Skip to main content

Orakel

Eine Frage zum Problem Berechenbarkeit und Material

  • Chapter
Code und Material Exkursionen ins Undingliche
  • 978 Accesses

Zusammenfassung

Berechenbarkeit ist Ressourcen-und Logik -relativ. [COPELAND/SYLVAN 1999, 2000] — Orthodoxe prinzipielle Berechenbarkeitstheorie/Rekursionstheorie abstrahiert von Ressourcen an Raum und Zeit und ist mit formalen Limitationstheoremen konfrontiert. Praktische Berechenbarkeit andererseits bedeutet die Strukturprobleme der Komplexitätsklassen; eine Widerspenstigkeit des ‚Materials‘ mit einem Pandämonium an Effekten. — Das Verhältnis der beiden ist nicht trivial. TURING selbst formalisierte in SYSTEMS OF LOGIC BASED ON ORDINALS relative Berechenbarkeit als Orakel-Turingmaschinen. [TURING 1939:172–173] — Für zwei Mengen A, B ℕ, heißt A Turing-reduzierbar auf B, A T B, wenn es eine Orakelmaschine mit dem Orakel B gibt, welche die charakteristische Funktion von A berechnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • AMBOS-SPIES, K., FEJER, P., (Unveröffentlicht): Degrees of Unsolvability. e-print: http://www.cs.umb.edu/~fejer/articles/History_of_Degrees.pdf

    Google Scholar 

  • BAKER, T.P., GILL, J., SOLOVAY, R. (1975): Relativizations of the P =? NP Question. In: SIAM Journal on Computing 4,4: 431–442.

    Article  Google Scholar 

  • BENNETT, Ch.H., GILL, J., (1981): Relative to a Random Oracle A, P A != NP A != co-NP A with Probability 1. SIAM Journal on Computing 10(1): 96–113.

    Article  Google Scholar 

  • CANETTI, R. et al. (1998): The Random Oracle Methodology Revisited, STOC 1998: 209–218.

    Google Scholar 

  • CHAITIN, G. J. (1987): Computing the Busy Beaver Function, In: T. M. Cover, B. Gopinath, Open Problems in Communication and Computation, Springer, 1987: 108–112.

    Google Scholar 

  • CHANG et al. (1994): The Random Oracle Hypothesis is False. Journal of Computer and System Sciences 49 (1): 24–39.

    Article  Google Scholar 

  • COPELAND, J., PROUDFOOT, D. (1999): Alan Turing’s forgotten ideas in computer science. Scientific American April 1999.

    Google Scholar 

  • COPELAND, B.J., SYLVAND, R. (1999): Beyond the universal Turing machine. Australasian Journal of Philosophy 77: 46–66.

    Article  Google Scholar 

  • COPELAND, B.J., SYLVAN, R. (2000): Computability is Logic-Relative. In: PRIEST, G., HYDE, D. (eds.): Sociative Logics and their Applications. London, Ashgate: 189–199.

    Google Scholar 

  • COVER, T.M., (1973): On determining the irrationality of the mean of a random variable. Annals of Statistics 1 (5): 862–871

    Article  Google Scholar 

  • DAVIS, M. (2006): Why there is no such discipline as hypercomputation. Applied Mathematics and Computation, 178, 1,1: 4–7.

    Article  Google Scholar 

  • DAVIS, M. (2008): What is... Turing Reducibility? Notices American Mathematical Society 53, 10: 1218–1219.

    Google Scholar 

  • DEUTSCH, D. (1985): Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society, Series A, 400: 97–117.

    Article  Google Scholar 

  • EGAN, G. (1995): Permutation City. London: Millennium Orion.

    Google Scholar 

  • FAGIN, R. (1974): Generalized first-order spectra and polynomial-time recognizable sets. In: KARP, R. (ed.) (1974): Complexity of Computation. SIAM-AMS Proceedings 7. Providence, American Mathematical Society: 27–41.

    Google Scholar 

  • GOOD, I.J., (1970): The proton and neuron masses and a conjecture for the gravitational constant. Physical Review Letters 33A: 383–384.

    Google Scholar 

  • HOPCROFT J.E., R. MOTWNI, J.D. ULLMAN, (22002): Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Springer.

    Google Scholar 

  • JAPARIDZE, G. (1994): The logic of the arithmetical hierarchy. Annals of Pure and Applied Logic 66: 89–112.

    Article  Google Scholar 

  • LENZ, F., (1951): The ratio of proton and electron masses, Physical Review 82:554.

    Article  Google Scholar 

  • LESHEM, A. (2006): An experimental uncertainty implied by failure of the physical Church-Turing thesis. e-print: arXiv:math:ph/ 060417v1.

    Google Scholar 

  • ODIFREDDI, P. (1989): Classical Recursion Theory. Amsterdam, North-Holland.

    Google Scholar 

  • PAPADIMITRIOU, CH.H. (1994): Computational Complexity. Reading Mass., Addison Wesley Longman. Section 14.3: Oracles: 339–343.

    Google Scholar 

  • RADÓ, T. (1962): On noncomputable function., Bell Systems Tech. J. 41, 3: 877–884.

    Google Scholar 

  • ROGERS Jr. H., (1967): Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967. Nachdruck bei MIT-Press, Cambridge 1987.

    Google Scholar 

  • ROSENTHAL, J. S., (2006): A first look at rigorous probability theory. World Scientific Publishing, Hackensack.

    Google Scholar 

  • SHORE, R.A.; SLAMAN, T.A. (1999): Defining the Turing jump. Math. Res. Lett. 6 (5–6): 711–722. Retrieved 2008-07-13.

    Google Scholar 

  • SHOENFIELD, J., (1993): Recursion theory, Lecture Notes in Logic 1. Springer Verlag.

    Google Scholar 

  • SIPSER, M. (1997): Introduction to the Theory of Computation. Boston, PWS Publishing Company, Section 9, 2: Relativisation: 318-321.

    Google Scholar 

  • SOARE, R., (1987): Recursively enumerable sets and degrees: a study of computable functions and computable generated sets. Springer-Verlag.

    Google Scholar 

  • S tannett, M., (2006), The case for hypercomputation. Applied Mathematics and Computation, Volume 178, Issue 1, 1: 8–24.

    Google Scholar 

  • TURING, A. (1936/37): On Computable Numbers, with an Application to the Entscheidungsproblem. In: Proceedings of the London Mathematical Society 2, 42: 230–265.

    Google Scholar 

  • TURING, A. (1939): Systems of logic based on ordinals, In: Proceedings of the London Mathematical Society 2, 45: 161–228; Reprinted in: DAVIS, M. (ed.) (1965, 2004): The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems And Computable Functions. Raven Press, New York.

    Article  Google Scholar 

  • WYLER, A., (1971): A mathematicians version of the fine stucture constant. Physics Today 24: 17–19.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Putzmann, L.M. (2010). Orakel. In: Trogemann, G. (eds) Code und Material Exkursionen ins Undingliche. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0121-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0121-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0120-9

  • Online ISBN: 978-3-7091-0121-6

Publish with us

Policies and ethics