Skip to main content

Solution of a Hard Flight Path Optimization Problem by Different Optimization Codes

  • Conference paper
High Performance Scientific And Engineering Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 21))

Abstract

Solar electric propulsion is the key technology to reduce propellant consumption for interplanetary missions. A number of studies of interplanetary and lunar missions are currently performed by the European Space Agency (ESA), which exploit the benefits of solar electric propulsion (e.g., [11,8]). Although solar electric propulsion has the disadvantage of low-thrust levels the high specific impulse leads to considerable reduction of propellant mass and therefore to an increase in payload mass. Trajectory optimization problems with solar electric propulsion are known to be extremly difficult (e.g., [3]). They have in the past been successfully solved by indirect methods while direct methods usually failed. Nevertheless the sophistication of direct solution methods has also permanently increased

The interesting question is: Can low-thrust missions be solved today by direct methods? How precise are these solutions compared with an indirect solution? What time and requirements does it take for a successful solution?

A detailed numerical comparison of the direct solution code NUDOCCCS (Büskens [11]) and the indirect multiple shooting code MUMUS (Hiltmann [7]) is presented for a reference problem (a low thrust orbital transfer problem of a LISA spacecraft with constraints on the solar aspect angle) from [11]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battin, R. H. (1987) An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, New York

    MATH  Google Scholar 

  2. Betts, J. T. (1998) Survey of Numerical Methods for Trajectory Optimization. Journal of Guidance, Control, and Dynamics, 21, 193–207

    Article  MATH  Google Scholar 

  3. Bulirsch, R., Callies, R. (1992) Optimal Trajectories for a Multiple Rendezvous Mission to Asteroids. Acta Astronautica, 26, 587–597

    Article  Google Scholar 

  4. Büskens, C. (1998) Optimierungmethoden und Sensitivitätsanalyse für optimale Steuerprozesse mit Steuer-und Zustands-Beschränkungen. Dissertation, Universität Münster

    Google Scholar 

  5. Chudej, K. (2000) Effiziente Lösung zustandsbeschränkter Optimalsteuerungsaufgaben. Habilitationsschrift, Universität Bayreuth

    Google Scholar 

  6. Graf, T. (2001) Flugbahnoptimierung eines Niedrig-Schub Raumfahrzeugs. Diplomarbeit, Lehrstuhl für Ingenieurmathematik, Universität Bayreuth

    Google Scholar 

  7. Hiltmann, P., Chudej, K., Breitner, M. (1993) Eine modifizierte Mehrzielmethode zur Lösung von Mehrpunkt-Randwertproblemen, Benutzeranleitung. Report No. 14, Sonderforschungsbereich 255 Transatmosphärische Flugsysteme, Lehrstuhl für Höhere Mathematik und Numerische Mathematik, Technische Universität München

    Google Scholar 

  8. Jehn, R., Hechler, M., Rodriguez-Canabal, J., Schoenmaekers, J., Cano, J. L. (2000) Trajectory Optimisation for ESA Low-Thrust Interplanetary and Lunar Missions. CNES Workshop on Low-Thrust Trajectory Optimisation, Toulouse

    Google Scholar 

  9. Pesch, H. J. (1994) A Practical Guide to the Solution of Real-Life Optimal Control Problems. Control and Cybernetics, 23, 7–60

    MathSciNet  MATH  Google Scholar 

  10. von Stryk, O. (1993) Numerical solution of optimal control problems by direct collocation. In: R. Bulirsch, et al (Eds.) Optimal Control — Calculus of Variations, Optimal Control Theory and Numerical Methods, ISNM 111, Birkhäuser, Basel, 129–143

    Google Scholar 

  11. Vasile, M., Jehn, R. (1999) Low Thrust Orbital Transfer for a LISA Spacecraft With Constraints on the Solar Aspect Angle. MAS Working Paper No. 424, ESOC Darmstadt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chudejl, K., Biiskensl, C., Graf, T. (2002). Solution of a Hard Flight Path Optimization Problem by Different Optimization Codes. In: Breuer, M., Durst, F., Zenger, C. (eds) High Performance Scientific And Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55919-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55919-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42946-3

  • Online ISBN: 978-3-642-55919-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics