Skip to main content

Carbon Dioxide and Methane Emmissions at Arctic Tundra Sites in North Siberia

  • Chapter
Land-Ocean Systems in the Siberian Arctic

Abstract

Carbon emmissions (CO2 and CH4) at an arctic polygonal tundra on Taymyr Peninsula, North Siberia (75°N, 98°E), were measured during summer 1996. The average emissions of carbon dioxide were about 50 times higher (150 mg CO2*m-2*h-1) than those of methane (3 mg CH4 *m-2*h-1). Emission rates of carbon dioxide and methane show dependency on water table and soil temperature. Whereas carbon dioxide emmissions appear to be primarily dependent on soil temperature, the water table position plays the major role with respect to methane emissions. Compared to the wet central polygon depression, the methane emissions from the dryer polygon margin practically ceased, while carbon dioxide emissions were slightly higher at the latter site. Thus, gaseous carbon loss from permafrost affected soils to the atmosphere was determined by the position of sites in the microrelief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrova, V.D. (1980) The Arctic and Antarctic: Their devision into geobotanical areas. Cambridge University Press, Cambridge, 247 pp.

    Google Scholar 

  • Aselman, I. and PJ. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J.Atmos. Chem. 8, 307–358.

    Article  Google Scholar 

  • Billings, W.D., K.M. Peterson, J.O. Luken, and D.A. Mortensen (1984) Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65, 26–29.

    Article  Google Scholar 

  • Botch, M.S., K.I. Kobak, T.S. Vinson, T.P. Kolchugina (1995) Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles 9, 37–46.

    Article  Google Scholar 

  • Bunnel, F.L., S.F. MacLean Jr. and J. Brown (1975) Barrow, Alaska, U.S.A.. In: Rosswall, T. and O.W. Heal (eds.), Structure and function of tundra ecosystems, Ecological Bulletins 20. Stockholm: Swedish Natural Science Research Council, 425–448.

    Google Scholar 

  • Chanton, J.P., C.S. Martens, C.A. Kelley, P.M. Crill and W.J. Showers (1992) Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake.J. Geophys.Res. 97, 16681- 16688.

    Google Scholar 

  • Gorham, E. (1991) Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecological Applications 1, 182–195.

    Article  Google Scholar 

  • Gundelwein, A., H. Becker, T. Müller-Lupp, and N. Schmidt (1997) Lake Levinson-Lessing - the soils. In: The Expedition on Taymyr and Severnaya Zemlya 1996, Melles, M. (ed.), Reports on Polar Research 237, 11–14.

    Google Scholar 

  • Harriss, R., K. Bartlett, S. Frolking and P. Crill (1993) Methane Emissions from Northern High-Latitude Wetlands. In: Biogeochemistry of global change: radiatively active trace gases, Oremland, R.S. (ed.), Chapman and Hall, New York, 449–485.

    Chapter  Google Scholar 

  • Lelieveld, J., P.J. Crutzen, and C. Briihl (1993) Climate effects of atmospheric methane. Chemosphere 26, 739- 768.

    Article  Google Scholar 

  • Luken, J.O. and W.D. Billings (1985) The influence of microtopographic heterogenity on carbon dioxide efflux from a subarctic bog. Holarctic Ecology 8, 306–312.

    Google Scholar 

  • Matthews, E. and I. Fung (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles 1, 61–86.

    Article  Google Scholar 

  • Miller, P.C., R. Kendall and W.C. Oechel (1983) Simulating carbon accumulation in northern ecosystems. Simulation 40, 119–131.

    Article  Google Scholar 

  • Moore, T.R., (1986) Carbon dioxide evolution from subarctic peatlands in Eastern Canada. Arctic and Alpine Research 19, 189–193.

    Article  Google Scholar 

  • Moore, T.R. and R. Knowles (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Science 69, 33–38.

    Article  Google Scholar 

  • Morrisey, L.A. and G.P. Livingstone (1992) Methane emission from Arctic tundra: An assessment of local spatial variability. J. Geophys. Res. 97, 16661–16670.

    Google Scholar 

  • Nadelhoffer, K.J., A.E. Giblin, G.R. Shaver and J.A. Laundre (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72, 242–253.

    Article  Google Scholar 

  • Oberbauer, S.F., S.J. Hastings, J.L. Beyers and W.C. Oechel (1989) Comparative effects of downslope water and nutrient movement on plant nutrition, photosynthesis and growth in Alaskan tundra. Holarctic Ecology 12, 324–334.

    Google Scholar 

  • Oberbauer, S. F., J. D. Tenhunen and J. F. Reynolds (1991) Environmental effects on C02 efflux from water track and tussock tundra in arctic Alaska, U.S.A.. Arctic and Alpine Research 23, 162–169.

    Article  Google Scholar 

  • Peterson, K.M. and W.D. Billings (1975) Carbon dioxide flux from tundra soils and vegetation as related to temperature at Barrow, Alaska. American Midland Naturalist 94, 88–98.

    Article  Google Scholar 

  • Pfeiffer, E.-M., A. Gundelwein, T. Nothen, H. Becker, and G. Guggenberger (1996) Characterization of the Organic Matter in Permafrost Soils and Sediments of theTaymyr Peninsula/Siberia and Severnaya Zemlya/Arctic Region. In: The Expedition on Taymyr 1995, Bolshiyanov, D.Yu. and H.-W. Hubberten (eds.), Reports on Polar Research 211, 46–83.

    Google Scholar 

  • Poole, D. K. and P.C. Miller (1982) Carbon dioxide flux from three arctic tundra types in North-Central Alaska, U.S.A.. Arctic and Alpine Research 14, 27–32.

    Google Scholar 

  • Post, W.M., J. Pastor, P.J. Zinke and A.G. Strangenberger (1985) Global patterns of soil nitrogen. Nature 317, 613–616.

    Article  Google Scholar 

  • Samarkin, V.A., A. Gundelwein and E.-M. Pfeiffer (1997) Methane emissions. In: The Expedition on Taymyr and Severnaya Zemlya 1996, Melles, M.(ed.), Reports on Polar Research 237, 35–44.

    Google Scholar 

  • Silvola, J., J. Aim, U. Ahlholm, H. Nykänen and P.J. Martikainen (1996) CO2 fluxes from peat in boeal mires under varying temperature and moisture conditions. Journal of Ecology 84, 219–228.

    Article  Google Scholar 

  • Sommerkorn, M. (1997) Microbial Activity. In: The Expedition on Taymyr and Severnaya Zemlya 1996, M. Melles (ed.), Reports on Polar Research 273, 30–35.

    Google Scholar 

  • Svensson, B.H. (1980) Carbon dioxide and methane emmissions from the ombotrophic parts of a subarctic mire. In: Ecology of a Subarctic Mire, Sonesson, M. (ed.), Ecological Bulletin 30. Stockholm: Swedish Natural Science Research Council, 235–250.

    Google Scholar 

  • Svensson, B.H. and T. Rosswall (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350.

    Article  Google Scholar 

  • Topp, E. and E. Pattey (1997) Soils as sources and sinks for atmospheric methane. Can. J. Soil Science 77, 167–178.

    Article  Google Scholar 

  • Vourlitis, G.L. and W.C. Oechel (1997) The role of northern ecosystems in the global methane budget. In: Global change and Arctic Terrestrial Ecosystems, Oechel, W.C., T. Callaghan, T. Gilmanov, J.I. Holten, B. Maxwell, U. Molau and B. Sveinbjörnsson (eds.), Ecological Studies 124, Springer, Berlin, 266–289.

    Chapter  Google Scholar 

  • Waddington, J.M. and N.T. Roulet, (1996) Atmosphere-wetland carbon exchanges: Scale dependency of C02 and CH4 exchange on the developmental topography of a peatland. Global Biogeochemical Cycles 10, 233–245.

    Article  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh and K.S. Kizer (1991) Methane consumption and emissions by taiga. Global Biogeochemical Cycles 5, 261–273.

    Article  Google Scholar 

  • Whalen, S.C. and W.S. Reeburgh (1992) Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochemical Cycles 6, 139–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommerkorn, M., Gundelwein, A., Pfeiffer, EM., Bölter, M. (1999). Carbon Dioxide and Methane Emmissions at Arctic Tundra Sites in North Siberia. In: Kassens, H., et al. Land-Ocean Systems in the Siberian Arctic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60134-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60134-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64270-8

  • Online ISBN: 978-3-642-60134-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics