Skip to main content

Links of the Southern Ocean to the Global Climate

  • Conference paper
Modelling Oceanic Climate Interactions

Part of the book series: NATO ASI Series ((ASII,volume 11))

Abstract

Roughly 30% of the world ocean volume has temperatures below 2°C. Paleoceanographic data have revealed that this was not always the case. Before the Drake Passage opened due to continental drift about 30 Myr BP the climate of the ocean was considerably warmer. In the course of the establishment of the Southern Ocean in its present shape the difference between surface and bottom temperatures in equatorial regions changed from about 7°C to its present value of about 26°C (Berger 1981). The polar climate of the southern hemisphere got increasingly colder by the growth of glacial ice on the Antarctic continent and the gradual development of the sea ice cover around it. Today the seasonal cycle changes the sea ice extent in the Southern Ocean from about 3 · 106 km 2 in austral summer to 20 · 106 km 2 in austral winter, an area which is roughly as big as the North Atlantic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berger, W. H., 1981: Paleoceanography: The deep-sea record. In: The oceanic lithosphere The Sea Vol. 7 (Ed. C. Emiliani ), Wiley-Interscience, NY, pp. 1437–1519.

    Google Scholar 

  • Bryan, K., 1982: Poleward heat transport by the ocean. Ann. Rev. Earth Planet. Sci., 10, 15–38.

    Article  Google Scholar 

  • Bayden, H. L., 1983: The Southern Ocean. Eddies in Marine Science, A. R. Robinson, Ed., Springer, 265–277.

    Google Scholar 

  • Carmack, E.C. AND T.D. Foster, 1975: Circulation and distribution of oceanographic properties near the Filchner Ice Shelf. Deep-Sea Research, 22, 77–90.

    Google Scholar 

  • Carmack, E.C., 1986: Circulation and mixing in ice-covered waters. In: Untersteiner, N. (Ed.), The geophysics of sea ice. NATO ASI Series B. Physics, Vol 146, Plenum Publishing Corp., New York, 641–712.

    Google Scholar 

  • Carmack, E.C., 1977: Water characteristics of the Southern Ocean south of the Polar Front. In:A voyage of Discovery (Ed. M. V. Angel), Pergamon Press, Oxford, 15–41..

    Google Scholar 

  • Cubasch, U., Hasselmann, K., Hock, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B.D., and R. Sausen 1991: Time-dependent Greenhouse warming computations with a coupled ocean-atmosphere model, 1992. Climate Dyn., 8, 55–69.

    Google Scholar 

  • Deszoeke, R. A., and M. D. Levine, 1981: The advective flux of heat by mean geostrophic motions in the southern ocean. Deep-Sea Res., 28, 1057–1085.

    Article  Google Scholar 

  • Eliassen, A. and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ, 22, 1–23.

    Google Scholar 

  • Emery, W.L. and J. Meincke, 1986: Global water masses: summary and review. Oceanologica Acta, 9, 383–391.

    Google Scholar 

  • Fahrbach, E., M. Knoche and G. Rohardt, 1991: An estimate of water mass transformation in the southern Weddell Sea. Marine Chemistry, 35, 25–44.

    Article  Google Scholar 

  • Fahrbach, E., Augstein, E., and D. Olbers, 1992: Impact of shelf and sea ice on water mass modifications and large scale oceanic circulation in the Weddell Sea.Subm. to Antartic Science Global Concern, Conference Volume.

    Google Scholar 

  • Foldvik, A., T. GammelsrÖd and T. TÖrresen, 1985A: Circulation and water masses on the southern Weddell Sea Shelf.Antarctic Research Series, 43, 5–20.

    Google Scholar 

  • Foster, T. D., and E. C. Carmack, 1976: Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea-Res. 23, 301–317.

    Google Scholar 

  • Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465–488

    Article  Google Scholar 

  • Gordon, A. L., 1988: The Southern Ocean and global climate. Oceanus 31, 39–46.

    Google Scholar 

  • Gordon, A.L. and W.B. Owens, 1987: Polar Oceans. Review of Geophysics, 25, 227–233.

    Article  Google Scholar 

  • Heirtzler, J.R. (ED.), 1985: Relief of the surface of the earth. Rep. MGG-2, National Geophysical Data Center, Boulder, Colorado.

    Google Scholar 

  • Hellmer, H.H. and D. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf, Antarctic Science 1,325–336.

    Google Scholar 

  • Hellmer, H.H. and D.J. Olbers, 1991: On the thermohaline circulation under the Filchner-Ronne Ice Shelf, Antarctic Science,3 433–442.

    Google Scholar 

  • Hidaka, K., and M. Tsuchiya, 1953: On the Antarctic Circumpolar Current. J. Mar. Res., 12, 214–222

    Google Scholar 

  • Houry, S., E. Dombrowsky, P. de Mey, and J.-F. Minster, 1987: Brunt Väisälä frequency and Rossby radii in the Southern Ocean, J. Phys. Oceanogr., 17, 1619–1626.

    Article  Google Scholar 

  • Levitus, S., 1982 Climatological atlas of the world ocean. NOAA Tech. Pap. 3, 173.

    Google Scholar 

  • Lewis, E. L., and R. G. Perkin, 1986: Ice pumps and their rates. J. Geophys. Res. 91, 11756–11762.

    Article  Google Scholar 

  • Marshall, J. Olbers, D. and H. Ross, 1993, Potential vorticity constraints on the dy- namics and hydrography in the Southern Ocean. J. Phys. Oceanogr.,to appear.

    Google Scholar 

  • Mcwilliams, J. C., Holland, W. R., Chow, J. H. S., 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213–291.

    Article  Google Scholar 

  • Nowlin JR., W.D. AND J.M. KLINCK, 1986 `The Physics of the Antarctic Circumpolar Current’ Reviews of Geophysics 24 469–491.

    Google Scholar 

  • Olbers, D. J., and M. Wenzel, 1989: Determining diffusivities from hydrographic data by inverse methods with applications to the circumpolar current. Modelling the ocean general circulation and geochemical tracer transport. J. Willebrand and D. L. T. Anderson, Eds., NATO ASI Series C, Kluwer Acad. Publ., 284, 95–122.

    Google Scholar 

  • Olbers, D. Wübber, CHR., and J.-O. Wolf, 1993: The dynamical balance of wind and buoyancy driven circumpolar currents. Submitted.

    Google Scholar 

  • Rhines, P.B., and W.R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmosph. Oceans, 3, 289–325.

    Article  Google Scholar 

  • Robin, G. de Q., 1979: Formation, flow, and disintegration of ice shelves. Journal of Glaciology, 24, 259–271.

    Google Scholar 

  • Stevens, D.P., and V.O.Ivchenko, 1993: The zonal momentum balance in a realistic eddy resolving general circulation model of the Southern Ocean. In preparation.

    Google Scholar 

  • Treguier, A. M., and J. C. Mcwilliams, 1990: Topographic influences on wind-driven, stratified flow in /3-plane channel: an idealized model for the Antarctic Circumpolar Current,J. Phys. Oceanogr., 20, 321–343.

    Google Scholar 

  • Warrick, R.A., and H. Oerlemans, 1990: Sea level rise.In: Houghton, J.T. et al.(Eds), Climate change, the IPCC scientific assessment. University Press, Cambridge, 256–281.

    Google Scholar 

  • Whitworth III, T., 1988: The Antarctic Circumpolar Current. Oceanus 31 53–58.

    Google Scholar 

  • Wolf-Gladrow, D., A. Hense, J. Schröter and D. Olbers, 1993: A quasigeostrophic eddy-resolving model of the Antarctic Circumpolar Current, In preparation.

    Google Scholar 

  • Wolff, J.-O. and D. Olbers, 1989: The dynamical balance of the Antarctic Circumpolar Current studied with an eddy resolving quasigeostrophic model, in: Mesoscale/synoptic coherent structures in geophysical turbulence, Ed. J. Nihoul, Elsevier Science Publ., 435–458.

    Google Scholar 

  • Wolff, J.-O., E. Maier-Reimer UND D.J. Olbers, 1991: Wind-driven flow over topography in a zonal -plane channel: A quasigeostrophic model of the Antarctic Circumpolar Current, J. Phys. Oceanogr. 21, 236–264

    Article  Google Scholar 

  • Worthington, L.V. 1981: The water masses of the world ocean: some results of a fine-scale census. In: Warren, B,A., and C. Wunsch (Eds.): Evolution in physical oceanography. The MIT Press, Cambridge, 42–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olbers, D. (1993). Links of the Southern Ocean to the Global Climate. In: Willebrand, J., Anderson, D.L.T. (eds) Modelling Oceanic Climate Interactions. NATO ASI Series, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84975-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84975-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84977-0

  • Online ISBN: 978-3-642-84975-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics