Skip to main content

Validating MRI Measures of Disease Stage and Progression in Alzheimer’s Disease

  • Conference paper
The Living Brain and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

  • 165 Accesses

Abstract

Currently no absolute diagnostic marker exists for Alzheimer’s disease (AD). Therefore, better non-invasive methods are needed to identify the risk of developing AD, staging the disease, and measuring its progression. The ideal biomarker would be a direct in vivo measurement of plaque and tangle burden, and promising results toward this objective have been reported in nuclear medicine (Klunk et al. 2002; Small et al. 2002). Until such direct measures have been thoroughly validated, however, other approaches must be employed. This chapter will review the literature supporting the position that indirect measures of AD can be valid biomarkers of disease stage and progression. It seems logical that indirect measures of disease can be valid biomarkers provided that changes in the measurement are empirically proven to track with independent measures of disease stage and progression, and that a plausible biological link exists between change in the measurement and progression of the disease itself. Magnetic resonance imaging (MRI) is a highly flexible imaging modality capable of measuring a number of different biologic parameters, for example, anatomic structure, metabolite concentration, proton diffusion, tissue perfusion, etc. All these tissue properties have been evaluated to some extent with MRI as potential diagnostic features of AD. The most widely studied MRI parameter in AD, however, is anatomic structure. Brain morphometry — specifically volume — is arguably the most straightforward of all tissue parameters measurable by MRI. Measurements of tissue volume are highly reliable and also have a strong, plausible biologic link to the pathologic progression of AD. In fact, loss of neurons and synaptic pruning, which are the substrates of cerebral atrophy, are felt to be more closely linked with the clinical progression of AD than plaque and tangle density (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry-the methods. Neurolmage 11: 805–821

    Article  CAS  Google Scholar 

  • Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, Eustache F (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14: 298–309

    Article  PubMed  CAS  Google Scholar 

  • Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000) The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 95: 721–725

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2002) Mapping gray matter loss with voxel-based morphometry in mild cognitve impairment. Brain Imaging 13: 1939

    Google Scholar 

  • Crum, WR, Scahill RI, Fox NC (2001) Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer’s disease. Neuroimage 13: 847–855

    Article  PubMed  CAS  Google Scholar 

  • de Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, De Santi S, Smith G, Ferris SH, Noz M (1993) The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR 14: 897–906

    PubMed  Google Scholar 

  • Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo-Morrell L (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22: 747–754

    Article  PubMed  CAS  Google Scholar 

  • Du AT, Schuff N, Zhu XP, Jagust WJ, Miller BL, Reed BR, Kramer JH, Mungas D, Yaffe K, Chui HC, Weiner MW (2003) Atrophy rates of entorhinal cortex in AD and normal aging. Neurology 60: 481–486.

    PubMed  CAS  Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magnetic Resonance Imaging 7: 1069–1075

    Article  CAS  Google Scholar 

  • Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN (1996) Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain 119: 2001–2007

    Article  PubMed  Google Scholar 

  • Fox NC, Warrington EK, Rossor MN (1999) Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer’s disease. Lancet 353: 2125

    Article  PubMed  CAS  Google Scholar 

  • Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN (2000) Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease. Arch Neurol 57: 339–443

    Article  PubMed  CAS  Google Scholar 

  • Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Freeborough PA, Fox NC (1997) The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 15: 623–629

    Article  Google Scholar 

  • Freeborough PA, Fox NC (1998) Modeling brain deformations in Alzheimer’s disease by fluid registration of serial 3D MRI. JCAT 22: 838–843

    CAS  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Kokmen E (1998) The rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51: 993–999

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52: 1397–1403

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Tangalos EG, Kokmen E (2000) Rates of hippocampal atrophy in normal aging, mild cognitive impairment, and Alzheimer’s disease. Neurology 55: 484–489

    PubMed  Google Scholar 

  • Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, Edland SD, Smith GE, Boeve BF, Tangalos EG, Kokmen E, Petersen RC (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58: 750–757

    PubMed  Google Scholar 

  • Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, Xu Y, Shiung M, O’Brien PC, Cha R, Knopman D, Petersen RC (2003) MRI as a biomarker of disease progression in a therapeutic trial of Milameline for Alzheimer’s. Neurology 60: 253–260

    PubMed  Google Scholar 

  • Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O’Brien JT, Scheltens P, McKeith IG, Williams D, Ballard C, Barkhof F (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neurolmage 18: 895–907

    Article  CAS  Google Scholar 

  • Kaye JA, Swihart T, Howieson D, Dame A, Moore MM, Karnos T, Camicioli R, Ball M, Oken B, Sexton G (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 48: 1297–1304

    PubMed  CAS  Google Scholar 

  • Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones K, Hyman BT, Albert MS (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47: 430–439

    Article  PubMed  CAS  Google Scholar 

  • Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, Tanzi R, Jones K, Albert MS (2002) MRI measures of entorhinal cortex vs hippomcampus in preclinical AD. Neurology 58: 1188–1196

    PubMed  CAS  Google Scholar 

  • Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, Debnath ML, Holt DP, Wang Y, Hyman BT (2002) Imaging A-beta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered congo red derivative. J Neuropathol Exp Neurol 61: 797–805

    PubMed  CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E E4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci USA 98: 3334–3339

    CAS  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the E4 allele for apolipoprotein E. New Engl J Med 334: 752–758

    Article  CAS  Google Scholar 

  • Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53: 181–188

    Article  PubMed  Google Scholar 

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 87: 6037–6042

    Article  Google Scholar 

  • Small GW, Agdeppa ED, Kepe V, Satyamurthy N, Huang SC, Barrio JR (2002) In vivo brain imaging of tangle burden in humans. J Mol Neuroscil 9: 323–327

    Google Scholar 

  • Studholme C, Cardenas V, Schuff N, Rosen H, Miller B, Weiner M (2001) Detecting spatially consistent structural differences in Alzheimer’s and fronto temporal dementia using deformation morphometry. p 41–44.MICCAI 4th International Conference, Utrecht, The Netherlands, Springer

    Google Scholar 

  • Thompson PM, Moussai J, Zohoori S, Goldkorn A, Khan AA, Mega MS, Small GW, Cummings JL, Toga AW (1998) Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cereb Cortex 8: 492–509

    Article  PubMed  CAS  Google Scholar 

  • Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW (2001) Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Thompson P, Rapoport JL, Cannon TD, Toga AW (2003) Automated analysis of structural MRI data. In: Lawrie EJS, Weinberger D (eds) Brain imaging in schizophrenia. Oxford, Oxford University Press, pp 1–36

    Google Scholar 

  • Visser PJ, Scheltens P, Verhey FR, Schmand B, Launer LJ, Jones J, Jonker C (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246: 477–485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jack, C.R. (2004). Validating MRI Measures of Disease Stage and Progression in Alzheimer’s Disease. In: Hyman, B.T., Demonet, JF., Christen, Y. (eds) The Living Brain and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59300-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59300-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63927-2

  • Online ISBN: 978-3-642-59300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics