Skip to main content

No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae)

  • Chapter
Ecological Studies in the Antarctic Sea Ice Zone
  • 359 Accesses

Abstract

The molecular slow-down hypothesis suggests a temperature-controlled slow-down of molecular substitution rates to be a common characteristic of polar poikilotherm organisms. There is evidence that metabolic rate may be controlling the rate of nucleotide substitution in many organisms. In this study, absolute rates of nucleotide change based on a geologically calibrated molecular clock from the 16S ribosomal RNA (LSU) gene of 12 species of serolid isopods living in Antarctic waters are calculated and compared with data from sesarmid crabs from tropical latitudes. Contrary to the prediction, no difference of molecular substitution rates between Crustacea from different latitudes can be detected. This result is corroborated by testing the relative rate in serolid isopods against other Crustacea from tropical, temperate and Antarctic waters. While an influence of temperature on the rate of spontaneous mutation cannot be dismissed, the results show that temperature is not the key determinant of the rate of nucleotide change as has been suggested by the molecular slow-down hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89:3972–3976.

    Article  PubMed  CAS  Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine benthos: an overview. In: Battaglia B, Valencia J, Walton DHW (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14.

    Google Scholar 

  • Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (Suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863.

    PubMed  CAS  Google Scholar 

  • Bargelloni L, Patarnello T, Ritchie PA, Battaglia B, Meyer A (1997) Molecular phylogeny and evolution of notothenioid fish based on partial sequences of 12S and 16S ribosomal RNA mitochondrial genes. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 45–50.

    Google Scholar 

  • Caccone A, Milinkovitc MC, Sbordoni V, Powell JR (1997) Mitochondrial DNA rates and biogeography in european newts (genus Euproctus). Syst Biol 46:126–144.

    Article  PubMed  CAS  Google Scholar 

  • Clarke A (1992) Is there a latitudinal diversity cline in the sea? Trends Ecol Evol 7:286–287.

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218.

    Article  PubMed  CAS  Google Scholar 

  • Crame JA (1997) An evolutionary framework for the polar regions. J Biogeogr 24:1–9.

    Article  Google Scholar 

  • Cunningham CW, Blackstone NW, Buss LW (1992) Evolution of king crabs from hermit crab ancestors. Nature 355:539–542.

    Article  PubMed  CAS  Google Scholar 

  • Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Academic Press, San Diego.

    Google Scholar 

  • Ehrmann WU (1994) Die känozoische Vereisungsgeschichte der Antarktis. Ber Polarforsch 137:1–152.

    Google Scholar 

  • Gutell RR, Gray MW, Schnare MN (1993) A compilation of large subunit (23S and 23S-like) ribosomal RNA structures. Nucleic Acids Res 21:3055–3074.

    Article  PubMed  CAS  Google Scholar 

  • Held C (2000) On the phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15:165–178.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Parsons PA (1997) Extreme environmental change and evolution, 2nd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Holmquist R (1983) Transitions and transversions in evolutionary descent: an approach to understanding. J Mol Evol 19:134–144.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton N, Weigt LA, Solorzano LA, Mills DK, Bermingham E (1993) Divergence in proteins, mitochondrial DNA, and re-productive compatibility across the Isthmus of Panama. Science 260:1629–1632.

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals. Proc Natl Acad Sci USA 86:6196–6200.

    Article  PubMed  CAS  Google Scholar 

  • Luxmoore RA (1984) A comparison of the respiration rate of some Antarctic isopods with species from lower latitude. Br Antarct Surv Bull 62:53–65.

    Google Scholar 

  • Martin AP (1999) Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). Mol Biol Evol 16:996–1002.

    PubMed  CAS  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091.

    Article  PubMed  CAS  Google Scholar 

  • Patarnello T, Bargelloni L, Varotto V, Battaglia B (1996) Krill evolution and the antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol 126:603–608.

    Article  Google Scholar 

  • Rand DM (1994) Thermal habit, metabolic rate and the evolution of mitochondrial DNA. Trends Ecol Evol 9:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Schubart CD, Diesel R, Hedges SB (1998) Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365.

    Article  CAS  Google Scholar 

  • Schubart CD, Neigel JE, FelderDL (2000) The use of the mitochondrial 16S rRNA gene for phylogenetic and biogeographic studies of brachyuran Crustacea. Crust Issues 12:817–830.

    Google Scholar 

  • Slowinski JB, Arbogast BS (1999) Is the rate of molecular evolution inversely related to body size? Syst Biol 48:396–399.

    Article  PubMed  CAS  Google Scholar 

  • Sturmbauer C, Levinton JS, Christy J (1996) Molecular phylogeny analyis of fiddler crabs: test of the hypothesis of increased behavioural complexity. Proc Natl Acad Sci USA 93:10855–10857.

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phyloge¬netic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer, Sunderland, Mass, pp 407–514.

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833.

    PubMed  CAS  Google Scholar 

  • Wägele J-W (1987) On the reproductive biology of Ceratoserolis trilobitoides (Crustacea: Isopoda): latitudinal variation of fecundity and embryonic development. Polar Biol 7:11–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Held, C. (2002). No evidence for slow-down of molecular substitution rates at subzero temperatures in Antarctic serolid isopods (Crustacea, Isopoda, Serolidae). In: Arntz, W.E., Clarke, A. (eds) Ecological Studies in the Antarctic Sea Ice Zone. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59419-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59419-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63973-9

  • Online ISBN: 978-3-642-59419-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics