Skip to main content

Structure and function of hemoglobins from antarctic organisms: the search for correlations with adaptive evolution

  • Chapter
Cold-Adapted Organisms

Abstract

For the study of temperature adaptations, Antarctica, more than any other habitat on earth, is indeed a unique natural laboratory. After 15 years of extensive investigations on the molecular basis of cold adaptation in antarctic marine and terrestrial organisms, we are finally able to begin identifying firm guidelines for understanding the interplay among biochemical/ physiological processes of oxygen transport, ecology and adaptive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. di Prisco G. Physiological and biochemical adaptations in fish to a cold marine environment. In: Battaglia B, Valencia J, Walton DWH, eds. Proc SCAR 6th Biol Symp, Venice (Antarctic Communities: Species, Structure and Survival). Cambridge: Cambridge Univ Press, 1997: 251–260.

    Google Scholar 

  2. di Prisco G, Giardina B. Temperature adaptation: molecular aspects. In: Johnston IA, Bennett AF, eds. Animals and Temperature. Phenotypic and Evolutionary Adaptation. Soc Exptl Biol, Seminar Series 59. Cambridge: Cambridge Univ Press, 1996: 23–51.

    Chapter  Google Scholar 

  3. di Prisco G, Tamburrini M, D’Avino R. Oxygen-transport systems in extreme environments: multiplicity and structure/function relationship in hemoglobins of Antarctic fish. In: Pörtner HO, Playle R, eds. Cold Ocean Physiology. Soc Exptl Biol, Seminar Series 66. Cambridge: Cambridge Univ Press, 1998: 143–165.

    Chapter  Google Scholar 

  4. Tamburrini M, Condò SG, di Prisco G, Giardina B. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin. Jr Mol Biol 1994; 237: 615–621.

    Article  CAS  Google Scholar 

  5. Gon O, Heemstra PC, eds. Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, South Africa, 1990.

    Google Scholar 

  6. Eastman JT. Antarctic Fish Biology. Evolution in a Unique Environment. San Diego: Academic Press, 1993.

    Google Scholar 

  7. Ruud JT. Vertebrates without erythrocytes and blood pigment. Nature 1954; 173: 848–850.

    Article  CAS  Google Scholar 

  8. di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M. The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B, eds. Biology of Antarctic Fish. Heidelberg: Springer, 1991:263281.

    Google Scholar 

  9. Riggs AF. The Bohr effect. Ann Rev Physiol 1988; 50: 181–204.

    Article  CAS  Google Scholar 

  10. Brittain T. The Root effect. Comp Biochem Physiol 1987; 86B: 473–481.

    Article  CAS  Google Scholar 

  11. D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 1994; 269: 96759681.

    Google Scholar 

  12. Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G. The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 1996; 271: 23780–23785.

    Article  CAS  Google Scholar 

  13. Tamburrini M, D’Avino R, Carratore V, Kunzmann A, di Prisco G. The hemoglobin system of Pleuragramma antarcticum: correlation of hematological and biochemical adaptations with life style. Comp Biochem Physiol 1997; 118A: 1037–1044.

    Article  CAS  Google Scholar 

  14. Macdonald JA, Wells RMG. Viscosity of body fluids from Antarctic notothenioid fish. In: di Prisco G, Maresca B, Tota B, eds. Biology of Antarctic Fish. Heidelberg: Springer, 1991:163178.

    Google Scholar 

  15. Tamburrini M, di Prisco G. The unique features of the hemoglobin system of the Antarctic teleost Pagothenia borchgrevinki. Abstract “Proteine ‘84”, 1994; Abstr A25: 43.

    Google Scholar 

  16. Camardella L, Caruso C, D’Avino R, di Prisco G, Rutigliano B, Tamburrini M, Fermi G, Perutz MF. Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and cristal structure of its carbomonoxy derivative. J Mol Biol 1992; 224: 449–460.

    Article  CAS  Google Scholar 

  17. De Luca R, di Prisco G, D’Avino R. Homology modelling of the R and T structures of Hb 1 of the Antarctic fish Trematomus newnesi. Abstract “Proteine `96’; 1996; Abstr B22: 84.

    Google Scholar 

  18. Ito N, Komiyama NH, Fermi G. Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J Mol Biol 1995; 250: 648–658.

    Article  CAS  Google Scholar 

  19. D’Avino R, di Prisco G. A substitution in the a chain of the main hemoglobin of an Antarctic fish may have a role in the Root effect. Abstract “Proteine `94”, 1994; Abstr A9: 27.

    Google Scholar 

  20. Iwami T. Osteology and relationships of the family Channichthyidae. Mem Natl Inst Polar Res, Tokyo, 1985; Ser E, 36: 1–69.

    Google Scholar 

  21. Balushkin AV. Morphological Bases of the Systematics and Phylogeny of Nototheniid Fishes. Leningrad: Acad Sci USSR, Zool Inst, 1984.

    Google Scholar 

  22. Prirodina VP. Karyotypes of Cottoperca gobio (Bovichthyidae, Notothenioidei) as Compared to Karyotypes of other Notothenioidei. Leningrad: USSR Acad Sci, Proc Zool Inst, 1986; 153: 67–71.

    Google Scholar 

  23. Andriashev AP. A general review of the Antarctic bottom fish fauna. In: Kullander SO, Fernholm B, eds. Proc 5th Congr Eur Ichthyol, Stockholm. Stockholm: Swedish Museum of Natural History, 1987: 357–372.

    Google Scholar 

  24. Bargelloni L, Ritchie PA, Patarnello T, Battaglia S, Lambert DM, Mayer A. Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenesis of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 1994; 11: 854–863.

    CAS  Google Scholar 

  25. Balushkin AV. Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 1992; 30: 132–147.

    Google Scholar 

  26. D’Avino R, di Prisco G. The hemoglobin system of Antarctic and non-Antarctic notothenioid fishes. Comp Biochem Physiol 1997; 118A: 1045–1049.

    Article  Google Scholar 

  27. Fago A, D’Avino R, di Prisco G. The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 1992; 210: 963970.

    Google Scholar 

  28. Romano M, Tamburrini M, Romano M, di Prisco G. Amino acid sequence and oxygen-binding properties of the two hemoglobins of the Antarctic bird Catharacta maccormicki. Ital Biochem Soc Transactions 1996; 7: 182.

    Google Scholar 

  29. Wells RMG, Macdonald JA, di Prisco G. Thin-blooded Antarctic fishes: a rheological comparison of the haemoglobin-free icefishes Chionodraco kathleenae and Cryodraco antarcticus with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 1990; 36: 595–609.

    Article  CAS  Google Scholar 

  30. di Prisco G, Macdonald JA, Brunori M. Antarctic fish survive exposure to carbon monoxide. Experientia 1992; 48: 473–475.

    Article  CAS  Google Scholar 

  31. Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW, III. Genomic remnants of a-globin genes in the hemoglobinless antarctic ice-fishes. Proc Natl Acad Sci USA 1995; 92: 1817–1821.

    Article  CAS  Google Scholar 

  32. Stam WT, Beintema JJ, D’Avino R, Tamburrini M, di Prisco G. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei). J Mol Evol 1997; 45: 437–445.

    Article  CAS  Google Scholar 

  33. Perutz MF, Brunori M. Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 1982; 299: 421–426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. di Prisco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

di Prisco, G., D’Avino, R., Tamburrini, M. (1999). Structure and function of hemoglobins from antarctic organisms: the search for correlations with adaptive evolution. In: Margesin, R., Schinner, F. (eds) Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06285-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06285-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08445-4

  • Online ISBN: 978-3-662-06285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics