Skip to main content

hp-Adaptive Finite Elements for Maxwell’s Equations

  • Conference paper
Computational Electromagnetics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 28))

  • 1117 Accesses

Summary

This is a progress report on our current work on hp-adaptive finite elements for Maxwell’s equations. I recall the main definitions [2], and show how the recent progress on the ftp interpolation error estimates [3] has led to a fully automatic ftp adaptivity based on the idea of minimizing the ftp-interpolation error for a reference solution corresponding to a globally ftp-refined grid [5]. Critical to the implementation of these ideas is a our new data structure for ftp discretizations [4], supporting anisotropic refinements, and the calculation of prolongation operator for multigrid operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, and B. Wohlmuth, “Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell’s Equations”, Surveys on Mathematics for Industry, 8, 271–312, 1999.

    MathSciNet  MATH  Google Scholar 

  2. L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz. ”De Rham Diagram for hp Finite Element Spaces” Mathematics and Computers with Applications, 39, 7–8, 29-38, 2000.

    MathSciNet  Google Scholar 

  3. L. Demkowicz and I. Babuska, “Optimal p Interpolation Error Estimates for Edge Finite Elements of Variable Order in 2D”, TICAM Report 01–11, submitted to SIAM Journal on Numerical Analysis, 2001.

    Google Scholar 

  4. L. Demkowicz, D. Pardo, “The Ultimate Data Structure for Three Dimensional, Anisotropic hp Refinements’, TICAM Report, in preparation.

    Google Scholar 

  5. L. Demkowicz, W. Rachowicz, and Ph. Devloo, “A Fully Automatic hp Adaptivity”, TICAM Report 01–28, accepted to Journal of Scientific Computing.

    Google Scholar 

  6. G. Haase, M. Kuhn, U. Langer, “Parallel Multigrid 3D Maxwell Solvers”, Johannes Kepler University Linz, SFB Report 99-23, 1999.

    Google Scholar 

  7. J.T. Oden, L. Demkowicz, W. Rachowicz and T.A. Westermann, “Toward a Universal hp Adaptive Finite Element Strategy, Part 2. A Posteriori Error Estimation”, Computer Methods in Applied Mechanics and Engineering, 77,113–180, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Rachowicz, J.T. Oden, and L. Demkowicz, ”Toward a Universal h-p Adaptive Finite Element Strategy, Part 3. Design of h-p Meshes,” Computer Methods in Applied Mechanics and Engineering, 77, 181–212, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Schoeberl, “Commuting Quasi-Interpolation Operators for Mixed Elements”, Second European Conference on Computational Mechanics, Cracow, June 26-29, 2001.

    Google Scholar 

  10. Ch. Schwab, p and hp-Finite Element Methods, Clarendon Press, Oxford 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demkowicz, L. (2003). hp-Adaptive Finite Elements for Maxwell’s Equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics