Skip to main content

Integration and Excision of Bacteriophage λ

  • Chapter
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 78))

Abstract

Coliphage λ is a temperate virus. A fraction of λ infected bacterial cells survive, and some of the survivors become lysogens. Lysogens are bacteria that have stably acquired two new properties, i.e., immunity to infection by a further challenge of virus and the capacity to produce infective virus. The new properties reflect the presence of λ prophage, the genome of λ virus as it occurs in lysogens. Lysogenization, the establishment of the prophage-containing state, was recognized early to depend on two potentially independent processes. First, lytic growth of the virus must be prevented or the infected cell will die. This process is accomplished primarily by λ repressor whose molecular basis of action and role in lysogeny are described in detail in recent reviews (Pirrotta, 1976); Ptashne et al., 1976). Second, the prophage must be made to replicate in parity with the host genome. For lysogens of phage λ, this is accomplished by the insertion of the entire viral genome into the host genome, forming a single continuous chromosome in which the viral DNA is replicated as part of the host genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya, S., Gottesman, M., De Crombrugghe, B., Court, D.: Transcription termination regulates gene expression. In: RNA Polymerase. New York: Cold Spring Harbor Laboratory 1976, pp. 719–730

    Google Scholar 

  • Ausubel, F.: Radiochemical purification of bacteriophage lambda integrase. Nature 247, 152–154 (1974)

    PubMed  CAS  Google Scholar 

  • Ausubel, F., Voynow, P., Signer, E., Mis try, J.: Purification of proteins determined by two nonessential genes in lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 395–405

    Google Scholar 

  • Botchan, P.: An electron microscopic comparison of transcription on linear and superhelical DNA. J. Mol. Biol. 105, 161–176 (1976)

    PubMed  CAS  Google Scholar 

  • Brack, C., Bickle, T.A., Yuan, R.: The relation of single-stranded regions in bacteriophage PM2 supercoiled DNA to the early melting sequences. J. Mol. Biol. 96, 693–702 (1975)

    PubMed  CAS  Google Scholar 

  • Campbell, A.M.: Episomes. Adv. Genet. 11, 101–145 (1962)

    Google Scholar 

  • Campbell, A.M.: Episomes. New York: Harper & Row 1969, pp. 81–94, 99–113

    Google Scholar 

  • Campbell, A.M.: How viruses insert their DNA into the DNA of the host cell. Sci. Am. 235, 103–113 (1976a)

    Google Scholar 

  • Campbell, A.M.: Significance of constitutive integrase synthesis. Proc. Natl. Acad. Sci. U.S.A. 73, 887–890 (1976b)

    PubMed  CAS  Google Scholar 

  • Campbell, A., Hefferman, L., Hu, S., Szybalski, W.: The integrase promoter of bacteriophage lambda. In: Plasmids, DNA Insertion Elements and Episomes.Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory, 1977, pp. 375–379

    Google Scholar 

  • Chung, S., Echols, H.: Positive regulation of integrative recombination by the ell and cIII genes of bacteriophage X. Virology 79, 312–319 (1977)

    PubMed  CAS  Google Scholar 

  • Court, D., Adhya, S., Nash, H., Enquist, L.: The phage X integration protein (Int) is subject to control by the ell and cIII gene products. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 389–394

    Google Scholar 

  • Crick, F.H.C., Klug, A.: Kinky helix. Nature 255, 530–533 (1975)

    CAS  Google Scholar 

  • Davis, R.W., Parkinson, J.S.: Deletion mutants of bacteriophage lambda. III. Physical structure of att. J. Mol. Biol. 56, 403–423 (1971)

    PubMed  CAS  Google Scholar 

  • Davies, R.W., Dove, W.F., Inokuchi, H., Lehman, J.F., Roehrdanz, R.L.: Regulation of X prophage excision by the transcriptional state of DNA. Nature [New Biol.] 238, 43–45 (1972)

    CAS  Google Scholar 

  • Dickson, R.C., Abelson, J., Barnes, W.M., Reznikoff, W.S.: Genetic regulation: The Lac control region. Science 187, 27–35 (1975)

    PubMed  CAS  Google Scholar 

  • Doerfler, W.: Integration of viral DNA into the host genome. Curr. Top. Microbiol. Immunol. 71, 1–78 (1975)

    PubMed  CAS  Google Scholar 

  • Dove, W.F.: An energy-level hypothesis for X prophage insertion and excision. J. Mol. Biol. 47, 585–589 (1970)

    PubMed  CAS  Google Scholar 

  • Echols, H.: Integrative and excisive recombination by bacteriophage X: Evidence for an excision-specific recombination protein. J. Mol. Biol. 47, 575–583 (1970)

    PubMed  CAS  Google Scholar 

  • Echols, H.: Constitutive integrative recombination by bacteriophage X. Virology 64, 557–559 (1975)

    PubMed  CAS  Google Scholar 

  • Echols, H., Green, L.: Establishment and maintenance of repression by bacteriophage lambda: The role of the el, cII, and cIII proteins. Proc. Natl. Acad. Sci. U.S.A. 68, 2190–2194 (1971)

    PubMed  CAS  Google Scholar 

  • Echols, H., Gingery, R., Moore, L.: Integrative recombination function of bacteriophage X: Evidence for a site-specific recombination enzyme. J. Mol. Biol. 34, 251–260 (1968)

    PubMed  CAS  Google Scholar 

  • Echols, H., Chung, S., Green, L.: Site-specific recombination: Genes and regulation. In: Mechanisms in Recombination. Grell, R.F. (ed.). New York: Plenum Press 1974, pp. 69–77

    Google Scholar 

  • Eisen, H., Brachet, P., Pereita da Silva, L., Jacob, F.: Regulation of repressor expression in X. Proc. Natl. Acad. Sci. U.S.A. 66, 855–862 (1970)

    PubMed  CAS  Google Scholar 

  • Engler, J., Inman, R.B.: Site-specific recombination in bacteriophage lambda. J. Mol. Biol. 113, 385–400 (1977)

    PubMed  CAS  Google Scholar 

  • Enquist, L.W., Skalka, A.: Replication of bacteriophage X DNA dependent on the function of host and viral genes. J. Mol. Biol. 75, 185–212 (1973)

    PubMed  CAS  Google Scholar 

  • Enquist, L.W., Weisberg, R.A.: The red plaque test: A rapid method for identification of excision defective variants of bacteriophage lambda. Virology 72, 147–153 (1976)

    PubMed  CAS  Google Scholar 

  • Enquist, L.W., Weisberg, R.A.: A genetic analysis of the att-int-xis region of coliphage lambda. J. Mol. Biol. III, 97–120 (1977a)

    Google Scholar 

  • Enquist, L.W., Weisberg, R.A.: Flexibility in attachment site recognition by X integrase. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977b, pp. 343–348

    Google Scholar 

  • Fiandt, M., Gottesman, M.E., Shulman, M.J., Szybalski, E.H., Szybalski, W., Weisberg, R.A.: Physical mapping of coliphage Xatt2. Virology 72, 6–12 (1976)

    PubMed  CAS  Google Scholar 

  • Folkmanis, A., Freifelder, D.: Studies on lysogeny in Escherichia coli with bacteriophage. X. Physical observation of the insertion process. J. Mol. Biol. 65, 63–73 (1972)

    CAS  Google Scholar 

  • Freif elder, D., Levine, E.E.: Requirement for transcription in the neighborhood of the phage attachment region for lysogenization of Escherichia coli by bacteriophage X. J. Mol. Biol. 74, 729–733 (1973)

    PubMed  CAS  Google Scholar 

  • Freifelder, D., Meselson, M.: Topological relationship of prophage X to the bacterial chromosome in lysogenic cells. Proc. Natl. Acad. Sci. U.S.A. 65, 200–205 (1970)

    PubMed  CAS  Google Scholar 

  • Freifelder, D., Kirschner, I., Goldstein, R., Baran, N.: Physical study of prophage excision and curing of X prophage from lysogenic Escherichia coli. J. Mol. Biol. 74, 703–720 (1973)

    PubMed  CAS  Google Scholar 

  • Freifelder, D., Baran, N., Chud, L., Folkmanis, A., Levine, E.E.: Requirements for insertion of bacteriophage DNA into the DNA of Escherichia coli. J. Mol. Biol. 91, 401–408 (1975)

    PubMed  CAS  Google Scholar 

  • Gellert, M., Mizuuchi, K, O’Dea, M.H., Nash, H.A.: DNA gyraseGellert, M.F O’Dea, M.H., Itoh, T To miz aw a, J.; Novobiocin and courmermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73, 4474–4478 (1976b)

    PubMed  CAS  Google Scholar 

  • Gingery, R, Echols, H.: Mutants of bacteriophage X unable to integrate into the host chromosome. Proc. Natl. Acad. Sci. U.S.A. 58, 1507–1514 (1967)

    PubMed  CAS  Google Scholar 

  • Goldberg, A.L., St. John, A.C.: Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annual Review of Biochem. 45, 747–803 (1976)

    CAS  Google Scholar 

  • Gottesman, M.E., Weisberg, R.A.: Prophage insertion and excision. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 113–138

    Google Scholar 

  • Gottesman, M.E., Yarmolinsky, M.B.: Integration-negative mutants of bacteriophage lambda. J. Mol. Biol. 31, 487–505 (1968)

    PubMed  CAS  Google Scholar 

  • Gottesman, S., Gottesman, M.E.: Elements involved in site-specific recombination in bacteriophage lambda. J. Mol. Biol. 91, 489–499 (1975a)

    PubMed  CAS  Google Scholar 

  • Gottesman, S., Gottesman, M.: Excision of prophage A in a cell-free system. Proc. Natl. Acad. Sci. U.S.A. 72, 2188–2192 (1975b)

    PubMed  CAS  Google Scholar 

  • Guarneros, G., Echols, H.: New mutants of bacteriophage X with a specific defect in excision from the host chromosome. J. Mol. Biol. 47, 565–574 (1970)

    PubMed  CAS  Google Scholar 

  • Guarneros, G., Echols, H.: Thermal asymmetry of site-specific recombination by bacteriophage X. Virology 52, 30–38 (1973)

    PubMed  CAS  Google Scholar 

  • Henderson, D., Weil, J.: A mutant of Escherichia coli that prevents growth of phage lambda and is bypassed by lambda mutants in a nonessential region of the genome. Virology 71, 546–559 (1976)

    PubMed  CAS  Google Scholar 

  • Hendrix, R. W.: Identification of proteins coded in phage lambda. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 355–370

    Google Scholar 

  • Honigman, A., Hu, S.-L., Chase, R., Szybalski, W.: 4S oop RNA is a leader sequence for the immunity-establishment transcription in coliphage X. Nature 262, 112–116 (1976)

    PubMed  CAS  Google Scholar 

  • Hradecna, Z., Szybalski, W.: Electron micrographic maps of deletions and substitutions in the genomes of transducing coliphages Adg and Abio. Virology 38, 473–466 (1969)

    PubMed  CAS  Google Scholar 

  • Huskey, R.J.: Deletion mutants of bacteriophage lambda. IV. High frequency int-promoted recombination. Mol. Gen. Genet. 127, 39–46 (1973)

    PubMed  CAS  Google Scholar 

  • Inman, R.B., Schnos, M.: Partial denaturation of thymine- and 5-bromouracil containing X DNA in alkali. J. Mol. Biol. 49, 93–98 (1970)

    PubMed  CAS  Google Scholar 

  • Inokuchi, H., Dove, W.F., Freifelder, D.: Physical studies of RNA involvement in bacteriophage ADNA replication and prophage excision. J. Mol. Biol. 74, 721–727 (1973)

    PubMed  CAS  Google Scholar 

  • Jovin, T.M.: Recognition mechanisms of DNA-specific enzymes. Annu. Rev. Biochem. 45, 889–920 (1976)

    PubMed  CAS  Google Scholar 

  • Kamp, D.: In vitro Untersuchung der Integrase des Bakteriophagen A. Thesis, University of Cologne, 1973

    Google Scholar 

  • Kaiser, A.D., Masuda, T.: Evidence for a prophage excision gene in X. J. Mol. Biol. 47, 557–564 (1970)

    PubMed  CAS  Google Scholar 

  • Kaiser, A.D., Wu, R.: Structure and function of DNA cohesive ends. Cold Spring Harbor Symp. Quant. Biol. 33, 729–734 (1968)

    CAS  Google Scholar 

  • Katzir, N., Oppenheim, A., Belfort, M., Oppenheim, A.B.: Activation of the lambda int gene by the ell and cIII gene products. Virology 74, 324–331 (1976)

    PubMed  CAS  Google Scholar 

  • Kotewicz, M., Cuhng, S., Takeda, Y., Echols, H.: Characterization of the integration protein of bacteriophage A as a site-specific DNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 74, 1511–1515 (1977)

    PubMed  CAS  Google Scholar 

  • Kourilsky, P.: Lysogenization by bacteriophage lambda and the regulation of lambda repressor synthesis. Virology 45, 853–857 (1971)

    PubMed  CAS  Google Scholar 

  • Kourilsky, P.: Lysogenization by bacteriophage lambda. II. Identification of genes involved in the multiplicity dependent processes. Biochimie 56, 1511–1516 (1974)

    PubMed  CAS  Google Scholar 

  • Kourilsky, P., Knapp, A.: Lysogenization by bacteriophage lambda. III. Multiplicity dependent phenomena occurring upon infection by lambda. Biochimie 56, 1517–1523 (1974)

    PubMed  CAS  Google Scholar 

  • Kourilsky, P., Boürguignon, M.-F., Gros, F.: Kinetics of viral transcription after induction of prophage. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 647–666.

    Google Scholar 

  • Landy, A., Ross, W.: Viral integration and excision: structure of the lambda att sites. Science 197, 1147–1160 (1977)

    PubMed  CAS  Google Scholar 

  • Lehman, J.F.: X site-specific recombination: Local transcription and an inhibitor specified by the b2 region. Mol. Gen. Genet. 130, 333–344 (1974)

    PubMed  CAS  Google Scholar 

  • Manly, K.F., Signer, E.R., Radding, C.M.: Nonessential functions of bacteriophage X. Virology 37, 177–188 (1969)

    PubMed  CAS  Google Scholar 

  • Miller, H.I., Friedman, D.I.: Isolation of Escherichia coli mutants unable to support lambda integrative recombination. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhori, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 349–356

    Google Scholar 

  • Mizuuchi, K, Nash, H.A.: Restriction assay for integrative recombination of bacteriophage X DNA in vitro: Requirement for closed circular DNA substrate. Proc. Natl. Acad. Sci. U.S.A. 73, 3524–3528 (1976)

    PubMed  CAS  Google Scholar 

  • Mizuuchi, K., Gellert, M., Nash, H.: (in preparation) (1977)

    Google Scholar 

  • Nash, H.A.: XattB-attP, A X derivative containing both sites involved in integrative recombination. Virology 57, 207–216 (1974a)

    PubMed  CAS  Google Scholar 

  • Nash, H.A.: Purification of bacteriophage X int protein. Nature 247, 543–545 (1974b)

    PubMed  CAS  Google Scholar 

  • Nash, H.A.: Integrative recombination in bacteriophage lambda: Analysis of recombinant DNA. J. Mol. Biol. 91, 501–514 (1975a)

    PubMed  CAS  Google Scholar 

  • Nash, H.A.: Integrative recombination of bacteriophage lambda DNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 72, 1072–1076 (1975b)

    PubMed  CAS  Google Scholar 

  • Nash, H.A., Merril, C.R.: DNA of biotin-transducing X bacteriophage. J. Mol. Biol. 43, 357–359 (1969)

    PubMed  CAS  Google Scholar 

  • Nash, H.A., Enquist, L., Weisberg, R.: On the role of the bacteriophage X int gene product in site specific recombination. J. Mol. Biol. 115, in press (1977 a)

    Google Scholar 

  • Nash, H.A., Mizuuchi, K, Weisberg, R., Kikuchi, Y., Gellert, M.: Integrative recombination of bacteriophage A-The biochemical approach to DNA insertions. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhori, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977 b, pp. 363–373

    Google Scholar 

  • Oppenheim, A.B., Katzir, N., Oppenheim, A.: Regulation of protein synthesis in bacteriophage A: Restoration of gene expression in XN~ strains by mutations in the cro gene. Virology 79, 405–425 (1977)

    PubMed  CAS  Google Scholar 

  • Parkinson, J.S.: Deletion mutants of bacteriophage lambda. II. Genetic properties of attdefective mutants. J. Mol. Biol. 56, 385–101 (1976)

    Google Scholar 

  • Pilacinski, W., Mosharrafa, E., Edmundson, R., Zissler, J., Fiandt, M., Szybalski, W.: Insertion sequence IS2 associated with constitutive mutants of bacteriophage lambda. Gene 2, in press (1977)

    Google Scholar 

  • Pirrotta, V.: The A repressor and its action. Curr. Top. Microbiol. Immunol. 74, 21–54 (1976)

    PubMed  CAS  Google Scholar 

  • Ptashne, M., Backman, K, Humayun, M.Z., Jeffrey, A., Maurer, R., Meyer, B., Sauer, R.T.: Auto regulation and function of a repressor in bacteriophage lambda. Science 194, 156–161 (1976)

    PubMed  CAS  Google Scholar 

  • Ray, U., Skalka, A.: Lysogenization of Escherichia coli by bacteriophage lambda: Complementary activity of the host’s DNA polymerase I and ligase and phage replication proteins O and P. J. Virol. 18, 511–517 (1976)

    PubMed  CAS  Google Scholar 

  • Reichardt, L., Kaiser, A.D.: Control of A repressor synthesis. Proc. Natl. Acad. Sci. U.S.A. 68, 2185–2189 (1971)

    PubMed  CAS  Google Scholar 

  • Roehrdanz, R.L., Dove, W.F.: Studies of the stimulation by helper of A site-specific recombination in lytic crosses. Virology 79, 32–39 (1977a)

    PubMed  CAS  Google Scholar 

  • Roehrdanz, R.L., Dove, W.F.: A factor in the b2 region affecting site-specific recombinations in lambda. Virology 79, 40–49 (1977b)

    PubMed  CAS  Google Scholar 

  • Ryan, M.J.: Coumermycin Ax: A preferential inhibitor of replicative DNA synthesis in Escherichia coli. I. In vivo characterization. Biochemistry 15, 3769–3777 (1976)

    Google Scholar 

  • Sadowski, P.D., Vetter, D.: Genetic recombination of bacteriophage T7 DNA in vitro. Proc. Natl. Acad. Sci. U.S.A. 73, 692–696 (1976)

    PubMed  CAS  Google Scholar 

  • Schuster, H., Beyersmann, D., Mikolajczyk, M., Schlicht, M.: Prophage induction by high temperature in thermosensitive dna mutants lysogenic for bacteriophage lambda. J. Virology 11, 879–885 (1973)

    PubMed  CAS  Google Scholar 

  • Sharp, P.A., Hsu, M.-T., Davidson, N.: Note on the structure of prophage A. J. Mol. Biol. 71, 499–501 (1972)

    PubMed  CAS  Google Scholar 

  • Shimada, K, Campbell, A.: Int-constitutive mutants of bacteriophage lambda. Proc. Natl. Acad. Sci. U.S.A. 71, 237–241 (1974a)

    PubMed  CAS  Google Scholar 

  • Shimada, K, Campbell, A.: Lysogenization and curing by int-constitutive mutants of phage A. Virology 60, 157–165 (1974b)

    PubMed  CAS  Google Scholar 

  • Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens J. Mol. Biol. 63, 483–503 (1972)

    PubMed  CAS  Google Scholar 

  • Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia coli K12. J. Mol. Biol. 80, 297–314 (1973)

    PubMed  CAS  Google Scholar 

  • Shimada, K, Weisberg, R.A., Gottesman, M.E.: Prophage lambda at unusual chromosomal locations. III. The components of the secondary attachment sites. J. Mol. Biol. 93, 415–429 (1975)

    PubMed  CAS  Google Scholar 

  • Shulman, M., Gottesman, M.: Lambda att2: a transducing phage capable of intramolecular int-xis promoted recombination. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 477–487

    Google Scholar 

  • Shulman, M., Gottesman, M.: Attachment site mutants of bacteriophage lambda. J. Mol. Biol. 81, 461–482 (1973)

    PubMed  CAS  Google Scholar 

  • Shulman, M.J., Mizuuchi, K, Gottesman, M.M.: New att mutants of phage A. Virology 72, 13–22 (1976)

    PubMed  CAS  Google Scholar 

  • Signer, E.R.: On the control of lysogeny in phage A. Virology 40, 624–633 (1970)

    PubMed  CAS  Google Scholar 

  • Signer, E.R., Weil, J., Kimball, P.C.: Recombination in bacteriophage A. III. Studies on the nature of the prophage attachment region. J. Mol. Biol. 46, 543–563 (1969)

    PubMed  CAS  Google Scholar 

  • Skalka, A., Burgi, E., Hershey, A.D.: Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J. Mol. Biol. 34, 1–16 (1968)

    PubMed  CAS  Google Scholar 

  • Smith, D.H., Davis, B.D.: Mode of action of novobiocin in Escherichia coli. J. Bacteriol. 93, 71–79 (1967)

    PubMed  CAS  Google Scholar 

  • Sobell, H.M., Tsai, C.-C., Gilbert, S.G., Jain, S.C., Sakore, T.D.: Organization of DNA in chromatin. Proc. Natl. Acad. Sci. U.S.A. 73, 3068 (1976)

    PubMed  CAS  Google Scholar 

  • Sogo, J.M., Greenstein, M., Skalka, A.: The circle mode of replication of bacteriophage lambda: The role of covalently closed templates and the formation of mixed catenated dimers. J. Mol. Biol. 103, 537–562 (1976)

    PubMed  CAS  Google Scholar 

  • Staudenbauer, W.L.: Novobiocin-A specific inhibitor of semi-conservative DNA replication in permeabilized Escherichia coli cells. J. Mol. Biol. 96, 201–205 (1975)

    PubMed  CAS  Google Scholar 

  • Syvanen, M.: In vitro genetic recombination of bacteriophage A. Proc. Natl. Acad. Sci. U.S.A. 71, 2496–2499 (1974)

    PubMed  CAS  Google Scholar 

  • Thomas, R.: Control circuits. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 211–220

    Google Scholar 

  • Thompson, B.J., Camien, M.N., Warner, R.C.: Kinetics of branch migration in double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 73, 2299–2303 (1976)

    PubMed  CAS  Google Scholar 

  • Tomizawa, J., Anraku, N.: Molecular mechanisms of genetic recombination in bacteriophage. IV. Absence of polynucleotide interruption in DNA of T4 and A phage particles, with special reference to heterozygosis. J. Mol. Biol. 11, 509–527 (1965)

    PubMed  CAS  Google Scholar 

  • Wang, J.C.: Interactions between twisted DNA’s and enzymes: the effects of superhelical turns. J. Mol. Biol. 87, 797–816 (1974)

    PubMed  CAS  Google Scholar 

  • Weil, J., Signer, E.R.: Recombination in bacteriophage. II. Site-specific recombination promoted by the integration system. J. Mol. Biol. 34, 273–279 (1968)

    PubMed  CAS  Google Scholar 

  • Weisberg, R.A.: Requirements for curing A lysogens. Virology 41, 195–199 (1970)

    PubMed  CAS  Google Scholar 

  • Weisberg, R.A., Gottesman, M.E.: The stability of int and xis functions. In: The Bacteriophage Lambda. Hershey, A.D. (ed.). New York: Cold Spring Harbor Laboratory 1971, pp. 489–500

    Google Scholar 

  • Weisberg, RA., Gottesman, S., Gottesman, M.E.: Bacteriophage A: The lysogenic pathway. In: Comprehensive Virology. Frankel-Conrat, H., Wagner, R. (eds.). New York: Plenum Press 1977, Vol. Ill, pp. 197–258

    Google Scholar 

  • Williams, J.G.K., Wulff, D.L., Nash, H.A.: A mutant of Escherichia coli deficient in a host function required for phage lambda integration and excision. In: Plasmids, DNA Insertion Elements and Episomes. Shapiro, J., Bukhari, A., Adhya, S. (eds.). New York: Cold Spring Harbor Laboratory 1977, pp. 357–361

    Google Scholar 

  • Wulff, D.L.: Lambda CIN-1, a new mutation which enhances lysogenization by bacteriophage lambda, and the genetic structure of the lambda CY region. Genetics 82, 401–416 (1976)

    PubMed  CAS  Google Scholar 

  • Yarmolinsky, M.B.: Alternative modes of prophage insertion and excision. Adv. Biosci. 8, 31–67 (1972)

    Google Scholar 

  • Zabin, I., Villarejo, M.R.: Protein complementation. Annu. Rev. Biochem. 44, 295–313 (1975)

    PubMed  CAS  Google Scholar 

  • Zissler, J.: Integration-negative) mutants of phage A. Virology 31, 189 (1967)

    PubMed  CAS  Google Scholar 

  • Zissler, J., Signer, E., Schaeffer, F.: The role of recombination in growth of bacteriophage lambda. I. The gamma gene. In: The Bacteriophage Lambda. Hershey, A.D. (ed.)1. New York: Cold Spring Harbor Laboratory 1971, pp. 455–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nash, H.A. (1977). Integration and Excision of Bacteriophage λ. In: Arber, W., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66800-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66800-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66802-9

  • Online ISBN: 978-3-642-66800-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics