH  ADS  Google Scholar 

  • Thomas, R. H.: Dynamics of marine ice sheets. J. Glaciology (1979) 24, 166–177.

    ADS  Google Scholar 

  • Thomas, R. H.: Ice shelves: a review. J. Glaciology (1979) 24, 273–286.

    ADS  Google Scholar 

  • Thomas, R. H. and Bentley, C. R.: A model for the Holocene retreat of the West Antarctic Ice Sheet. Quat. Res. (1978) 10, 150–170.

    Article  Google Scholar 

  • Thomas, R. H., Sanderson, T. J. O. and Rose, K. E.: Effect of climate warming on the West Antarctic Ice Sheet. Nature (1979) 277, 355–357.

    Article  ADS  Google Scholar 

  • Truesdell, C.: On the foundations of mechanics and energetics, in The Rational Mechanics of Materials. Gordon and Breach, New York (1965), 293–304.

    Google Scholar 

  • Van Der Veen, C. J.: Longitudinal stresses and basal sliding. Proc. Workshop Dynamics of the West Antarctic Ice Sheet, Utrecht 1985. Ed. Van der Veen, C. J. and Oerlemans, J. Reidel, Dordrecht (1987), 223–248.

    Google Scholar 

  • Weertman, J: Deformation of floating ice shelves. J. Glaciology (1957) 3, 38–42.

    ADS  Google Scholar 

  • Weertman, J: On the sliding of glaciers. J. Glaciology (1957) 3, 33–38.

    ADS  Google Scholar 

  • Weertman, J: Equilibrium profile of ice caps. J. Glaciology (1961) 3, 953–964.

    ADS  Google Scholar 

  • Weertman, J: The theory of glacier sliding. J. Glaciology (1964) 5, 287–303.

    ADS  Google Scholar 

  • Weertman, J: Stability of the junction of an ice sheet and an ice shelf. J. Glaciology (1974) 13, 3–11.

    ADS  Google Scholar 

  • Weertman, J: Glaciology’s grand unsolved problem. Nature (1976) 260, 284–286.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Morland, L.W. (1993). The Flow of Ice Sheets and Ice Shelves. In: Hutter, K. (eds) Continuum Mechanics in Environmental Sciences and Geophysics. International Centre for Mechanical Sciences, vol 337. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2600-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2600-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82449-8

  • Online ISBN: 978-3-7091-2600-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics