Skip to main content

Some Numerical Techniques for Maxwell’s Equations in Different Types of Geometries

  • Chapter
Topics in Computational Wave Propagation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

Summary

Almost all the difficulties that arise in finite difference time domain solutions of Maxwell's equations are due to material interfaces (to which we include objects such as antennas, wires, etc.) Different types of difficulties arise if the geometrical features are much larger than or much smaller than a typical wave length. In the former case, the main difficulty has to do with the spatial discretisation, which needs to combine good geometrical flexibility with a relatively high order of accuracy. After discussing some options for this situation, we focus on the tatter case. The main problem here is to find a time stepping method which combines a very low cost per time step with unconditional stability. The first such method was introduced in 1999 and is based on the ADI principle. We will here discuss that method and some subsequent developments in this area.

The work was supported by NSF grants DMS-0073048, DMS-9810751 (VIGRE), and also by a Faculty Fellowship from the University of Colorado at Boulder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Bruno, New high-order, high-frequency methods in computational electromagnetism. Topics in Computational Wave Propagation 2002, Springer (2003).

    Google Scholar 

  2. G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand. 4 (1956), 33–53.

    MathSciNet  MATH  Google Scholar 

  3. G. Dahlquist, 33 years of numerical instability, part I, BIT, 25 (1985), 188–204.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Darms, R. Schuhmann, H. Spachmann and T. Weiland, Asymmetry effects in the ADI-FDTD algorithm, to appear in IEEE Microwave Guided Wave Lett.

    Google Scholar 

  5. L. Demkowicz, Fully automatic hp-adaptive finite elements for the time-harmonic Maxwell’s equations. Topics in Computational Wave Propagation 2002, Springer (2003).

    Google Scholar 

  6. J. Douglas, Jr, On the numerical integration of \( \frac{{\partial ^2 u}} {{\partial x^2 }} + \frac{{\partial ^2 u}} {{\partial y^2 }} = \frac{{\partial u}} {{\partial t}} \) by implicit methods, J. Soc. Indust. Appl. Math., 3 (1955), 42–65.

    Article  MathSciNet  MATH  Google Scholar 

  7. T.A. Driscoll and B. Fomberg, Block pseudospectral methods for Maxwell’s equations: II. Two—dimensional, discontinuous—coefficient case, SIAM Sci. Comput. 21 (1999), 1146–1167.

    Article  MATH  Google Scholar 

  8. F. Edelvik and G. Ledfelt, A comparison of time-domain hybrid solvers for complex scattering problems. Int. J. Numer. Model 15 (5–6) (2002), 475–487.

    Article  MATH  Google Scholar 

  9. M. El Hachemi, Hybrid methods for solving electromagnetic scattering problems on over-lapping grids, in preparation.

    Google Scholar 

  10. E. Forest and R.D. Ruth, Fourth order symplectic integration, Physica D 43 (1990), 105–117.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press (1996).

    Google Scholar 

  12. B. Fornberg, Calculation of weights in unite difference formulas, SIAM Review, 40 (1998), 685–691.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Fornberg, A short proof of the unconditional stability of the ADI-FDTD scheme. Uni versity of Colorado, Department of Applied Mathematics Technical Report 472 (2001).

    Google Scholar 

  14. B. Fornberg, High order finite differences and the pseudospectral method on staggered grids, SIAM J. Numer. Anal. 27 (1990), 904–918.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Fornberg and T.A. Driscoll, A fast spectral algorithm for nonlinear wave equations with linear dispersion, JCP, 155 (1999), 456–467.

    MathSciNet  MATH  Google Scholar 

  16. B. Fomberg and M. Christ, Spatial finite difference approximations for wave-type equations, SIAM J. Numer. Anal. 37 (1999), 105–130.

    Article  MathSciNet  Google Scholar 

  17. R. Frank and C.W. Ueberhuber, Iterated defect correction for diferential-equations 1. Theoretical results, Computing, 20 Nr 3 (1978), 207–228.

    MathSciNet  MATH  Google Scholar 

  18. R. Frank, F. Macsek and C.W. Ueberhuber, Iterated defect correction for diferential-equations 2. Numerical experiments, Computing, 33 Nr 2 (1984), 107–129.

    MathSciNet  MATH  Google Scholar 

  19. R. Frank, J. Hertling and H. Lehner, Defect correction algorithms for stiff ordinary differential equations. Computing, Supplement 5 (1984), 33–41.

    MathSciNet  Google Scholar 

  20. L. Gao, B. Zhang and D. Liang, Stability and convergence analysis of the ADI-FDTD algorithm for 3D Maxwell equation. In preparation.

    Google Scholar 

  21. S.G. García, T.-W. Lee and S.C. Hagness, On the accuracy of the ADI-FDTD method, IEEE Antennas and Wireless Propagation Letters 1 No 1 (2002), 31–34.

    Article  Google Scholar 

  22. M. Ghrist, T.A. Driscoll and B. Fornberg, Staggered time integrators for wave equations, SIAM J. Num. Anal. 38 (2000), 718–741.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Gustafsson and W. Kress, Deferred correction methods for initial value problems, BIT 41 (2001), 986–995.

    Article  MathSciNet  Google Scholar 

  24. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Verlag (2002).

    Google Scholar 

  25. J. Hesthaven and T. Warburton, Nodal high—order methods on unstructured grids I. Time-domain solution of Maxwell’s equations, JCP, 181 (2002), 186–221.

    MathSciNet  MATH  Google Scholar 

  26. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numerica 2002 (2002), 237–339.

    Google Scholar 

  27. J. Jin, The Finite Element Method in Electromagnetics, Wiley, New York (1993).

    MATH  Google Scholar 

  28. K.S. Kunz and J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Inc. (1993).

    Google Scholar 

  29. J. Lee and B. Fornberg, A split step approach for the 3D Maxwell’s equations. University of Colorado, Department of Applied Mathematics Technical Report 471 (2001), submitted to Journal of Computational and Applied Mathematics (2002).

    Google Scholar 

  30. J, Lee and B. Fornberg, Some unconditionally stable time stepping methods for the 3D Maxwell’s equations. Submitted to IMA journal of Applied Mathematics (2002).

    Google Scholar 

  31. G. Liu and S.D. Gedney, Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method, IEEE Microwave Guided Wave Lett. 10 (2000), 261–263.

    Article  Google Scholar 

  32. J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford (1873).

    Google Scholar 

  33. T. Namiki, 3D ADI-FDTD method-Unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations, IEEE Transactions on Microwave Theory and Techniques, 48, No 10 (2000), 1743–1748.

    Article  Google Scholar 

  34. F. Neri, Lie algebras and canonical integration. Dept. of Physics, University of Maryland, preprint (1987).

    Google Scholar 

  35. D. Peaceman and J.H.H. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1955), 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Pereyra, Accelerating the convergence of discretization algorithms, SIAM J. Numer. Anal. 4 (1967), 508–532.

    Article  MathSciNet  MATH  Google Scholar 

  37. L.F. Richardson, The deferred approach to the limit, Phil. Trans. A, 226 (1927), 299–349.

    Article  MATH  Google Scholar 

  38. T. Rylander and A. Bondeson, Stable FEM-FDTD hybrid method for Maxwell’s equations, Computer Physics Communications, 125 (2000), 75–82.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Shanker, A.A. Ergin, K. Aygun. E Michielssen, Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time—domain algorithm, IEEE Trans. Antennas Propagation 48 (2000), 510–523.

    Article  MathSciNet  Google Scholar 

  40. G. Strang, On construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506–516.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys. 32 (1991), 400–407.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time—Domain Method, 2nd ed., Artech House, Norwood (2000).

    MATH  Google Scholar 

  43. V.S. Varadarajan, Lie groups, Lie algebras and their representation. Prentice Hall, Englewood Cliffs (1974).

    Google Scholar 

  44. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagation, 14 (1966), 302–307.

    MATH  Google Scholar 

  45. H. Yoshida, Construction of higher order symplectic integrators. Physics Letters A, 150 (1990), 262–268.

    Article  MathSciNet  Google Scholar 

  46. F. Zheng, Z. Chen, J. Zhang, A finite—difference time—domain method without the Courant stability conditions, IEEE Microwave Guided Wave Lett. 9 (1999), 441–443.

    Article  Google Scholar 

  47. F. Zheng, Z. Chen, J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method, IEEE Transactions on Microwave Theory and Techniques, 48, No 9 (2000), 1550–1558.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fomberg, B. (2003). Some Numerical Techniques for Maxwell’s Equations in Different Types of Geometries. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55483-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55483-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics