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Preface

Econometric models are made up of assumptions which never exactly match
reality. Among the most contested ones is the requirement that the coefficients of
an econometric model remain stable over time. Recent years have therefore seen
numerous attempts to test for it or to model possible structural change when it can
no longer be ignored. This collection of papers from Empirical Economics mirrors
part of this development.

The point of departure of most studies in this volume is the standard linear
regression model

nw=xB,tu @¢=1,..17),

where notation is obvious and where the index ¢ emphasises the fact that structural
change is mostly discussed and encountered in a time series context. It is much less
of a problem for cross section data, although many tests apply there as well.

The null hypothesis of most tests for structural change is that §,= f, for all ¢,
i.e. that the same regression applies to all time periods in the sample and that the
disturbances u, are well behaved. The well known Chow test for instance assumes
that there is a single structural shift at a known point in time, i.e. that §,=f,
(t<r¥),and B,= f,+ 48 (t=r*), where r* is known.

It can easily be generalized to muitiple structural shifts, the timing of which
must however still be known. Another generalisation, provided by Toyoda and
Ohtani in this volume, is to different change points for individual coefficients.
Under the usual alternative all coefficients change at once, but here it is shown in a
demand for fuel application that change points for individual coefficients might
well be different.

Potzelberger and Polasek consider the standard Chow test from a Bayesian
viewpoint. By varying the prior distribution of 48, they determine whether or not
the structural change is robust against the different choices for the prior
distribution, the major point being that a structural change can be diagnosed with
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much more confidence if it is found substantial irrespective of the prior
distribution.

Leybourne and McCabe consider regression coefficients which follow a
random walk, i.e. where

ﬂr = ﬂr—l + 7, (v, ~ i.i.d. (0, 0'%/))

Here, the null hypothesis of structural stability is equivalent to Hy: o5=0.
Alternatively, one can dismiss specific alternatives altogether and look for pure
significance tests, as is done by King and Edwards. By suitable transformations of
recursive (or other LUS) residuals, they reduce the problem to one of testing
independently distributed uniform random variables. This is similar to the
established CUSUM and CUSUM of squares tests, which likewise do not require
any prior knowledge about the type and timing of structural shifts.

Another group of papers in this volume consider standard procedures in non-
standard situations. MacKinnon modifies the Chow test such as to become robust
to heteroskedasticity among the disturbances u, of the model, and Ploberger et al.
adapt the CUSUM test to dynamic models of the form

Y=y Tt

which are ruled out in the classical analysis with nonstochastic regressors. The
problem is that recursive residuals are then no longer nid (0,0?) (given nid
disturbances), and the standard assessment of their cumulative sums breaks down.

A different but perennial problem in all empirical work is adressed by
Liitkepohl and Phillips/McCabe. This is the possible presence of several complica-
tions at time. Liitkepohl considers test of causality in vector autoregressions, and
shows that the true significance level far exceeds the nominal one when there is
structural change in the regression coefficients. This implies that many rejections of
non-causality which have been reported in empirical work in recent years may well
be due to structural change.

Phillips and McCabe suggest a sequential approach to testing for structural
change to take care of such multiple violations of the assumptions of the model. It
has become common practice in empirical econometrics (and a good one at that) to
test a model for various misspecifications such as omitted variables, autocorrelated
or heteroskedastic disturbances, incorrect functional form or structural change at a
time. The obvious problem with this approach, which Phillips and McCabe at least
partially resolve, is how to control the Type I error probability and how to draw
conclusions from the results of the tests.
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An annotated bibliography containing about 400 items by Hack! and
Westlund of econometric and statistical work on structural change concludes this
volume. It is a tribute to the dynamics of this literature that in the few months after
the acceptance for publication of this bibliography, dozens of additional papers
have appeared which deal with the testing and modelling of structural change. A
huge literature, which is not touched upon here, has for instance evolved around
the Kalman filter approach to parameter instability. New tests for structural
change keep appearing at an increasing rate, and given the multitide of possible
models and alternatives, this will continue for quite some time. I should be pleased
if readers would judge this volume as a useful contribution to this fascinating field.

Dortmund, April 1989 Walter Kriamer
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A Modification of the CUSUM Test in the Linear Regression
Model with Lagged Dependent Variables

By W. Ploberger, W. Kriamer, and R. Alt'

Abstract: We consider testing for structural change in a dynamic linear regression model, and show that
the well known CUSUM test, which has been initially devised only for the standard static model, can
easily be modified such as to remain asymptotically valid also in this nonstandard situation.

1 Introduction

Consider the simple dynamic regression model

=t bixg oo fexgtu, =1,...,7), (N

where the disturbances u, are idd (0, %) (not necessarily normal), |y| <1, 4, is
independent of y,; (j=1), and the pre-sample observation y, is some fixed
number. This paper is concerned with testing whether the regression coefficients y

' Werner Ploberger, Walter Krimer, and Raimund Alt, Institut fir Okonometrie und Operations
Rescarch, TU Wien; Fachbereich Wirtschaftswissenschaften, Universitat Hannover; and Institut fir
Hohere Studien, Wien, respectively.

Preliminary versions of this paper were presented at the first meeting of the IIASA working group on
“Statistical and Economic Identification of Structural Change™ in Lodz, May 1985, at the Econometric
Society European Meeting in Budapest, Sep. 1986, at the annual meeting of the econometrics section of
the “Verein fiir Socialpolitik” in Gieflen, March 1987, and in seminars at CORE, Manchester,
Rotterdam and Amsterdam. We are grateful to G. Chamberlain, J. Dréze, S. Dutta, P. Hackl, A.
Harvey, J. Kiviet, T. Kloek, H. Liitkepohl, B. McCabe, G. D. A. Phillips, R. Quandt, and in particular
to Wang Liqun, for helpful criticism and comments.

Any errors remain our own. W. Krimer acknowledges financial support from the Deutsche
Forschungsgemeinschaft. All computations were done with the Institute for Advanced Studies’ IAS-
SYSTEM econometric software package.
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and f remain stable over time. In particular, we address the applicability of the
wellknown Brown-Durbin-Evans (1975) CUSUM test, which has initially been
devised only for nonstochastic regressors, to the above dynamic model.

Let x, =[x, ..., xx), X=[x1,....x7], and X; =[0,...,0,%x,, Xy, ...,x7_ ;). We
then impose the following additional assumptions: X is nonstochastic, with
|lx,|l =0(1), and there exist a finite vector c and finite matrices Q, (nonsingular) and
Q; such that, as T— oo,

1 T

- § @)
%M%%am 3)
1 vt o

T X'X; 0. 4)

Assumptions (3) and (4) guarantee consistency and asymptotic normality of OLS in
the model (1) (Theil 1971, p. 412), and (2) is implied by (3) whenever there is a
constant in the regression.

Let z,=[y,—1,x1), Z=][z1,....,211, y=[y1,..-,y1l, u=[uy,...,ur], and
0=[y,B1,..., Bk]. The model (1) can then be rewritten as

y=2Zé+u, (5

where

1|M~;

PEVE [ﬂ’c/(l - y)]

c

1
T, (6)

and (1/T)Z'Z — R for some finite matrix R.

Disregarding for the moment the stochastic nature of the first column of Z, the
CUSUM test for the stability of J is based on successive partial sums of recursive
residuals w,, which for K + 2 = r = T are defined as

w, = (yr — 20" )/f,, )



A Modification of the CUSUM Test 3

where
=+ 2020~z Dy g, (8)

Z0"V={[z,....,z,_], and 87~V is the OLS estimate for J from the first 7 — 1
observations (superscripts will in the sequel always signify that the respective
quantity is based on observations with index no larger than the superscript). The
test statistic is

S = max L 1+2¢_ 9
k+1<rsT | JT—K—1 T—-K—1) ®)
where
r) — 1 i
W( = w, (10)
0 1=K+2

is the cumulated sum of the recursive residuals and where

T

. 1 __21/2
0—(——T_K_2 ,:%z (w, w)) : (11)

(see Harvey 1975 for a discussion of the appropriate estimate for o).

Given some significance level a, Brown, Durbin and Evans determine the
appropriate critical value a, rather heuristically, by viewing the W(s as discrete
readings from continuous Brownian Motion, i.e. by solving the expression

W r—K—1 a
Pr( m —— [[1+22 2" | =4 =2 12
r(1<+1E<Dr(§r VT—K—1 /( T—K—l) a) 2 (12)

for a, where W) is a continuous Gaussian process with mean and covariance
function

EWN =0, EW"W=r—K—1

E(WOWS) = min (r,s) — K — 1. (13)
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Sen (1982) shows that, in the static model, this is asymptotically correct, in the sense
that

K a
lim Pr{ max =Zq;=—. 14
T— K<rsT \/ —-K /( —K) } 2 (14)
The probability that S is greater than a therefore tends to
a — Pr (W" crosses both lines), (15)

where the latter term is negligible for the usual values of a (i.e. from one to ten
percent).

2 Asymptotic Null Distribution in the Dynamic Model

Now consider the dynamic case. One can of course disregard the dynamic character
of the regression and proceed with the CUSUM test as described above. We call this
the dynamic CUSUM test. However, there is prima facie little reason to believe that
the true rejection probability of this procedure will continue to be approximated by
the corresponding probability from a Gaussian process. Even if the disturbances
were normal, the recursive residuals are now neither normal nor independent, due
to the presence of common stochastic components.

Dufour (1982, p. 46) notes that if we knew the true value of y, the model could
be reduced to standard form via

Y= i1 =Bixn ot Brxx tu 0=1,..,T). (16)

One could then proceed as usual and recursively estimate the vector f. When y is
unknown, one can replace it by the OLS estimate ¥ from the full sample, and hope
that the resulting recursive residuals and any tests based on them will have
approximately the same properties as those based on the true y. We show next that
this is indeed the case. The resulting variant of the CUSUM test will be referred to as
the Dufour test. (Since this procedure does not fare well in our power investigation
below, it is however only fair to say that Dufour did not in any way advocate this
test.)
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Letj/k,:y,—izy,_ 1(z=1,..., 7). Similar to (7), (8) and (10), define for Kr=T

W= — xB)/gn (17)
g = (1 + x/(XU~Xt=D)"1x)1/2 and (18)
wo= Y /6 (19)

t=K+1

We then have the following result:

Theorem 1: Let a be determined from (12), and assume that there is a constant in the
regression (1). Then, under the conditions imposed at the beginning of this section,

. W) K a
lim P =qar=—.
Tlir}» ' {KIE?L(T VT—K /( _K) a} 2 0

The proof of Theorem 1 is rather involved, since it appears impossible to avoid the
theory of weak convergence of probability measures on metric spaces. The problem
is: how can we derive the limiting probability in (20) from the corresponding
probability of a suitably defined limit process? Unfortunately, finite dimensional
distribution theory does not apply here, since the W) processes do not converge in
distribution (in the ordinary sense) to anything. Therefore we have to view these
sequences (properly standardized) as mappings from a probability space into
something more general than finite dimensional Euclidean space. The most
authoritative treatment of such issues, on which we will draw heavily in our proof
below, is still Billingsley (1968). Breiman (1968) and Ginssler and Stute (1977) also
provide useful introductions. A convenient summary of the state of the art is
Serfling (1980, Chapter 1.11), and various special issues are discussed in depths in
Hall and Heyde (1980, Chapter 4).

Proof of Theorem 1: Let D[0, 1] be the set of all real valued functions on the [0, 1]-
interval that are right continuous and have left limits, and let & denote the o-field
generated by the Skorohod metric on D[0, 1] (see Billingsley 1968, Chapter 3). A
mapping ffrom some probability space into D[0, 1] measurable with respect to - is
then called a random element. This generalizes the conventional notion of a
random variable, i.e. a mapping from a probability space into Euclidean space, to
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infinite dimensions. A sequence f7 of random elements is said to converge in
distribution (or weakly) to £ (in symbols: /D % 7)if

Pr(fDE M)~ Pr(fE M)

for all M € & with boundary of f~measure zero. This again generalizes the usunal
convergence concept for probability distributions on Euclidean spaces.

Associated with each random element f{w) (where w is an element of the
underlying probability space) is a stochastic process f(z), 0=z=1, via
F(z, w) =flw)(z), where we often drop the explicit reference to w. Conversely, for
every stochastic process f(z) whose trajectories are constant or constant on
intervals, there exists exactly one such random element f{w). Since we will only
encounter processes of this type below, we will henceforth not distinguish between
random elements and stochastic processes and drop the ~-superscript.

The following results are either well known or easily shown and will
subsequently be used to establish weak convergence of certain random elements:

Lemma I (Billingsley 1968, Theorem 4.1): Let D and g» be random elements in
D0, 1] such that fD % fas T—o0 and

sup | fD(2) — gD(z)| % 0. @1)

0=z=1
Then gD converges also in distribution to f.

Lemma 2 (Ploberger and Kridmer 1986): Let x, be random variables such that
T
=X xte (22)

for some constant ¢. Then

1 Tz
— X X — czZ

t=1

sup
0=zs1

=0 (as.). (23)
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Now, for the proof of the theorem, consider the random element

1 ¥ 1 *
w,=—— WO, (24)

*k
Wh(g)=——— X &,

O\/T—K r=Kk+1 VT—K
where 1(z) =[K + (T — K)z] is the largest integer less than or equal to K + (T — K)z.
The trajectories of the process (24) are copstant on the half open intervals (n — 1)/
(T—K),n/(T-K)](n=1,...,T—K),so Wm isindeed a random element in DJ0, I].
Moreover, the probability in (20) can now be expressed as

s, [+

= Pr( max WD)/ +22) = a). (25)

0=r=1

Since the boundary of the event { sup W(z)/(1 +2z)=a} has W-measure zero,
0=z=1

Theorem 1 therefore follows from
* oo
wh S w. (26)

The hard part is to establish (26). To this purpose, consider the random elements

(z)
()= X W, Q7)

\/ —K r=K+1

where W, is defined similar to w,, but with the true y in place of §. The W, can be

viewed as recursive residuals from the standard static model, so W™ 4 Win view of
Sen (1982), and (26) follows from

sup_ W D(z) — WD) £ 0 (28)

0=z=

and Lemma 1.
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For proof of (28), keep z initially fixed, let = X®’X", and consider

] (z2)
— X W
G\ JT—K r=k+I or 7

V’i‘/m(z) —Ww(z)=

_T_(A_){L
oJT—k T .-

7(2) t—1
1 -
-7 X oot X xsys~1}/g,. (29)
1=K+1 s=1
It is easily seen that
P (-1 =0D) (30)
\T—K m

We show next that the term in pointed brackets on the rightmost side of (29) tends
to zero in probability (uniformly in z). This is done by considering the two sums

T
separately. As to the first, we have ( Z L_—l) /T ﬂ/i’c/(l —7v), where
c¢=lim (X x,)/T is from (2), so =kt &

(2)

1 Yi—1 P
— = zfc/(1 — 31
T . 2 e B'c/(1—7) (31

(uniformly in z) in view of Lemma 2. Along similar lines, we show now that the
expression on the right of (31) is also the probability limit (uniformly in z) of the
second sum.

From 1[QV"']"' — Qg and

-+ T xe ~(§0 y"Q,»H)/f (as), (32)

s=1
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we have

(z)

1 , t B oc .
— X ZLpguipt X x.;y.\-lﬁc'Qo'(Z y’Qm)ﬁZ (33)
T i=k+1 ¥: s=1 i=0

uniformly in z, where the uniformity of the convergence again follows from Lemma
2. Now we need the assumption that there is a constant in the regression. Moreover,
assume without loss of generality that the constant is the last regressor, and that
Qo= I. This implies that the mean regressor ¢ equals ¢ =0, ...,0, 17, and that the
Q:(i=1,2,...) are block diagonal with unity in the K, K-position. Therefore, the
limit on the right hand side of (33) equals the limit on the right hand side of (31), and
the term in pointed brackets on the rightmost side of (29) tends to zero in
probability, uniformly in z. Since the term in front of the pointed brackets remains
stochastically bounded, this in turn establishes (28) and the theorem.

3 Finite Sample Null Distribution

In view of Theorem 1, it does not matter asymptotically whether y is known or
estimated, given the model is correct (no structural change). Krimer, Ploberger and
Alt (1987) show in addition that the Dynamic CUSUM test is likewise valid in the
model (1). Below we report briefly on some Monte Carlo experiments to explore
which procedure approximates its nominal size better in finite samples. (Any choice
between them must of course also rest on their relative power under alternatives,
but this issue is outside the scope of the present paper.)
Most experiments below were based on the model

Yy =05y 1+ (—1y+1+u (¢=1,...T), (34)

where yo=0, u,=nid(0,1), and with T equal to 30, 60, 120 and 1,000. The
particular x-series was chosen to ensure condition (2), and for ease of comparison
with similar experiments in Ploberger, Kontrus, and Kriamer (1986).

Table | reports the empirical rejection probabilities for nominal significance
levels a equal to one, five and ten per cent, based on 1,000 independent replications
(trials, runs). Under the heading of “static CUSUM test”, we also give the results for
the case where y=10.5 is assumed known. This obviously amounts to the ordinary
CUSUM test in the nonstochastic linear model.



10 W. Ploberger et al.

Table 1. Monte Carlo estimates of finite sample significance levels

significance level a (%, nominal)

T static C--test Dufour test dynamic C--test
1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0
30 0.3 2.7 6.8 0.1 1.4 3.5 0.3 2.8 6.0
60 0.1 2.8 7.0 0.3 2.2 5.4 0.3 4.4 8.6
120 0.7 3.7 6.8 0.5 2.5 7.4 0.4 3.0 7.5
1000 0.8 3.9 7.9 1.0 4.6 9.5 1.1 5.8 9.7

Table 1 shows that the nominal size for all variants of the CUSUM test
consistently overstates the true significance level, sometimes drastically so.
Somewhat unexpectedly, the asymptotic approximation works better for the
dynamic version than for the Dufour test. The gap between true and nominal size
narrows as sample size increases, as predicted by our analytical results.

We also investigated the robustness of these results to changes in the
experimental design. Table 2 for instance reports empirical rejection probabilities
for various alternative values of y, and for T= 120 (remaining design unchanged).
These experiments show that the true size is fairly robust to changes in y in case of
the Dynamic CUSUM test, but varies widely in case of the Dufour test, improving
as y——1 and being completely off the mark as y—1. (There is no point in
including the corresponding results for the Static CUSUM test, since its true
rejection probability is the same for all y.)

We found this volatility of the true size of the Dufour test also when varying the
B parameters. As the proof of Theorem 1 shows, this results from the form of the
test statistic, which equals the test statistic of the Static CUSUM test, plus a
remainder term that vanishes as T— . The correlation between these components
depends on the underlying J vector. The size of the Dufour test is larger than the
corresponding figure for the Static CUSUM test when this correlation is positive,
and smaller when the correlation is negative. For some parameter combinations,
the actual size of the Dufour test even surpassed the nominal size.

The paper therefore ends on a rather unhappy note. Although the Dufour test
turned out to be asymptotically valid irrespective of y (i.e. it is asymptotically both
valid and similar), it exhibits extreme non-similarity and possible violations of size
in finite samples.
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Table 2. Empirical significance level for alternative y’s

a (nominal, %) Y

-.95 -.9 -.6 -.3 o .3 .6 .9 .95

a) Dufour Test

1.0 0.5 0.7 0.3 0.7 0.5 0.7 0.4 0.3 0.1

5.0 ) 3.8 3.8 4.1 3.1 3.9 3.3 2.6 2.0 1.0

10.0 8.7 8.4 7.4 8.2 7.7 6.9 6.3 3.5 1.5
b) dynamic CUSUM Test

1.0 0.6 0.4 0.3 0.3 0.3 0.5 0.4 0.9 0.8

5.0 2.9 3.3 3.3 2.8 3.1 3.4 4.3 5.2 4.5

10.0 6.5 6.8 7.1 5.8 7.6 7.3 9.6 10.1 8.4
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Heteroskedasticity-Robust Tests for Structural Change'

By J. G. MacKinnon®

Summary. It is remarkably easy to test for structural change, of the type that the classic For “Chow™ test
is designed to detect, in a manner that is robust to heteroskedasticity of possibly unknown form. This
paper first discusses how to test for structural change in nonlinear regression models by using a variant
of the Gauss-Newton regression. It then shows how to make these tests robust to heteroskedasticity of
unknown form, and discusses several related procedures for doing so. Finally, it presents the resuits of a
number of Monte Carlo experiments designed to see how well the new tests perform in finite samples.

1 Introduction

A classic problem in economerics is testing whether the coefficients of a regression
model are the same in two or more separate subsamples. In the case of time-series
data, where the subsamples generally correspond to different economic environ-
ments, such as different exchange-rate or policy regimes, such tests are generally
referred to as tests for structural change. They are equally applicable to cross-
section data, where the subsamples might correspond to different groups of
observations such as large firms and small firms, rich countries and poor countries,
or men and women. Evidently there could well be more than two such groups of
observations.

The classical F test for the equality of two sets of coefficients in linear
regression models is commonly referred to by economists as the Chow test, after the
early and influential paper by Chow (1960). Another exposition of this procedure is
Fisher (1970). The classic approach is to partition the data into two parts, possibly
after re-ordering. The n-vector y of observations on the dependent variable is

' This research was supported, in part, by the Social Sciences and Humanities Research Council of
Canada. I am grateful to Allan Gregory and Simon Power for helpful comments on an earlier draft.
% James G. MacKinnon, Department of Economics, Queen’s University, Kingston, Ontario, Canada,
K7L 3N6.
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divided into an n;-vector y; and an ny-vector y,, and the nXk matrix X of
observations on the regressors is divided into an n; X k matrix X, and an n, Xk
matrix X,, with n=n, + n,. Thus the maintained hypothesis may be written as

A4 X, 0 B u
= + , E@u"y=dI, 4))
Y2 0 X, b u,

where B, and B, are cach k-vectors of parameters to be estimated. The null
hypothesis to be tested is that f; = §, = f. Under it, (1) reduces to

Y1 X U
= B+ =Xp+u, Ew")=dol )
Y2 X u)

<
i
[

In the usual case where both n; and n, are greater than k, it is easy to construct a test
of (2) against (1) by using an ordinary F test. The unrestricted sum of squared
residuals from OLS estimation of (1) is

USSR = SSR, + SSR, = "M, y, + y'M,y,, 3)

where M,=1— X,(X[ X)X for i=1,2 denotes the nX n matrix which projects

orthogonally off the subspace spanned by the columns of the matrix X;. The vectors

My, and M,y, are the residuals from the regressions of y; on X; and y, on X,

respectively. Thus USSR is simply the sum of the two sums of squared residuals.
The restricted sum of squared residuals, from OLS estimation of (2), is

RSSR =y’M.y, C))
where M, = I — X(X"X)"'X”. Thus the ordinary F statistic is

(y"M,y — yiMiy) — yiMoy;)/k _ (RSSR — SSR, — SSRy)/k )
(TMyy, + yIMay))/(n — 2Kk) (SSR; + SSRy)/(n — 2k)

This test statistic, which is what many applied econometricians refer to as the
“Chow test”, has k and (n — 2k) degrees of freedom because the unrestricted model
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has 2k parameters while the restricted model has only k. It will be exactly
distributed as F(k, n — 2k) if the error turms u are normal and independent of the
fixed regressors X, and k times it will be asymptotically distributed as y*(k) under
much weaker conditions.

The ordinary Chow test (5) has one obvious and very serious limitation. Like
all conventional F tests, it is (in general) valid only under the rather strong
assumption that E(uu’)=¢’I. This assumption may be particularly implausible
when one is testing the equality of two sets of regression parameters, since if the
parameter vector B differs between two regimes the variance o> may well be
different as well. A number of papers have addressed this issue, including Toyoda
(1974), Jayatissa (1977), Schmidt and Sickles (1977), Watt (1979), Honda (1982),
Phillips and McCabe (1983), Ohtani and Toyoda (1985), Toyoda and Ohtani (1986)
and Weerahandi (1987). However, none of these papers proposes the very simple
approach of using a test which is robust to heteroskedasticity of unknown form.
The work of Eicker (1963) and White (1980) has made such tests available, and
Davidson and MacKinnon (1985) have provided simple ways to calculate them
using artificial regressions. In this paper I show how the results of the latter authors
may be used to calculate several heteroskedasticity-robust variants of the Chow
test.

The plan of the paper is as follows. In Section 2 I discuss how to test for
structural change in nonlinear regression models by using a variant of the Gauss-
Newtonn regression. In Section 3 I then discuss ways to make the tests discussed in
Section 2 robust to heteroskedasticity of unknown form. Finally, in Section 4, |
present the results of some Monte Carlo experiments designed to see how well the
new tests perform in finite samples.

2 Testing for Structural Change in Nonlinear Regression Models

Nonlinear regression models may seem unnecessarily complicated, but studying
them makes it easier to see how to make Chow-type tests robust to heteroskedasti-
city. Suppose that the null hypothesis is

Hy yi=x{p)+u, Ewu’)=cl, (6)

where the regression functions x,(f), which may depend on exogenous and/or
lagged dependent variables and on a k-vector of parameters f, are assumed to be
twice continuously differentiable. The matrix X(f), with typical element
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xup= "5 ™

will play a major role in the analysis. In the case of the linear regression model
y=Xp+u, X(P) is simply the matrix X. It is assumed that

plim (v~ 'X"(B)X(B)) ®)

exists and is a positive-definite matrix.

For simplicity I shall assume that the sample is to be divided into only two
groups of observations; extensions to the many-group case are obvious. We first
define a vector 6=[4,...6,], letting §, = 0 if observation ¢ belongs to group 1 and
d,= 1if observation ¢ belongs to group 2. Note that it would be possible to let J, take
on values between zero and one for some observations, which might be useful if it
were thought that the transition between regimes was gradual rather than abrupt. If
the null hypothesis is (6) the alternative hypothesis may be written as

Hy: y,=x(p(1 —36)+ pd;) +uy, Euu™) = oI )

Thus the regression function is x,(f) if 3, = 0 and x,(f) if §, = 1.
The alternative hypothesis H; can be rewritten as

yie=x(B + (B — B1)o) + u, = x(py + v6) + u,, (10)

where y= f— p;. This makes it clear that Hy is equivalent to the null hypothesis
that y=0. Since the latter is simply a set of zero restrictions on the parameters of a
nonlinear regression function, we can use a Gauss-Newton regression to test it; see
Engle (1982b) or Davidson and MacKinnon (1984). The Gauss-Newton regression,
or GNR, for testing Hy against H| is easily seen to be

i = x(B) = X(BYb + 6, X(B)e + errors, (11)

where B denotes the nonlinear least squares (NLS) estimates of f for the whole
sample.
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The GNR (11) may be written more compactly as
= Xb+ 6+ Xe+ errors, (12)

where & is an n-vector with typical element y, — x,(f) and X is an #n X k matrix with
typical row X,(B). Here “*” denotes the direct product of two matrices, a typical
element of & * X being 5,X,,~(ﬁ), so that é * X, equals X, when 6,=1 and 0 when
0,=0. Thus we can perform the test by estimating the model using the entire sample
and regressing the residuals on the matrix of derivatives X and on the matrix § * X,
which is X with the rows which correspond to group 1 observations set to zero.
There is no need to reorder the data. Several asymptotically valid test statistics can
then be computed, including the ordinary F statistic for the null hypothesis that
¢=0. In the usual case where & is less than min (n;, n2), it will have k degrees of
freedom in the numerator and (n — 2k) degrees of freedom in the denominator.

Unlike the ordinary “Chow test” (5), this procedure is applicable even if
min (n;, n7) < k. Suppose, without loss of generality, that no<<k and n,>k. Then
the matrix é * X, which has k columns, will have ny<k rows which are not just
rows of zeros, and hence will have rank at most 7. When equation (12)is estimated,
at most 1, elements of ¢ will be identifiable, and the residuals corresponding to all
observations which belong to group 2 will be zero. Thus the degrees of freedom for
the numerator of the F statistic, which is equal to the rank of [X & * X] minus the
rank of X, must be at most 7. The degrees of freedom for the denominator will
normally be n), — k. Note that when x,( ) = X, fand min (n), ny) > k, the Ftest based
on the GNR (12) is numerically identical to the “Chow test” (5). This follows from
the fact that the sum of squared residuals from (12) will then be equal to
SSR; + SSR», the sum of the SSR’s from estimating the regression separately over
the two groups of observations.

It may be of interest to test whether a subset of the parameters of a model,
rather than all of the parameters, are the same over two (or more) subsamples. It is
easy to modify the tests already discussed to deal with this case. The null and
alternative hypotheses can now be written as

Hy: y, = x(a, p) +u,, E(uu’)=d’l, (13)
and

Hy: vy, =x(a,(1—=36) + 5,) +u, E@wu’)=d’l, (14)
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where ais an /-vector of parameters which are assumed to be the same over the two
subsamples and B is an m-vector of parameters the constancy of which is to be
tested. The Gauss-Newton regression is easily seen to be

it = X,a+ Xpb + & * Xge + errors. (15)

where X, is an n X/ matrix with typical element dx,(a, §)/da; and X’p isan nXm
matrix with typical element dx,(, B)/9f;, both evaluated at the estimates (&, B)
from (13). One would then use the Fstatistic for ¢ = 0, which if m <<min (n;, ny) will
have m and (n-/-2m) degrees of freedom.

There are several asymptotically equivalent test statistics which may be
calculated from the artificial regression (12). They all have the same numerator,
which is the explained sum of squares from that regression. The denominator may
be anything which consistently estimates 62, and if the statistic is to be compared to
the F(k,2n— k) rather than the y*(k) distribution, it must first be multiplied by
(n—2k)/k. If we let Z denote 6 * X, then the numerator of all the test statistics is

WM. Z(Z"™M.Z)" ' Z™M i, (16)

where M, =I— X(X"X) ' X”. What may be the best of the many valid test statistics
is the ordinary F statistic for ¢=0 in (12), which is

WM. Z(Z"M.Z) ' Z"M i/ k
&TM\‘: At/(n — 2k)

) W)

where M., is the matrix which projects orthogonally off the subspace spanned by X
and Z jointly. Expression (17) is just (n — 2k)/k times the explained sum of squares
from (12) divided by the sum of squared residuals from (12).

Rewriting expression (16) so that all factors are O(1), we obtain

(n™\ZuT™™Z)(n\ZTMZ) (V2 Z"M ). (18)
This expression is a quadratic form in the vector

n\2Z™M. . 19)
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Standard asymptotic theory tells us that this vector is asymptotically normally
distributed with mean vector zero and covariance matrix

o? plim (n"'Z"™M,2). (20)

n—o0

The middle matrix in (18), times anything which consistently estimates 62, provides
a consistent estimate of (20). Thus (18), divided by anything which consistently
estimates 02, must be asymptotically distributed as y%(k).

The key point which emerges from the above discussion is that every test
statistic based on the GNR (12) is actually testing whether the k-vector (19) has
mean zero asymptotically. Under relatively weak assumptions this vector will be
asymptotically normal, since it is essentially a weighted sum of n independent
random variables (the elements of the vector ). Under the much stronger
assumption of homoskedasticity, its asymptotic covariance matrix will be given by
(20), which allows us to use tests based on the GNR. Without this assumption, we
will still be able to compute test statistics as quadratic forms in n~'/2ZTM.@ and
expect them to be asymptotically distributed as y*(k), provided that we can
somehow obtain an estimate of the asymptotic covariance matrix of n~ 2ZTM u
which is consistent in the presence of heteroskedasticity. How this may be done is
discussed in the next section.

3 Heteroskedasticity-Robust Tests

We are now ready to drop the often implausible assumption that E(uu’)=o’I.
Instead, we shall assume initially that

Fuu)= 0, Q,=0c2, Q,=0for1#s, 0<0,<0max. 1)

Thus the covariance matrix of the error terms u, £, is assumed to be an n X#n
diagonal matrix with o’ as its r-th diagonal element. Except that g, is assumed to be
bounded from above by some possibly very large number g ,y, We are not assuming
that anything is known about the 02s. These assumptions admit virtually any
interesting pattern of heteroskedasticity, including autoregressive conditional
heteroskedasticity (ARCH errors; see Engle 1982a), since there is nothing which
prevents o7 from depending on variables which affect x,(8). They do however rule
out serial correlation or any other sort of dependence across observations.
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Under the assumptions (21), it is easy to see that the asymptotic covariance
matrix of the vector (19) is

plim (nilzTMrQM\'Z)- (22)

n—o

It is in general not possible to estimate €2, an # X # matrix which in this case has n
non-zero elements, consistently. However, by a slight modification of the
arguments used by White (1980), one can show that the matrix

n'ZTM QM. Z (23)

consistently estimates (22), where £2 is an n X n diagonal matrix with 67 as the -th
diagonal element, and the diagonal elements 67 have the property that

(7,2—>a,2+v, as n— oo, (24)

Here v, is a random variable which asymptotically has mean zero and finite
variance and is independent of Xand Z. There are many choices for (7,2, of which the
simplest is 7, the square of the t-th residual from the initial NLS estimation
of Hy. '

Combining (19) and (23), we obtain the family of test statistics

="M Z(Z"M 0OM.Z) ' Z"M,&. (25)

Since n~2ZTM. i is asymptotically normal with covariance matrix (22) and the
matrix (23) consistently estimates (22), it is clear that (25) will be asymptotically
distributed as y%*(k) under Hy. As shown by Davidson and MacKinnon (1985),
variants of (25) can be computed by means of two different artificial regressions.
The most generally applicable of these is

i,/6,= 6,(M.Z)c + error. (26)

The explained sum of squares from regression (26) is the test statistic (25). The inner
product of the regressor matrix with itself is Z™M . QM. Z, while its inner product
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with the regressand is #’M,Z. The latter expression does not involve the 6,’s
because the ¢, which multiplies each of the regressors cancels with the 1/, which
multiplies the regressand. For regression (26) to be computable, 4, must never be
exactly equal to zero, since if it were the regressand would be undefined; this
problem can be avoided in practice by setting , to a very small number whenever it
should really be zero.

If % is used for 67, and it is probably the most natural choice, an even simpler
artificial regression is available. It is

1= UM, Zc + errors, 27

where 1 is an n-vector of ones and U is an n X n diagonal matrix with i, as the 7-th
diagonal element. The explained sum of squares from (27) is

UM Z(Z™™M, 0T0M, Z) ' Z"M, O (28)

The vector 17U is simply &”, and the matrix I is simply £ with &’ being used for
62, s0 that (28) is just a special case of (25). The artificial regression (27) is very easy
to compute. The regressand is a vector of ones. Each of the regressors is the vector
of residuals from a regression of Z on X, each element of which has been multiplied
by the appropriate element of & (to see this, observe that UM.Z=u » M.Z). Thus
one simply has to perform k -+ 1 linear regressions. Since & of them involve the same
set of regressors (the matrix X), the computational burden (given appropriate
software) is only moderately greater than that of performing two linear regressions.

There are other choices for 67 besides i#%. One that was proposed in the context
of heteroskedasticity-consistent covariance matrix estimators (HCCME’s) for
linear regression models by MacKinnon and White (1985) is

5'12 = ﬂ,z/(Mx),,, (29)

where (IVIX),, denotes the 1-th diagonal element of the matrix M.,. The reason for
using (29) is that in the case of a linear regression model with homoskedastic
residuals, it provides an unbiased estimate of ol (= d?), correcting the tendency of
squared residuals to be too small.

In the context of testing for structural change, assumptions (21) may seem
more unrestrictive than is needed. What has traditionally worried econometricians
about the ordinary F test is not the possibility that there may be heteroskedasticity
of unknown form, but the possibility that the variance of the error terms may
simply be different in the two sub-samples. It is easy to derive a version of (25)
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which allows only for this possibility. First, estimate the model over each of the two
groups of observations, obtaining sums of squared residuals SSR; and SSR;
respectively. Then make the definitions:

. SSR; )2 SSR, /2
— d Fr = ,
7! (m - k) and @ n—k (30)

and let 6,= &, for all observations where J,=0 and &,= 6, for all observations
where d,= 1. Now run regression (26) using the &,’s so defined. The explained sum
of squares from this regression will have the form of (25), and will clearly provide an
asymptotically valid test statistic if in fact group 1 observations have variance o7
and group 2 observations have variance o1. Of course, if one is willing to make the
assumption that the variance is constant over each of the sub-samples, various
other procedures are available; see Jayatissa (1977), Weerahandi (1987), Watt
(1979), Honda (1982) and Ohtani and Toyoda (1985), among others.

4 Finite-sample Properties of the Tests

The tests suggested in the previous section are valid only asymptotically. If they are
to be useful in practice, their known asymptotic distributions must provide
reasonably good approximations to their unknown finite-sample distributions. In
this section I report the results of several Monte Carlo experiments designed to
investigate whether this is so. For obvious reasons, attention is restricted to the case
of linear regression models. Experiments were run for samples of sizes 50, 200 and
800, with n; equal to On, 0 being either 0.5 or 0.2, and with ¢, variously equal to o,
four times o, or one quarter of ¢,. In all experiments there were four regressors
including a constant term. The X matrix was initially chosen for a sample of size 50
and replicated as many times as necessary as the sample size was increased, so as to
ensure that the matrix n~ ' X7X did not change. The regressors were a constant, the
Canadian 90-day treasury bill rate, the quarterly percentage rate of change in real
Canadian GNP, seasonally adjusted at annual rates, and the exchange rate between
the Canadian and U.S. dollars, in Canadian dollars per U.S. dollar, all for the
period 1971:3 to 1983:4.

Choosing the X matrix in this way makes it easy to see how the sample size
affects the results. However, it may make the performance of the heteroskedastici-
ty-robust (HR) tests appear to be unrealistically good in moderately large samples.
As Chesher and Jewitt (1987) have shown, the values of the few smallest diagonal
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elements of M can have a very big impact on the finite-sample performance of
HCCME’s. Replicating the X matrix as the sample size is increased ensures that all
diagonal elements of M, approach one at a rate proportional to 1/n, so that once n
becomes large the HR tests are bound to perform reasonably well. With real data
sets, one would certainly expect the smallest elements of M, to approach one as n
tends to infinity, but possibly at a rate much slower than 1/#, thus implying that the
HR tests might perform less well for larger samples than these experiments suggest.
In the experiments, the smallest elements of M, were 0.7965 for n =150, 0.9491 for
n =200 and 0.9873 for n = 800.

The four test statistics that were computed in the course of the experiments
were the following:

1.  Theordinary Ftest, expression (5), which is valid only under homoskedasticity.
It will be denoted F.

2. The heteroskedasticity-robust test statistic (28), based on the artificial
regression (27). It will be denoted HR.

3. Aheteroskedasticity-robust test statistic like (25), in which &, defined by (29) is
used in place of . This statistic, which will be denoted HR;, is somewhat
harder to compute that HR).

4. A test statistic with the form of (25), but where 6, is either &, or &,, where the
latter were defined in (30). This statistic, which will be denoted 2V (for two
variances) will be asymptotically valid under much less general assumptions
than HR; and HR,.

The results of the Monte Carlo experiments are presented in Tables 1 and 2. Table 1
contains results for 18 experiments where the null hypothesis that ;= f, was
correct. The percentage of the time that each test rejected the null hypothesis at the
nominal 1%, 5% and 10% levels is shown in the table. These numbers should thus
be very close to 1.0, 5.0 and 10.0 if the tests are behaving in finite samples as
asymptotic theory says they should.

In the first group of experiments, the variance in the two subsamples was equal.
The ordinary Ftest is thus completely valid, and, as we would expect, the rejection
frequencies for the F test were indeed very close to what they should be. All the
other tests performed reasonably well when o) =0,. However, HR; and HR,
tended to under-reject, especially for =0.2 (when n; was one-quarter the size of
ny), while 2V tended to over-reject somewhat. The performance of all tests
improved sharply with the sample size, and one could feel confident about using
any of them for n==200.

In the second group of experiments, g, was four times as large as . The Ftest
was therefore no longer valid, but it continued to perform quite well for §=0.5.
However, it rejected the null far too infrequently for §=0.2. The two HR tests
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Table 1. Rejection Frequencies when the Null Hypothesis is True

Rejection Frequencies Rejection Frequencies

n oy/oc, 0 Test 1% 5% 10% 6 Test 1% 5% 10%
50 1/1 .5 F .10  5.15 10.30 .2 F 0.70  4.65  9.85
HR, 0.45 5.00 10.30 HR, 0.00t 0.70* s.10%
HR, 0.25* 3.00* 8.05* HR,  ©.00t o0.25% 2.40%
2v. 2.60t 7.30t 13.05% v 6.10t 12.90% 19.00%
200 1/1 .5 F 1.05  4.85 10.25 .2 F 1.35 5.90 9.95
HR, 0.55 4.50 9.65 HR, 0.55 3.75 9.70
HR, 0.55 4.25  9.10 HR; 0.55 3.55 8.90
2V 1.30 5.30 11.00 2v 2.25t 7.55% 11.80*
800 1/1 .5 F 1.25  5.30 10.40 .2 F 1.25  5.30 10.30
HR, 1.15 5.45 10.05 HRy 0.95 5.00 9.85
HR; 1.10 5.45  9.90 HR, 0.95 4.85 9.60
2V 1.35 5.40 10.50 2v 1.20 5.60 10.70
50 174 .S F 2,65t 7.10% 11.80* .2 F 0.0t o0.10t 0.15%
HR, 0.60 445 11.70 HR, 0.00t 0.25t 0.80%
HR; 0.15t 2.70t 7.80% HR,  0.00t o0.10% oO.5s%
2v  2.50t 7.50t 13.80% 2v 3.70t 9.60t 14.75%
200 174 .5 F 2.35t g.35t 12.60t 2 F o.c0t o0.15* 0.30%
HR, 1.20 5.45 10.80 HR, 0.25t 1.90* 5.65%
HR; 0.95 5.05 10.40 HR,  0.20% 1.6s5t s.30%
2V 1.60* 6.60* 11.95*% 2v 1.65* 6.05 11.55
800 1/4 .5 F 1.80f 5.35 10.10 2 F c.00* o0.05t 0.15%
HR, 1.00 4.85 10.10 HRy 0.75  4.05  7.55%
HR; 1.00 4.70 10.00 HR, 0.75 3.95  7.35%
2v. 1.20 5.25 9.9 2v 1.45 5.75  9.60
50 4/1 .5 F 2.45t  8.70t 13.90* 2 F 47.45% 63.70% 70.50%
HR, 0.60 495 11.15 HRy 0.90  7.40t 16.05%
HR, 0.20* 3.05t 7.75% HR;  0.40* 4.90 11.60
2v. 2,45t 7.45% 12.40% 2v 9.15t 16.15% 22.20%
200 41 .5 F 2.70t 8.05% 12.95t 2 F 38.70* S6.70% 64.90%t
HR, 1.10  4.90 10.30 HR, 1.25  5.30 10.40
HR, 0.95 4.60 9.75 HR; 0.90 4.50 9.70
2v. 1.s0 5.90 11.35 2v 2.30t  6.65% 11.95%
800 4/1 .5 F 2.40% 7.60 12.60 2 F 39.05% 55.60% 65.15%
HR, 0.65 4.35 10.25 HR, 1.00 5.75 10.60
HR, 0.65 4.35 10.05 HR, 0.95 5.45 10.50
2V 0.80 4.65 9.90 2v 0.95 5.55 10.85

Notes: All results are based on 2,000 replications.

* and T indicate that the quantity in question differs significantly at the 0.01 and 0.001 level respectively
from what it should be if the test statistic were distributed as y*(4) or F(4,n—8).

performed reasonably well for 6= 0.5, but also grossly under-rejected for §=0.2.
Even for n =800, they tended to reject too infrequently in the latter case. The 2V test
over-rejected quite severely for n =50 and moderately for n =200, but performed
very well for n=2800. The third group of experiments was similar to the second,
except that o; was now four times as large as 0. This changed many results
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dramatically. The F test continued to perform surprisingly well for #=0.5, but
rejected the null far too often for §=0.2. The two HR tests generally performed
well, although they over-rejected somewhat when n = 50. The 2V test continued to
over-reject quite severely when #n= 50 and moderately when »=200.

From Table | two conclusions emerge. First, the two HR tests generally
perform quite well, but usually tend to under-reject. There is thus no reason to
prefer HR; to the simpler HR; the former simply under-rejects more severely in
most cases. Nevertheless, there are evidently some cases where HR can seriously
over-reject, at least for small samples, so that routine use of this test as if it were an
exact test is not justified. Secondly, the 2V test performs very well in medium and
large samples but tends to over-reject in smaller ones. Its good performance in
reasonably large samples makes sense, because it would be an exact test if &) and 6
were replaced by o) and o>. Provided that both n; and n; are reasonably large, &,
and &, will provide good estimates of ¢; and o>, and hence it is not surprising that
the test performs well. Of course, in these circumstances the Wald test examined by
Watt (1979), Honda (1982) and Ohtani and Toyoda (1985), which also uses the
estimates G and &, might well perform even better.

Table 2 presents results for 18 experiments where the null hypothesis was false.
The parameters were chosen so that for the case where 6 = ¢, and 0 =0.5, the Ftest
would reject the null roughly half the time. The difference between g; and f was
made proportional to n~'/2 so that there would be no tendency for the rejection
frequencies to increase with the sample size. What should happen under this
scheme as n — o0 is that all tests which are asymptotically equivalent will tend to the
same random variable, and thus reject the null the same fraction of the time. The
results in Table 2 largely speak for themselves. Once again, the 2V test performs
well. It performs quite similarly to HR; and HR; in most cases for n =800, but
generally rejects the null more frequently for smalier sample sizes.

The limited Monte Carlo experiments reported on here certainly do not
provide a definitive study of heteroskedasticity-robust tests for structural change.
For example, no attempt was made to study the effect of combining the ordinary F
test with the 2J test by first doing a pretest of the hypothesis that o; =05 (see
Phillips and McCabe 1983 or Toyoda and Ohtani 1986). Such a strategy seems
appealing, and would presumably produce results somewhere between those for F
and 2V, depending on the significance level of the pretest. There was also no
attempt to quantify the size-power tradeoffs of the various tests, although how
useful such an exercise is when size is not known in practice is unclear.

The most substantial omission is that the undoubtedly very complex relation-
ships between test performance, the number of regressors and the structure of the X
matrix were not studied at all. To do so would be a major undertaking, because it
seems unlikely that Monte Carlo evidence alone, without a strong theoretical
framework based on work like that of Chesher and Jewitt (1987), would allow one
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Table 2. Rejection Frequencies when the Null Hypothesis is False

Rejection Frequencies Rejection Frequencies

n o/ 6 Test 1% 5% 10% 6 Test 1% 5% 10%
50 1/1 .S F 22.40 45.60 59.05 .2 F 16.70 38.65 52.35
HR, 10.65 39.00 56.70 HR, 0.25 8.00 23.15

HR» S5.65 29.40 47.90 HR; 0.15 3.60 13.75

2V 30.45 52.80 63.70 2V 31.45 47.85 58.00

200 1/1 .S F 26.00 50.20 62.20 .2 F 20.55 41.50 54.60
HR, 23.65 48.50 61.05 HR, 9.80 31.85 47.60

HR, 22.45 46.55 59.70 HR> 8.90 30.25 45.55

2V 28.05 51.30 63.10 2V 23.65 43.90 56.30

800 1/1 .5 F 26.80 51.25 64. 60 .2 F 21.60 42,55 55.05
HR, 26.40 51.20 64.15 HR, 18.05 40. 20 53.50

HR, 25.70 51.05 63.95 HR; 17. 40 39.75 53.20

2V 27.25 51.35 64.80 2V 22.00 42.10 56.00

50 /4 .5 F 23.50 43.90 56.55 .2 F 0.95 5.45 12.10
HR, 11.90 39.40 57.85 HR, 0.00 3.20 19.15

HR, 6.40 29.85 48.95 HR> 0.00 1.10 9.45

2V 36.55 57.35 69.50 2V 52.05 72.45 80.55

200 174 .S F 25.70 46. 65 58.05 .2 F 0.8S 5.95 12.90
HR, 24.95 51.05 64.95 HR, 15.50 45.60 63.15

HR, 23.70 49.20 63.65 HR> 14.60 42.80 61.10

2V 31.90 56.15 67.40 2V 47.75S 71.50 80.10

800 174 .S F 24.80 44.90 57.45 .2 F 0.95 6.50 14.20
HR, 28.80 52.25 65. 80 HR, 37.10 65.30 76.95

HR; 28.50 51.90 65.50 HR, 36.85 64.70 76.65

2V 30.95 53.40 66. 30 2V 47.50 71.10 80. 40

S0 4/1 .S F 24.35 47.55 61.60 .2 F 78.30 88.70 92.45
HR;y 19.95 55.50 73.35 HR, 2.35 19.30 36.90

HR, 11.95 44.10 65.10 HR, 1.05 11.60 27.50

2V 47.95 69.85 80.25 2V 26.25 40.05 48,95

200 4/1 .5 F 26.20 51.70 63.25 .2 F 76.15 86.30 89. 80
HR, 39.50 66. 05 77.55 HR, 9.25 29.20 42.60

HR; 37.50 64.35 76.25 HR, 8.15 27.50 41.25

2V 46.55 69.75 79.00 2V 17.10 33.25 44.60

800 4/1 .5 F 28.80 51.70 64.00 .2 F 75.75 85.75 90.15
HR, 44.55 69.00 79.75 HR, 13.45 30.55 43.60

HR, 44.20 68.70 79.50 HR, 13.15 30. 30 43.05

2V 45.55 69.70 79.95 2V 14.85 32.50 43.25

Note: All results are based on 2,000 replications.

to say anything interesting about those relationships. Nevertheless, a few fairly
strong results do seem to emerge from the Monte Carlo experiments. These are:

1. There seems to be no reason to use HR; instead of the simpler HR;.

2. Since HR| never seriously over-rejects at the 1% level, one should probably
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view an HR; statistic which is significant at the 1% level as providing quite
strong evidence against the null hypothesis.

3. The 2V test performs very well in medium and large samples, although it over-
rejects somewhat in small samples. It generally has more power than the HR
tests.

5 Conclusion

This paper has shown that it is remarkably easy to test for structural change in a
fashion which is robust to heteroskedasticity of unknown form. The tests can also
be modified so that they are robust only to a more structured form of
heteroskedasticity in which the variance differs between the two subsamples,
although since numerous other solutions to this simpler problem are available, this
modification may be of limited interest. The new tests are asymptotically valid for
both linear and nonlinear regression models. Monte Carlo evidence for the linear
case suggests that, although the finite-sample performance of even the best tests is
sometimes poor, the ordinary F test can be so misleading that it clearly makes no
sense to ignore the possibility of heteroskedasticity when testing for structural
change. At the very least one should double-check the results of the F test by using
one of the tests discussed in this paper.
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A Switching Regression Model with Different Change-Points
for Individual Coefficients and its Application
to the Energy Demand Equations for Japan'

By T. Toyoda? and K. Ohtani?

Abstract: In this paper, we set up a switching regression model in which individual coefficients are
allowed to shift at different change-points. We also apply it to the energy demand equations and
examine structural change in the demands for total fuel oil and for light oil and kerosene at the second oil
crisis. It is shown that assuming the different change-points for individual coefficients yields more
plausible results than assuming the same change-point for all coefficients.

1 Introduction

Since Quandt (1958) proposed a switching regression model, the model has often
been used to detect a structural change-point in some economic equations. Based
on the switching regression model, for example, Stern/Baum/Greene (1979)
studied structural change in the aggregate import and export demand equations for
the United States and Boughton (1981) studied structural change in the demand
equation for money.

From the theoretical and practical viewpoints, the switching regression model
has been extended to some directions. For example, Salazar/Breomeling/Chi
(1981) and Ohtani (1982) considered the sWitching regression model when the
error terms are autocorrelated. Also, Bacon/Watts (1971), Tsurumi (1980) and
Katayama/Ohtani/Toyoda (1987) considered the switching regression model when
the change in regression coefficients occurs gradually.

' We thank Professor S. Katayama for his help in another related project.

> Toshihisa Toyoda, Department of Economics, University of Essex, Wivenhoe Park, Colchester CO4
35Q, England, and Faculty of Economics, Kobe University, Nada-ku, Kobe 657, Japan.
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Although the switching regression models studied so far assume that all
coefficients shift at the same change-point, the change-point may be different
among the regression coefficients in some practical situations. The first purpose of
this paper is to set up a switching regression model in which individual coefficients
are allowed to shift at the different change-points.

As an application of the gradual switching regression model, Ohtani/
Katayama (1985) examined structural change at the first oil crisis in the energy
demand equation for Japan which is explained both by the relative price and
economic activity variables. Although Toyoda/Ohtani/Katayama (1987) exami-
ned structural change in the same-type energy demand equations for Japan both at
the first and second oil crises, we used no formal methods to detect change-points.
Namely, we selected some plausible change-points by conjecture, and conducted
the Chow test proposed by Chow (1960) and the Wald test proposed by Watt
(1979). In the process of our study in Toyoda/Ohtani/Katayama (1987), we found a
strong evidence that the individual coefficients for the explanatory variables, i.e.,
the relative price and an economic activity variable, might shift at different time-
points. This evidence has motivated us to our second purpose of this paper, i.e., to
examine and estimate change-points of individual coefficients in some energy
demand equations for Japan. It is shown that assuming the different change-points
for individual coefficients yields more plausible results than assuming the same
change-point for all coefficients.

2 The Different Change-Points Model

Consider a switching regression model

k
yi= 2 (Bt Ladi)xy + (1)

i=1

where, fort=1,2,..., T, y,is the t-th observation on the dependent variable, x; is the
1-th observation on the i-th independent variable, 4; is the dummy variable defined
as

Ai=0 for t =¥,
2
Ai=1 for t> ¥,
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and ¢, is the error term which is normally and independently distributed with zero
mean and constant variance ¢ (i.¢., &, ~ NID(0, 6?)). Although it may be possible to
allow the error variance also shift between two regimes as in, e.g., Quandt (1958),
we rather prefer simplicity to complexity as our first approach to the present new
problem, i.e., we assume that it remains constant over the whole period.

Defining 4, as in (2) means that the i-th coefficient shifts from f; to f; + d;at an
unknown change-point ¥ (k=<rf <T— k). If we assume that all 7}’s are the same
(i.e., ff =13 =...=1}), the switching regression model defined in (1) and (2) (say,
the different change-points model) reduces to the traditional switching regression
model that all coefficients shift at the same change-point (say, the same change-
point model). If we have prior knowledge that the j-th coefficient does not shift, the
prior knowledge can be utilized by putting 6;= 0 with appropriate adjustment of
the number of the independent variables.

Denoting
L r )
»n Xl Xkl AUXIL ool Ak Xk
»2 X12... X2 Aax1z ... Akaxeo
yr= , X*= ,
yr XIT. XkT  ArXiT... ArXer
L J .. _

0= (ﬂl, ﬁz’ ey ﬂk’ 61’ 62, rees 6’()" 8 = (81, 82’ s GT)”

the model (1) and (2) can be rewritten in the matrix form as

y*=X*0+ ¢ &~ NO, *I7). (3)

Note that X* depends on the vector of change-points, t* = (11,13, ... 17), through
the dummy variables 4;’s (=1, 2, ..., k).
The log-likelihood function for (3) is

L(t*,0,6%)=—(T/2)log 2n — (T/2) log 6> — (y* — X*0) (y* — X*6)/20°. 4)
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Differentiating (4) with respect to # and 62, and equating the resultant equations to
zero, we obtain the conditional maximum likelihood (ML) estimates of § and o2

given r*:
f* = (X X*) " LX* %, (5)
%= (y* — X¥0*Y(y* — X*0%)T. (6)

Substituting (5) and (6) into (4), we obtain the concentrated log-likelihood
function:

Lunax(t*) = —(T/2)(1 + log 27) — (T/2) log 6*°. @)

Since Lyax(1*) depends on t* only, the ML estimate of #* can be obtained by a grid
search over the region k= =T—k (i=1,2,..., k).

The likelihood ratio test for stability of coefficients cannot be conducted, since
1¥’s are defined as integer values (e.g., Johnston 1984, p. 409). However, the change
in the i-th coefficient (i.e., §;) can be tested by conducting a conditional test for the
null hypothesis, Hy: 6;=0, given the ML estimates of s,

3 Structural Change in the Energy Demand Equations for Japan

Applying the different change-points model set up in the previous section, we
examine structural change in the demand equations for total fuel oil and for light oil
and kerosene in Japan before and after the second oil crisis. Note that a large
component of total fuel oil is heavy oil and it is used mainly in the industrial sector
(i.c., about 55% in 1985) while a considerable part of light oil and kerosene is
consumed in the household sector (i.e., about 87% used in the non-industrial sector
in 1985).

The model we adopt here is a partial adjustment demand equation, which is
most popular in studies in this area. It is simple but valuable in allowing for
instantaneous and non-instantaneous demand adjustments to price and income (or
an economic activity level). Our model is specified as

log E,=f+ frlog P+ f3log Y, + fslog E,— +¢, (3)
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Fig. 1. Behaviours of the demand for total fuel oil (£)), its relative price (P,) and real GDP (Y,)

where, at the time-point 1, E, is the energy demand, P, is the relative price of energy
to the general price, Y, is the real income (real GDP), E, _ | is the energy demand
lagged one period and ¢, is the error term distributed as NID(0, o). The estimates of
coefficients 8 and B are the estimates of short-run (instantaneous) price and
income elasticities, respectively. These estimates multiplied by 1/(1 — f4) are the
long-run estimates of the same elasticities.

The data used in our study are seasonally adjusted quarterly data for Japan
from the first quarter of 1976 (1976:Q1) to the fourth quarter of 1985 (1985:Q4).
See Appendix for their sources and definition of the variables. Figures 1 and 2 show
the behaviours of the variables used in this study. From the figures, it seems that the
demand for total fuel oil has had a declining tendency after the second oil crisis (i.e.,
after around 1979-1980), but the demand for light oil and kerosene has had an
increasing tendency except for the period 1979-1983 when the demand remained
unchanged or rather slightly decreased. Converting the basic energy demand
equation given in (8) into the different change-points model given in (1) and (2), we
estimated the change-points and other parameters of the demand equations for
total fuel oil and for light oil and kerosene. For comparison, we also estimated the
change-points and other parameters of the energy demand equations based on the
traditional same change-point model. The estimation results are shown in Tables 1
and 2. The estimates of the change-points are also shown by the vertical lines in
Figs. 1 and 2. Note that if the coefficient J; for each independent variable is
significantly different from zero, the coefficient f; significantly shifts from g, to
B+ ;. Since the change-points in the different change-points model vary with the
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Table 1. Estimation results for total fuel oil

rvlrliliyl 'y

Nodel Const. P, Y. Ever 1 ] D.Y.
Same t* 1983:4 - - - 0.947 0.025 2.830
change-point

B 3.764 -0.084 -0.045 0.706
(2.60) (-3.08) (-0.56) (9.11)
& 57.292 -0.635 -3.149 -1.686
(5.03) (-1.74) (-4.50) (-5.69)
B+& 61056 -0.719 -3.194 -0.980
Different t* 1982:1 1983:4 1984:1 1982:1 0.945 0.025 2.583
change-points

8 4.082 -0.080 -0.045
(2.63) (-2.68) (-0.51)

8 7.669  0.202 -0.010
(3.50) (d.24) (-4.50)

B+& 11751  0.122 -0.055

0.677
(5.97)

-0.716
(-3.52)

-0.039

Notes: Values in parentheses are t-values. R? is the coefficient of determination adjusted by
degrees of freedom. D.W. is the value of the Durbin-Watson ratio.
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Table 2. Estimation results for light oil and kerosene

Model Const. P, Y. Evey R® 4 D.Y.

Same t* 1983:4 - - - 0.772 0.037  2.206
change-point
B -0.582 -0.110 0.666  0.200
(-0.40) (-2.96) (3.76) (1.23)

& 36.814 -0.654 -2.271 -0.889
(24D (-1.31) (-2.16) (-2.08)

B+5 36.232 -0.764 ~-1.605 -0.689

Different t* 1979:2  1983:2 1979:2 1977:1  0.834 0.031 2.176
change-points
B -12.339 -0.070 1.904 -0.131
(-3.21) (-L34) (5.35) (-0.92)

& 21.557 0.151 -1783 -0.009
(444 .89 (-443) (-2.74)

B+& 9.218 0.081 0.121 -0.140

Notes: The same as in Table 1.

Table 3. Short- and long-run elasticities of price and income

Short-run Long-run
Energy Mode! Period P. Yo Eewer  Po Yo
Total Same 1976:Q1-1983:Q4 -0.084 -0.045 0.706 -0.286 -0.153
fuel oil change-point 1984:Q1-1985:Q4 -0.719 -3.194 -0.980 -0.363 -1.613

Different 1976:Q1-1982:Q1  -0.080 =~0.045 0.677 -0.248 -0.139
change-points 1982:Q2-1983:Q4 -0.080 -0.045 -0.039 -0.077 -0.043
1984:Q1-1984:Q1  0.122 -0.045 -0.039 0.117 -0.043
1984:Q@-1985:Q4  0.122 -0.055 -0.039 0.117 -0.053

Light oil Same 1976:Q1-1983:Q4 -0.110 0.666 0.200 -0.138 0.833
and kerosene change-point 1984:Q1-1985:Q4 -0.764 -1.605 -0.689 -0.452 -0.950

Different 1976:Q1-1977:Q1  -0.070 1.904 -0.131 =-0.062 1.683
change-points 1977:@-1979:Q2 -0.070 1.904 -0.140 -0.061 1.670
1979:@3-1983:Q2  -0.070 0.121 -0.140 -0.061 0.106
1983:Q3-1985:Q4  0.081 0.121 -0.140 0.071 0.106
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coefficient, the long-run elasticities both of price and income shift not only by the
change in their short-run elasticities but also by the change in the adjustment
parameter. Thus, to clarify the changes in long-run elasticities of price and income,
we show in Table 3 the estimates of the short-run and long-run elasticities for the
subperiods divided by the change-point of each coefficient.

4 Interpretation of the Estimation Results

First, as to structural change in the demand equation for total fuel oil, we see the
following facts from Tables 1 and 3.

(1) Based on the same change-point model, the estimate of the change-point is
1983:Q4, which is considerably lagged from the period of the second oil crisis. The
short-run and long-run price elasticities before and after the change are negative
and their absolute values become larger after the change. Also, the short-run and
long-run income elasticities before and after the change are negative. Although the
negative income elasticities are not expected from the theory, the reason may be as
follows. That is, total fuel oil is mainly used in the industrial sector, and the
industrial sector introduced the oil-saving technology after the first oil crisis so that
the demand for total fuel oil rather tends to decrease even if GDP increases. From
Fig. 1, the behaviour of demand of total fuel oil before the change seems consistent
with that of the price. Since the income elasticity is not highly significant before the
change, the effect of the income on the demand for total fuel oil may be weak.
However, since the change in the income elasticity is significant and its absolute
value becomes considerably larger, the demand for total fuel oil after the change
may tend to decrease by the larger negative income effect though the price is stable
or rather tends to decrease.

(2) Based on the different change-points model, the price elasticity shifts at
1983:Q4, which is the same as the change-point based on the same change-point
model. However, the price elasticity becomes positive after the change. The change-
point of the income elasticity is 1984:Q1, which is slightly different from the
change-point based on the same change-point model. The change-points of the
adjustment parameter and the constant term are 1982:Q1, which is considerably
different from the change-point based on the same change-point model. This result
means that the change in adjustment occurred in an earlier stage than the changes in
price and income elasticities. Although the absolute values of the price and income
elasticities are smaller in the different change-points model than in the same
change-point model, the behaviour of demand for total fuel oil before the change
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seems to be equally explained by the behaviours of the price and income variables in
both models. However, the absolute value of the income elasticity based on the
same change-point model seems too large after the change. Specifically, Table 3
shows that the long-run income elasticity based on the same change-point model is
negative and its absolute value becomes larger by more than 1.0 after the change.
Although the signs of the estimates of the changed price and income elasticities
based on the different change-points model are opposite to the ones expected from
the demand theory after the change, their absolute values both in the short-run and
long-run are much smaller than those based on the same change-point model. Since
energy is the indispensable necessity particularly in the industrial sector, the smaller
elasticities depicted in the different change-points model seem more plausible in the
long-run.

Next, as to structural change in the demand for light oil and kerosene, we see
the following facts from Tables 2 and 3.

(1) Based on the same change-point model, the estimate of the change-point is
1983:Q4, which is the same as the result for total fuel oil. The income elasticity is
positive before the change, but it becomes negative after the change. Also, the
absolute value of the price elasticity becomes larger after the change. Although the
price elasticity is negative and highly significant before the change, the effect of
price hike between 1978:Q4 and 1983:Q1 does not seem to be fully reflected in the
demand for light oil and kerosene since Fig. 2 shows that the decrease of the
demand is very slight during that period.

(2) Based on the different change-points model, the income elasticity and the
constant term shift at 1979:Q2, which is just around the second oil crisis. Also, the
price elasticity shifts at 1983:Q2. However, the price elasticity becomes positive
after the change though its absolute value is small. It is interesting that the change in
price elasticity occurs around the period when the price begins to decrease. The
adjustment parameter shifts at 1977:Q1 though the magnitude of change is very
small.

(3) Based on the results in the different change-points model, the effects of the
price on the demand for light oil and kerosene seem weak before 1979:Q2 since the
absolute value of the price elasticity is small and also the price variable is not highly
significant. However, since the income elasticity is large and highly significant
before 1979:Q2, the demand for light oil and kerosene seems to increase by the
income effects. Since the absolute value of the price and income elasticities are
small for the period between 1979:Q3 and 1983:Q2, the decrease in the demand for
light oil and kerosene might be slight in that period. Specifically, since the price
variable is not highly significant before 1983:Q2, the price hike might not affect the
demand for light oil and kerosene. Comparing the results based on the same
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change-point model with the one based on the different change-points model, the
behaviour of the demand for light oil and kerosene during the period of the price
hike (i.e., 1978:Q4-1983:Q1) seems to be explained better by the latter model than
the former. Since the price elasticity is positive after 1983:Q3 and the price tends to
decrease after 1983:Q1, it is expected that the demand for light oil and kerosene
decreases after 1983:Q3. On the other hand, the income elasticity is positive and the
growth rate of GDP seems slightly higher after 1983:Q1 than before 1982:Q4.
Thus, the price and income effects might be offset, so that the demand for light oil
and kerosene might be rather stable after 1983:Q3.

Appendix: Data Sources and Definition of Variables

Energy demand was drawn from various issues of Yearbook of Coal, Petroleum and
Coke Statistics compiled by the Research and Statistics Department, Ministry of
International Trade and Industry. The units of total fuel oil and of light oil and
kerosene are kilocalories and they are measured in logarithms in Figs. 1 and 2.

The ratios of the domestic wholesale prices of total fuel oil and of light oil and
kerosene to the GDP deflator are used as their relative prices. The domestic
wholesale prices were drawn from Price Indexes Annual, Bank of Japan
(1975=100.0) and the GDP deflator (1975=100.0) and GDP were drawn from
Annual Report of National Account, Economic Planning Agency. The relative prices
and GDP are measured in logarithms in Figs. 1 and 2, and GDP is re-scaled so as to
match with the units of other variables.
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Testing for Coefficient Constancy in Random Walk Models
with Particular Reference to the Initial Value Problem

By S. J. Leybourne! and B. P. M. McCabe?

Summary: This article is concerned with Locally Best Invariant tests for coefficient stability in a
univariate random walk coefficient regression model. In particular, we explore the effects that different
assumptions about the initial value of the random walk process have on the form and asymptotic
distribution of the resulting test statistics. When this initial value is allowed to be random, it is shown
that the test statistics are either exactly the same, or possess the same asymptotic distributions, as when
the initial value is fixed.

Key words: Brownian Motion, Brownian Bridge, Invariance, Locally Best Invariant Test, Mixing,
Random Walk, Weak Convergence.

1.0 Introduction and Summary

This article explores the effect of different assumptions made about the initial
value f8; on the Locally Best Invariant test of w?=0in the model

y,:x,/?,+£[ g’~IN(0,O-2) ()
ﬂI:ﬁl—l +n, WININ(O’szZ) (2)
t=1,....,T.

We assume that ¢® is an unknown nuisance parameter and that x, is a known
exogenous variable. When w? = 0is true then §, is constant and its value depends on

I's. . Leybourne, School of Business and Economic Studies, University of Leeds, Leeds LS2 9JT,
England.
? B. P. M. McCabe, University of Sydney, Sydney NSW 2006, Australia.
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what is assumed about the initial value of the sequence. The initial value of §; may
be considered to be either fixed or random. When it is considered to be fixed, it is
either assumed to be known (i.e. zero without loss of generality) or unknown and
equal to f, say. In the case where it is random it is conventionally assumed to be
N, ozc'uzéz), where ¢? is a known and possibly large number. Most generally, one
may assume that ff is distributed as N(f, o’w*E?) with f and €2 unknown. Of course,
the distribution of f, is assumed independent of those of ¢, and #,.

The fixed 5, case has been studied by, for example, Garbade (1977). However,
the situation where f is random does not seem to have been studied before and this
article derives the Locally Best Invariant test of w?=0, showing that the test
statistics are either exactly or asymptotically the same as in the case when S, is fixed.
Section 4 summarises the asymptotic distribution theory required for implemen-
ting the test in the absence of normality (under normality, the method of Imhof
(1961) could be used to determine exact distributions). This is done under standard
mixing conditions.

2.0 The Likelihood Function of the Observables

The above model can be cast in an alternative but equivalent form as follows. By
repeated back substitution of (2) into (1)

14
Yi=x Z ni+xpo+ &

i=1
from which it is easily established that
E(y)=xE(Bo)=x,p
Vi) =X (to*x + 1+ w?éx?) k=0
=oX(1 — k)wkxx i + 0¥xxy) 1>k>0.

Of course, when f is fixed, then ¢2=0. In a vector notation we may write, for
y:(yl,YZ,-.-,YT)’,
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y~N(xB,0*Q(?, &), 3)
(0, &)= 0 XVX + It + 0¥ Xii' X

where Xis a TX T diagonal matrix with ¢-th diagonal element equal to x,, xisa T X 1
vector of the x,’s and V'is a T X T symmetric positive definite matrix whose (i, j)-th
element is equal to min (i, j). The TX 1 vector i consists of a column of ones.

3.0 Locally Best Invariant Tests

From (3) we see that ¢? is always a nuisance parameter and so too are f and &2 if
they are unknown. It is clear that the role of § is the same irrespective of whether &2
is zero or not i.e. whether fy is random or not. A great advantage of testing
problems being invariant to certain transformations is that the distributions of
maximal invariants often depends on a smaller number of parameters, thus
eliminating the effect of other parameters. For example, irrespective of the status of
B and &2, testing for w? =0 is invariant under

y—ay, a>0, 4)
and a maximal invariant is given by
g/(&'e)!?

where £=y— xf and it is distributed free of ¢°. If # and & are known, the Locally
Best Invariant test is given by

gAg/e'e, A=0(w?,ED)/dw?|w*=0. (5)

For further details see King and Hillier (1985). If 8 is unknown and &2 is known or
unknown then under the transformation

y—ay+xo, (6)
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where a is a positive scalar and J is an arbitrary scalar, a maximal invariant is
w=Pg/(£'¢)'?, where P is a (T—1)XT dimensional matrix which satisfies
PP'=Ir_ and PPP=M=1—xx'/(x'x). The density of this maximal invariant is
proportional to

|PQP’|~V2(w'(PQP')'w)~ /20D, (7)
Evaluating PQP’, we see
P(@?XVX + Ir+ ?EXii' X)P' = 0*PXVXP' + I+ 0*E*PXii’ XP'
=w?PXVXP +1

since i’X=x" and i’XP'=x'P'=0. Hence, the distribution of this maximal
invariant does not depend, interestingly enough, on &2 i.e. the location and scale
invariance rule automatically eliminates the covariance parameter 2 in addition to
f and o2. The Locally Best Invariant test is

FAR/¥E, A=90(w?,0)/dw?|w? =0, (8)

where #=y— xf8 and f is the estimated value of § from the regression of y on x.
Further insight into this phenomenon may be obtained in the case where x, = 1
for all 7 and o2 is assumed to be known. Then, under the transformation

y—y+oi

where ¢ is an arbitrary constant, maximal invariants include {y,— ys,
t=1,...,T,t#k} (for any value of k) and {y,— y,1=1, ..., T}. By writing

t
V= Z’],"l'ﬁ()‘l"ﬁ,

it is clear that these maximal invariants do not involve any distributional
characteristics of f; whatsoever. It is immaterial whether ) has a diffuse prior
distribution or, indeed, what value of k is chosen.
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It is perhaps of interest to note that invariance rule (6) is not appealing in the
case where Sy~ N(0, 6°w?*¢?) since the family of distributions given in (3) is not
closed under location invariance in this case.

3.1 The Locally Best Invariant Test when fy is Fixed

When f is known we see that y is distributed as in (3) with = £2=0. The problem
of testing w>=0 is seen to be invariant under the transformation (4) and so the
Locally Best Invariant test follows from (5) and is given by

YXVXy/y'y. 9)

Under normality, the exact distribution of (9) may be calculated via Imhof’s
method. Section 4 gives the asymptotic distribution when y is allowed to be
Q-mixing.

When f; is unknown, and hence is a nuisance parameter as well, we note that
the testing problem is invariant under (6) and the Locally Best Invariant test

F(XVX)2/EE

follows from (8). The distribution of this statistic may be calculated, as before,
using Imhof’s method under normality. The asymptotic distribution is also given in
Section 4.

3.2 The Locally Best Invariant Test when f; is Random

We first consider the case when S is distributed as N(0, 62w*E?) and &2 is known.
From (5), the Locally Best Invariant test, under transformation (4), is given by

YX(V+ i Xy/yy=y XVXy/y'y + &y Xii' Xy/y'y. (10)

As &2 is known, under the assumption of normality we may determine the exact
distribution of this statistic via Imhof’s method. We note that the statistic is
increasing in ¢2 and, as it increases, the power of the test will approach one. Thus,
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whilst one may assume that & is large in order to simulate the effect of a
noninformative prior for By, it is clear that ¢? is very informative about the
distribution of y under the alternative.

When S is distributed as N(f, 6’w?E?) then under transformation (6), the
Locally Best Invariant test is

F(XVX)E/E'E

as follows from (8). This is, of course, the same test as was obtained when £y was
fixed but unknown.

4.0 Aysmptotic Distributions of the Tests

Whilst we have used the normality assumption to derive the Locally Best Invariant
test we need only assume that {¢,} forms an @-mixing sequence under the null in
order to derive its asymptotic distribution. This allows {¢,} to be, subject to mild
regularity conditions, nonstationary, heteroscedastic and serially correlated.
Accordingly, we make the following assumptions for any specified sequence {,}

Assumption I: The sequence {&,} satisfies

1) E()=0 foralls,

2) sup E|&|FTe<oo  for some f>2 and £>0,
t

3) T-W(Eé)—~olasT—o, 0<g:<oo

4) {&} is a-mixing with coefficients a,, which satisfy

ah P < oo,
1

ﬁMs

We define the partial sum process for a sequence &, as a function on D[0 1] by

i

Wr()=T 2¢;' X & iJT<r<(+1)/T,i=0,...,T.

t=1
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It follows from Herrndorf (1984) that Wr(r)= W(r) where “=” means converges
weakly and W(r) is a Brownian motion on C[0 1]. Since the limit processes
considered here are all in C[0 1] use of the sup norm will suffice as a metric.
Further details on the results presented below (and possible generalisations) are
given in Leybourne and McCabe (1989).

Lemma I: If the sequence {x,y,} satisfies Assumption 1, then
1
ooy Ty XVXy/yy=W2= [ W(rydr
0

where afZLt VET y)/T, afyZLt V(=T x,y,)/T and W(r) is a Brownian motion
process.
Now define

i T
()= 2 x}/ X xt YT<r<(i+1)T.
=1

t=1

Lemma 2: Under Assumption 1 for the sequence {x;&} and the condition that
xr(r)—r,

|
0202 T ¥ (XVX)2/t'e = B = [ B(rdr
0

where JZZLI V(ET &)/T, af£=Lt V(ZT x,&))/T and B(r) is a Brownian bridge
process.

The proof is similar to Lemma 1 and is also omitted. Note that if ZTx,Z/T
converges to a constant then xp(r)—rin C[0 1].

Lemma 3: Under Assumption | for the sequence {x,y,},
oy05 T~y X(V + &%) Xy/y'y

is asymptotically equivalent to aia;yz T~ 'y’XVXy/y'y and its asymptotic distribu-
tion is given by Lemma 1.
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Proof: From (10)
Y X(V+ i) Xy/y'y=y XVXy/y'y + &' Xii' Xy/y'y

and the Lemma follows if 77! times the latter term converges to zero. Since
i’Xy/T=X"x,y,/T converges in probability to zero under Assumption 1, the second
term converges to zero and the result holds.

Hence, asymptotically, the test statistic (10) does not depend on the value of &2,
and thus it is not necessary that 2 be known. It follows that there is no difference,
asymptotically, between the assumption that B =0 and that of #~ N(0, 6%w*¢?) in
the sense that the same test statistic arises in both cases.
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Transformations for an Exact Goodness-of-Fit Test
of Structural Change in the Linear Regression Model!

By M. L. King and P. M. Edwards?

Abstract: This paper considers testing for structural change of unknown form in the linear regression
model as a problem of testing for goodness-of-fit. Transformations of recursive (or other LUS) residuals
that reduce the problem to one of testing independently distributed uniform variables are presented.
Exact empirical distribution function tests can then be applied without having to estimate unknown
parameters. The tests are illustrated by their application to a money demand model.

1 Introduction

In many applications, the standard assumptions required for the classical linear
regression model are somewhat questionable. This is particularly true in econome-
tric applications, where for example, it is often difficult to find convincing
arguments as to why the regression relationship is constant over time. In fact, the
main point of the Lucas (1976) critique of quantitative economic policy analysis is
that policy changes can cause parameter changes in economic relationships over
time. Of course, if these changes are of a minor nature, then it may well be that the
standard linear regression model provides a useful and meaningful approximation.
It would be silly to build a complicated model when a simple one will do. It is
therefore important to be able to test the adequacy of a fitted linear regression
model. Typically, little may be known about how and when the regression
relationship might change so that the test will need to cast a wide net. One possible
approach is to apply a goodness-of-fit test to the linear regression.

! This research was supported by a grant from the Australian Research Council. It was also supported
by the ESRC under grant HR8323 while the first author was visiting the Department of Economics at the
University of Southampton. The authors wish to thank Simone Grose for research assistance and
Walter Kramer for his helpful comments.

2 Maxwell L. King, Professor of Econometrics and Phillip M. Edwards, Statistical Planning Officer,
Monash University, Clayton, Victoria 3168, Australia.
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The first such test that usually springs to mind is the well-known y° test. This is
less than ideal for, as Stephens (1974) observed, it has long been known that for
goodness-of-fit problems in which the distribution function is continuous and
completely specified, tests based on the empirical distribution function (EDF) are
more powerful than the y? test. A disadvantage of EDF based tests is that when
unknown parameters in the distribution function are replaced by their estimates,
the distributions of the test statistics under the null hypothesis change. Stephens
gives some approximate critical values of various statistics for a random sample
from the normal distribution with zero mean and unknown variance as well as
unknown mean and variance.

The Cusum of squares test for structural change proposed by Brown, Durbin
and Evans (1975) can be viewed as an approximate Kolmogorov-Smirnov EDF test
applied to recursive residuals that have undergone a secondary nonlinear
transformation. To see this, let

y=XB+u, u~NQO,dL,) 1)

denote the standard linear regression model where y is n X1, X is an n Xk
nonstochastic matrix of rank k<, fis a k X 1 vector of unknown parameters and
o is an unknown scale parameter. Also let 4, j=k+1,...,n denote the recursive
residuals from (1). (For a definition of recursive residuals see, for example, Phillips
and Harvey 1974, Brown, Durbin and Evans 1975 or Farebrother 1976b.) The
Cusum of squares test is based on whether, forr=k+1, ..., n,

sr:(/=§r:+l ﬁ’z) /(Fki“ a})

is always in the range
Tyt (r—k)/m, 2

where ¢g is an appropriately chosen value and m=n—k. Because s,=1, this
acceptance region is equivalent to

max s+~ i/m}<co

i=l,....m—1

and
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max {i/m—sp+;31<co
i=1,....m—1

which is of the form of the modified Kolmogorov-Smirnov test provided sg 4 1, ..., Sy
is an ordered sample of independent observations from the uniform (0, 1)
distribution.

For the case when m is even, Brown, Durbin and Evans noted that the joint
distribution of

Sk+2s Sk+4s ey Sn—2 3

is identical to that of an ordered sample of independent observations from the
uniform (0, 1) distribution. If the test is based on these (m/2)— 1 statistics then
Durbin’s (1969) table of significance points for the modified Kolmogorov-Smirnov
EDF test can be used to determine cy. Brown, Durbin and Evans suggested using
this value, or a linearly interpolated value if m is odd, for ¢ in (2). They reported
that Monte Carlo evidence indicated that this choice of ¢y value yields true
significance levels slightly above nominal levels. An exact EDF test when m is even,
could have been based on the (m/2)—1 statistics given by (3) with an obvious
reduction in power.

In this paper we propose alternative transformations of recursive and other
residuals which allow exact EDF tests to be applied to a full set of observations.
Invariance arguments are used to reduce the goodness-of-fit testing problem to one
of testing independent variables from the uniform (0, 1) distribution so that the
standard EDF tests such as the Kolmogorov-Smirnov, Cramer-von Mises, Kuiper,
Watson and Anderson-Darling tests can be used. A similar approach has been
suggested by Csorgo, Seshadri and Yalovsky (1973) (also see Mardia 1980) for the
special case of a random sample from the normal distribution with unknown mean
and variance.

The proposed transformations are discussed in the next section and the results
of an application of the proposed testing procedure to an annual model of the
demand for money in the USA are presented in Section 3.
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2 The Transformation

Our goodness-of-fit problem is one of testing
Ho:y~N(XB,0’l,)

against
H,:y+ N(XB,0’L)

where both f and ¢? are unknown. Observe that if H, is true then at least one of
either

@) E(»)#*XB,
(ii) Var(y)# a2,
(iii) y is non-normal,

is true so we are indeed casting a wide net. While it is obvious how a structural
change might result in (i) or (ii) being true, note that (iii) will occur in a regression
whose errors switch distribution at some point in time.

This testing problem is invariant to transformations of the form

y¥=yoy + Xy, 4)

where pg is a scalar and y is a kX 1 vector. This is because if Hy holds then

y*~N(X(yoB + ), v§0°1,)

which means that Hj also holds for y*. Furthermore, if H,, is true because of at least
one of (i), (ii) or (iit) holding then the same will also be true of y* given the form of

4.
As King (1980) notes, the m X 1 vector

v=P,z/(Z P{P,z)'/
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is a maximal invariant under the group of transformations defined by (4) where
z= My is the vector of ordinary least squares residuals, M =1I,— X(X'X)"'X’, and
Py is an m X n matrix such that M= PP, and P\Pi=1,,.

Under Hy, v is uniformly distributed over the surface of the unit m-sphere.
Because of this, when v is transformed to polar coordinates, 0, [0,7], j=1,
2,...m—2,0,-1€]0,2n], via

vy =cos b,

j—1
v,:(l_I sinHi)cosﬂj 2<j<m—1,

i=1

m—1
V= H sin 6;,

i=1

it follows (see Goldman 1976) that ,,..., 8, are independent random variables
under Hy with probability density functions:

Po(0)=T{(m—j+ 1)/2}x™ [T {(m—j)/2}]" sin™~ 1~/

6,€10,7], j=1,2,....,m—2,

Py, (Om-1)=1/Q2n), On-1€[0,2x].

Observe that if e; is the m X 1 vector of zeros with the i-th element being unity, then
6, is the angle between e and v, and 0 s the angle between ¢; and the projection of
onto the manifold spanned by e, €;+1,...,en for j=2,...,m—1.

Given the independence of 6, ..., 8, - under Hy, the transformations

0

=

W= Poj(x)dx, j=1...m—1,

=

result in independently distributed uniform variables on the interval (0, 1) under
Hj. These transformations can be performed using the following formulae:

Wimn—1=Op— 1/(27[)
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For 1<j<m-—2and m—jodd, let g=(m—1—j)/2. Then

Wj: F(q + 1)7[_ 1/2[F(q + %)]— 1[2_2q(2qq)9j

g—1
(=D X (—1)k(2lf){sin(2q—2k)0,-}/{2q—2k} :
k=0

For 1<j<m—2and m—j even, let g=(m—2—})/2. Then
w=I(g+3/2n Vg + D)™

q
w1t Y (- 1)k(2‘7 : 1) (cos {(2q + 1 — 2k)8} — 1)/(2q + 1 — 2k)
k=0

The resultant wj, j=1, ..., m— 1, after having been sorted into ascending order

(1) (2) (m—1)
Wj SWj S...SW]'

b

can be used to calculate standard test statistics based on the EDF as follows:
(i) The Kolmogorov-Smirnov statistics D, D*, D™
D*= max {i/m—1)—w}, D"= max [w—{(i—1)/(m—1)]
I<i<m—1 1I<i€<m—1

and D=max (D,D").

(ii) The Cramer-von Mises statistic W2

m—1
we= % [w—{Qi— 1)/@m— 2P+ 1/{12(m— 1)}.
i=1
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(iii) The Kuiper statistic V-
V=Dt+D".
(iv) The Watson statistic U*:

U2=W2—(m— 1)(w—0.5)

m—1

where WZ( )y w,-)/(m— 1).

i=1

(v) The Anderson-Darling statistic 4%

m—1

A== X [Qi—flogw+log (1—w" " N/(m—1)]—(m—1).
i=1

Stephens (1974) presents tables for finding the critical values of each of the
statistics. (Also see Pearson and Hartley 1972.)

How should one compute v? Observe that Var (P,z) = ¢2P,MP; = ¢*I,, so that
Pz~ N(0, 6°I,,). This implies that v can be regarded as a linear unbiased with scalar
covariance matrix (LUS) residual vector divided by its norm. For any given
regression model there are an infinite number of LUS residual vectors. Some of the
best known are Theil’s (1965, 1968) BLUS residuals and recursive residuals. These
and other LUS residuals are reviewed by King (1987).

When testing for structural change, we recommend the use of recursive
residuals. They can be calculated recursively either forwards in time or backwards
in time. If one suspects that a change may have occurred late in the estimation
period then tests based on backward recursive residuals are likely to have better
power. Because BLUS residuals are “best” estimates of m of the unknown
disturbances they may be preferable when testing specifically for non-normality.
Algorithms for computing BLUS and recursive residuals may be found in
Farebrother (1976a, 1976b).
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Table 1. Values of the EDF test statistics for Klein’s demand
for money model; 1879-1974

Test Forward recursive | Backward recursive
Statistics residuals residuals

D 0.2038 0.1328

D 0.2120 0.24869

D 0.2120 0.2469

W2 1.6114 1.2790

\ 0.4159 0.3797

U2 1.6114 1.1222

A2 9.3343 7.5476

3 An Example

This section considers the application of the above exact EDF tests to an annual
regression model of the demand for money in the USA suggested by Klein (1977).
This model was used by Kramer and Sonnberger (1986) to illustrate the use of
diagnostic testing in practice. Using Klein’s notation, the model is

log M=ay+alogy, + ays+asrp +asry+aslog S(P/P)+u (5)

where M is the quantity of money (M 2), y, is real permanent income, rs is a short
term interest rate, ry is the rate of return on money, S(P/P) is a measure of
variability of the rate of price changes and u is the disturbance term. Annual
observations of these variables for 1879-1974 are given by Kramer and Sonnberger
(1986, Table A.1).

Farebrother’s (1976b) algorithm was used to calculate recursive residuals
forwards in time and backwards in time. Both sets of residuals, calculated using the
full data set (1879-1974), were transformed as outlined above and the resultant
wj, j=1,..., 89, were sorted into ascending order. The calculated values of each of
the EDF test statistics are given in Table 1. With one exception, all tests reject Hy at
the one per cent significance level. The one exception is the D' test based on
backwards recursive residuals which is significant at the five per cent level. There is
ample evidence that the classical linear regression based on (5) does not fit the data
well.
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Robust Bayesian Analysis of a Parameter Change
in Linear Regression

By K. Pétzelberger and W. Polasek!

Summary: Robust Bayesian analyses in a conjugate normal framework have been developed by Leamer
(1978) and Polasek and Potzelberger (1987). Fixing the prior mean and varying the prior covariance
matrix yields a so-called feasible ellipsoid for the posterior mean and robust HPD regions, also called
HiFi-regions. This paper considers the application of this approach to gain robust Bayesian inference in
case of a parameter change in regression models.

1 Introduction

The estimation and detection of a parameter shift in a linear regression model has
gained increasing attention in the econometric literature. Many adhoc models have
been proposed from a classical point of view, but only a few Bayesian treatments
are known. Tsurumi (1977), Tsurumi and Sheflin (1984), and Ilmakunnas and
Tsurumi (1984) have used Bayesian highest posterior density (HPD) intervals to
test for shifts in the parameters of a model in the presence of heteroscedastic and
autocorrelated errors. These methods assume a known switching point, whereas
Smith (1977), Salazar, Broemeling and Chi (1981), and Ohtani (1981) are searching
for the unknown join point.

In this paper we follow a slightly different route for the linear model with
switching regimes and known join point. We assume a partial prior specification
for the amount of the shift in the coefficients and then we find via a Bayesian
robustness analysis as to how sensitive the posterior distribution reacts to changes
in the strength of the prior distribution. The results are presented by the so-called
feasible ellipsoid (Leamer 1978) and the HiFi-region (Polasek and Potzelberger
1987), arobust version of the well known HPD-intervalls. The assumption of a shift

! Klaus Pétzelberger and Wolfgang Polasek, University of Basel, Institute for Statistics and
Econometrics, Petersgraben 51, 4051 Basel, Switzerland.



60 K. Potzelberger and W. Polasek

has a robust Bayesian justification, if the size in the parameter change can be judged
large enough from different a prior views.

The next section introduces the basic linear model with two regimes and
section 3 derives the feasible ellipsoid and the so-called HiFi-region for this model.
In a concluding section we summarize our results. The appendix gives details of the
calculation of the posterior mean.

2 The Basic Model

Let y=(y,...,yr) be a TX1 dependent variable and X=(x,...,xt) a TXK
matrix vector of independent variables. We assume a linear regression of the form
y=Xpf +u, where u is the error term. Furthermore, consider a change in the
parameters after time » resulting in a regression model in two regimes.

y=xf+tu, t=1,..,n 2.1

y=xf+0)+u, t=n+1,...,T.

The residuals are assumed to be i.i.d. with mean 0 and precision ¢, and o,,
respectively:

u;~NO,07") and u,~NO,0;). (2.2)

Let y, be the dependent variable and X, the independent variables in the first regime
and y, and X, in the second regime. Then we can write the model (2.1) in the form

1 Xl 0 ﬂ Ul_lln 0
= +u with u~N|0, , (23
Y2 X, X,/ \o 0 o' I,

where J is the change in the parameters at point n.
The likelihood function for this model (2.3) is given by

1('8, d)xe 1/2{6,1 = X\BY 01 — X\B) + 0202 = Xo(B+ ) (2~ Xo(B + D)} (2.4)
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With prior information about f and J given as block-normal distribution

B g\ (P 0
-~ N s s (25)
p) o 0 Q!

we find after some algebra (see appendix) that the posterior distribution of 6 after
seeing the data y=(y,,y,)’ is normal with meand**and variance-covariance
matrix Q** ! given by

Oly ~ N(@**,0**™ 1), (2.6)
§** = (0% + X;¥X,) (Q*0* + X3 (1~ ), @27
O**=0*+ X, PX,. 2.8)

¥in (2.7) and (2.8) is the metric of the log-likelihood function of y, — X,d given by

Y=o,lx— o} X,P**'X;. (2.9)
{in (2.7) is the mode of the likelihood of y, — X,d:

(=¥ '0,X,0% |(P*p* + 0, Xiy,), (2.10)
and P** is the metric of the posterior density of f§ given &:

P** =g XX, + 0,X5X, + P*. (2.11)

The posterior mean (2.7) of the shift parameter J can be written as a matrix
weighted average of the prior location 6* and the diffuse parameter-location ™",
a posterior mean one would obtain if the prior knowledge for J would be
noninformative (but not necessarily about f, because ¥ depends on P** and
therefore on P*).

0 =(0* + X3 ¥X,)” (Q*5* + X, ¥X,0™M)). (2.12)
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0"°" can be expressed as
6non:S_(P*_+_0.1X1'X1)—1P*/}*, (2.13)

where 0 is the ML-estimate of the difference between the regression estimates of the
first and the second regime:

— ~

5=+3)— 5, (2.14)
with the OLS-estimates
B=X;X)"'Xjy, and (B+3)=(X;3Xp) 'Xsp,. (2.15)

The case of a diffuse prior for f in (2.5) (i.e. the classical ML- or OLS-estimate) is
included in the formulas (2.7) to (2.11) by setting the precision matrix P* to zero.
The noninformative estimate 6™ reduces then to the ML-location & in (2.13). The
estimates of the residual variances are

ot == XAy~ X,\B)/n, (2.16)

03 =y~ Xo(B+0)Y (2 — Xo(B + N/AT —n).

3 Feasible Ellipsoids and HiFi-Regions
3.1 The Feasible Ellipsoid

The first result of conjugate Bayesian robustness was derived in Chamberlain and
Leamer (1976) for the normal linear regression model with a full rank 7°X p data
matrix X and the full rank precision matrices R and 2, i.e.

y~NXB,c’R™"), B~N®*,27"); @3.1)

They showed that the posterior mean
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by=(X'RX+ZXZ) (X'RY +)b*). (3.2)

is constrained to lie in the ellipsoid
B—hXRXS—h=c, (3.3)

where h=(b+b%)/2, b=(X'RX)” 'X’RY is the OLS-estimate of B, and
c=(b* — by X'RX(b* — b)/4 is a constant. This ellipsoid can be written also in the
form

F=closure {b;| 2 pos. def. and symmetric} = ELL(b*, b, X'RX), 3.4)
where ELL(*,*,*) describes an ellipse with diameter 5* to b, and metric X’RX, as in
(3.3).

3.2 Extreme Bound Analysis (EBA)

Reporting of ellipsoids can be done graphically only in two dimensions and for
higher dimensions one would like to have simpler tools available. Projecting this
ellipsoid onto the coordiante axes yields the so-called extreme bounds:

EBAY)=h,+ z([X'RXTHV2, i=1,....p, (3.5)

where [A]" stands for the i-th diagonal element of 4~ ! and cis given asin (3.3). zis 1
for the upper bound EBA“ and —1 for the lower bound EBA,.

3.3 HiFi-Regions
A HPD region of size a for the normal linear regression model (3.1) is given by

HPD(Z)={fI(B—bs)(E+ X' RX)(B— b} < x(p, 0)}, (3.6)



64 K. Potzelberger and W. Polasek

where y*(p,a) denotes the a-quantile of the chi2-distribution with p degrees of
freedom. The closure of the union of all HPD region of fixed size a is denoted by
HiFi,:

HiFi,=closure U HPD,(2), (3.7)
re Mt

where M is the set of all positive definite symmetric matrices. To each ellipsoid F
we can construct a HiFi-region with 0.5 <a < 1. By HiFi}(i, a) we denote as before
the lower und the upper bound for the i-th coefficient of the HiFi-region of size a.

3.4 Robust Shift Analysis for Lower Bounded Prior Variances

In the two-regime model (2.3) we apply the Bayesian bounded robustness ideas
given in Leamer (1982) or Polasek (1984) for the precision matrix Q of the shift
parameter J. By bounding the prior precision matrices @ from above (i.e. the
variance from below) we derive special robustness results in form of smaller feasible
ellipsoids than (3.3). Bounding the prior precision matrices Q means excluding
orthodox priors, where the mean of the shift parameter has really a degenerate (one
point) distribution.

For fixed prior knowledge for the shift parameter 6* and fixed Qg the set of §**
with @ being any precision matrix such that Qo— Q is a positive definite and
symmetric matrix is given by the ellipsoid

(6%* — mY H(6%* — m) < c*, (3.8)
H=M+MQ;'M with M=X}¥X,, (3.9a)
m= (6" 4 611)/2, (3.9b)

c*=(0""—ouyH(0"™" — du)/4, (3.9¢)
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with 6"°" being the noninformative part of (2.12). The feasible ellipsoid (3.8) is now
determined by the parameters F*=ELL(6"", oy, H), where Jy; is given by

on=H"'(MJ* +MQy 'Ms™n). (3.10)

This ellipsoid can be also obtained if we make the following consideration: After a
break has occured in a time series, the variance of the error process might be
different than before. If the second variance is larger then the original ellipsoid (3.1)
can be used. If it is smaller than in the first regime then this kind of uncertainty
changes the set of posterior means only by changing the upper bound matrix Qg to
Qo01/0% where we allow o, to vary in the interval 0 < ¢, < ¢%.

4 Examples

This section demonstrates the approach with 2 examples: The first one checks
whether the simple Keynesian consumption function in Austria has changed after
the oil-shock depression in 1975. The second example checks whether the Swiss
consumption function has changed after 1975 as well.

Example 4.1: Consumption Function in Austria

As prior information for the consumption function and the shift parameter we
assume a conjugate normal distribution for f:

0 100 0 001 0\! 0
B~N , = , 6~N N TR )
0.8 0 0.252 0 16 0

For the shift parameter d we assume a priori no shift-effects, implying a prior mean
0*=0.

Then the lower bound of the variance of the shift parameter is determined by
excluding the set of prior distributions which are considered as too informative, i.e.
too sharp around the prior mode. We suggest a simple approach for our example:
Expecting in general no shift effects imply a prior mode (expectation in a conjugate
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Table 4.1a. Regression estimates for Austria: Classical summary

Dependent Variable: C%

Variable Sid. Ermr. t

Name Coelfficient Estimate Statistic Prob > t
Constant 3.772 1.171 3.220 0.003
GNP% 0.193 0.224 0.859 0.397
Dummy -3.209 1.373 -2.337 0.026
Dum*GNP. 0.599 0.344 1.742 0.092

Tabled.1.b. EBA and HiFi-regions for the shift parameter

Constant slope
sets / bounds lower upper lower upper
F -7.10 0.1 -0.38 1.74
Fu -7.00 -3.08 0.40 1.37
HPD(a. =9) -11.31 -2.68 0.09 2.62
HiFi(e=.9) -11.40 1.25 -1.06 2.92

framework) 6* =0, but we want to exclude all prior distributions which have
roughly 50% (exact 46.2%) of their mass inside the bivariate +¢ square region
(—1, 1) X (—1,1). This approach gives an upper bound precision matrix Qo = I, the
identity matrix.

The classical summary of our regression shift model is given in Table 4.1.a, and
the associated scatterplot and regression lines are shown in Fig.4.1. The robust
Bayesian summaries are listed in Table 4.1b and shown graphically in Fig. 4.2. All
HPD and HiFi-regions are given for a=90%. The parameters of the upper
bounded ellipsoid F* are 6""=(—7.0, 1.36) and d;;=(—3.08, 0.41). They are
marked by a square and a triangle in Fig. 4.2. Recall that "°" is the location for the
shift parameter § where we are diffuse about ¢ but informative with prior (4.1)
about B. dy; is the (limiting) location parameter if we incorporate the precision
bound Qy, i.e. if we exclude all orthodox priors beyond this precision bound. Qo
denotes the upper bound ellipsoid between these two points. Note that it is
relatively thin. The HPD-region is centered around J"" and denotes the diffuse
90% credibility region for the shift parameters d where the prior information for
included. Note that all HiFi-regions for  have to be larger than this HPD-region.
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y = 0.5624 + 0.7913x R = 0.60

y = 3.7718 + 0.1926x R = 0.25

g C%-1
¢ C%-2

® GNP%
-2 Y T Y T v T ¥ 1 v T v 1
-2 C 2 4 € 8 10

Fig. 4.1. The Austrian consumption function before and after the oil shock

The HiFi-region is shown for the unbounded ellipsoid F, which passes through ¢"°"
and J* = 0 (marked by a*).

To draw robust Bayesian inferences we have to take into account that the
extreme bounds of the simple ellipsoid F always cover the origin, since the prior
location for 0* was chosen that way. Only by excluding orthodox priors we can
bound away the smaller ellipsoid F” from the coordinate axis. It is interesting to
observe that the mass of the HiFi-region is in the NW-orthant of the parameter
space. The HiFi“-region which corresponds to the F* ellipsoid (not shown in the
Figure for technical reasons) is only slightly larger than the HPD region.

The HiFi-region shows that even with very “weird” prior precisions (from the
point of view of the data), a Bayesian analysis of this data set leads to conclusions
which are in the neighborhoud of the diffuse HPD region. This implies that the data
are very conclusive for a parameter change in the consumption function, even if we
take into account very dissentive prior views about the shift parameters.
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1 ] 1 ] 1
-12 -10 -8 6 -4 -2 0 F 2
1

Fig. 4.2. Robust Bayesian summaries for structural change in Austria. ¢ ... d""... (left) point on the F-
ellipsoid; A ...y (right) point on the Feellipsoid; * ... prior location 6* = (0,0); F*=ELL(3"", dy;, H)
upper bound ellipsoid, F=ELL(d"",d*, X’RX) feasible ellipsoid, Hy...diffuse 90% HPD-intervall
(classical confidence region)

Example 4.2: Consumption Function in Switzerland

As in example 4.1 we want to find out about the effects of the oil shock for the
consumption pattern in Switzerland. In particular we are interested if the data are
consistent with the hypothesis that there was no oil shock effect. As before we set
the prior means of the shift parameters to zero, but exclude all orthodox priors, i.e.
we bound the prior precision (covariance) matrices away from the zero location.
The upper bound precision matrix (lower bound variance matrix) is again set to the
identity matrix: Qo = . This means we exclude all priors which are to sharp around
the prior location, i.e. assign at least 46.5% to the unit tg-square (—1, 1) X (—1, 1).

As one can see from Table 4.2.a, the classical data evidence is not strong about
the shifting slope parameter, but from is more conclusive for the intercept. This
weak data evidence transforms in Fig. 4.3 into a large 90% HPD interval which
intersects the coordiante axis. With the bounded prior information we can
conclude that there was a downward shift in the (simple) consumption function for
the posterior means of the shift parameters because the defining parameters,
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Table 4.2.a. Regression estimates for Switzerland: Classical summary

Dependent Variable: Consumption

Variable Std. Err. t

Name Coeflficient Eslimate Statislic Prob > t
Constant 1.882 0.456 4.128 0.000
GNP 0.428 0.090 4.734 0.000
Dummy1 -1.001 0.600 -1.667 0.104
Dum*GNP 0.006 0.153 0.039 0.969

Regime 1:y = 1.88 + 0.43x R = 0.66

8 1 Regime 2:y = 0.88 + 0.43x R =0.85
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Fig. 4.3. Consumption function in Switzerland before and after the oil shock 1975

g"on=(—1.58,0.14) and d;;=(—1.24,0.09), lie close together. But this small F¥
ellipsoid is deceptive, because the corresponding HiFi region remains large. Even if
we exclude these strong prior views, then the upper bounded HiFi“region still
intersects the coordinate axes, because the HiFi region has to be larger than the
HPD region. This means that the robust Bayesian inference is quite fragile for a
shift in the consumption function. Therefore we conclude that there exists prior
views which can show that there was a shift in the consumption function and on the
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Table 4.2.b. EBA and HiFi-regions for the shift parameters

Constant slope
bounds /sets lower upper lower upper
F -1.61 0.03 -0.11 0.26
Fu -1.58 -1.24 0.09 0.15
HPD(a=.9) -3.61 0.45 -32 0.60
HiFi(e =.9) -3.63 0.88 0.44 0.67

32

0.6

0.4}

02

0.0 -

-0.6 1 ! 1
-4 -3 -2 -1 [] 1
Jt

Fig. 4.4. Robust Bayesian summaries for structural change in Switzerland. § ... 4" ... (left) point on
the F-ellipsoid; & ... oy (right) point on the F-ellipsoid; * ... prior location §* = (0, 0); F* = ELL(J"°", d;1,
H) upper bound ellipsoid, F=ELL(J"°", §*, X’RX) feasible ellipsoid, Hy... diffuse 90% HPD-intervall
(classical confidence region)

other side there might be other prior views which lead to the conclusions that there
was no change in the consumption function at all.

Note that judging a possible shift in the regression by HiFi regions can be
viewed as an approximate robust Bayes test. This is similar to the usual procedure
that HPD (or confidence) intervals represents sets of hypotheses which cannot be
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rejected. A full Bayesian test treatment would have to take into account prior
probabilities for the hypotheses.
The extreme bounds for the robust Bayesian summaries are given in Table

4.2.b. They convey in general much less information than the graphical summary in
Fig. 4.4.

4 Conclusions

The approach has shown that the ordinary Bayes analysis of the linear model can be
extended to the case of a change in the regime during the observation period. The
robust analysis allows to judge the change parameters from different priori views.
As the examples for the simple consumtion function in Switzerland and Austria
show, both countries react quite differently to the oil shock in 1975. By excluding
orthodox or too sharp prior densities we find conclusive robust Bayesian evidence
that the oil shock has shifted the Austrian cosumption function, but not necessarily
the Swiss one.

Acknowledgement: The authors would like to thank an anonymous referee for pointing out various
inaccuracies and Dr. U. Miiller for help with the Swiss data example.

Appendix: Derivation of the Posterior Mean of ¢:

By multiplying the joint likelihood function /($, J|y) in (2.4) with the prior density
of # we find for the joint density p(8, d,y) a normal kernel:

1B, d|y)p(B)<exp(—g/2) (A1)

with g in the exponent given as the sum of three quadratic forms in f:

g=oyiyi— 201 X1+ B XX\ fo, + 02(y2 — X20) (y2 — X20) (A2)

—203(y2— X20) Xof + 02 X3 Xo026 + 'P* B — 25" P*[* + P f*.
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Completing the quadratic form in § we find for g the expression

g=B— )P — ")t (A3)
where the posteriori parameters are given by the posteriori precision P**;

P** =g X{X| + P*+ 02X} X> (Ada)
and the posterior mean f**:

Br*=P**~ g X{y| + 02 X5(y2— X20) + P*[3*) (A4b)
and the constant ¢ depends on the shift parameter ¢:

c=— HHPH** + g1yiy + 02(p2 — X20) (2 — X20) + X P B*. (Adc)

Integrating out f in (A1) we find now the likelihood function of the shift parameter
J as:

K(J) < exp (— %(5 —¢y¥(o— ¢)) . (A5)
Now ¥ is given in (2.9) and ¢ by

¢ =(X2¥X0) 'X3¥(2— ). (A6)

Since the marginal likelihood function of ¢ has the form of the usual normal density
we can multiply it with the normal prior density of d given in (2.5) and following the
usual algebra we finally get the result (2.7) and (2.8).
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The Stability Assumption in Tests of Causality
Between Money and Income

By H. Liitkepohl

Abstract: This note argues that structural stability is an important condition for tests of Granger-
causality. Despite this fact the standard causality tests are sometimes applied to data for which
structural stability cannot be assumed a priori. Therefore the stability of GNP/M1 systems of the U.S.,
Canada, and West Germany in the aftermath of the 1973/74 oil crisis is analyzed using formal statistical
tests. Prediction tests are particularly useful for that purpose. The stability of the model for Canadian
data is rejected whereas stability is not rejected for the U.S. and West Germany.

1 Introduction

In recent years the Granger-causal relationship between money and income has
been discussed in a large number of articles for various periods and countries (e.g.,
Sims 1972; Williams, Goodhart, and Gowland 1976; Ciccolo 1978; Hsiao 1979a, b,
1981; DeReyes, Starleaf and Wang 1980; Thornton and Batten 1985 to list just a
few). The results of the various tests and the conclusions drawn for the money-
income relationship differ considerably in some of the studies. Therefore the
limitations of the tests and the methodology on which the tests are based have been
investigated. For example, measurement errors (Newbold 1978; Schwert 1979),
seasonal adjustment (Geweke 1982), data transformations (Feige and Pearce 1979),
omitted variables (Liitkepohl 1982), and lag length selection (Thornton and Batten
1985) may have an impact on the outcome of the tests. A further problem will be
considered in the following.

" Helmut Liitkepohl, Institut fiir Statistik und Okonometrie, Christian-Albrechts-Universitit Kiel,
Olshausenstr. 40-60, 2300 Kiel 1, West Germany.
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One of the basic assumptions on which many of the tests rely is the stationarity
of the money-income system. The stationarity assumption excludes trends, certain
seasonal components and structural instabilities in the sample period. While trends
and seasonal terms are usually taken care of by data transformations or inclusion of
seasonal dummies and/or time trends in the model, the possibility of structural
instability has not been allowed for by some authors. On the other hand, recent
studies suggest that in economic systems the stability assumption may be
problematic for the period after World War I1. In particular, there is some evidence
that the oil price shock in 1973/74 has caused substantial turbulence in some
economies (e.g., Darby 1982; Hamilton 1983; Burbidge and Harrison 1984). In
several studies data from that period have been used in testing for Granger-
causality, without precautions for structural instabilities. Therefore the reliability
of these tests may be questionable if indeed structural instabilities can be detected in
the data series used. The purpose of this study is to look into the structural stability
of some time series used in causality tests without adjustments for structural
change.

We acknowledge that there are studies where structural change is allowed for.
Moreover, in some investigations only data prior to the 1973/74 oil crisis have been
used. The focus in this study is on series that implicitly have been assumed
stationary although they cover periods before and after the 1973 oil price shock.

The structure of the remainder of the paper is as follows. In the next section
some aspects of the concept of Granger-causality will be reviewed briefly and the
stationarity tests will be explained. They are based on predictions and are therefore
in line with Granger’s causality concept. In Section 3 the stationarity of some time
series that have been used in causality analyses will be investigated. It turns out that
stationarity of some of the series is indeed rejected by the tests. Conclusions are
presented in the last section.

2 Granger-Causality and Stability Tests

Granger-causality between two variables y, and x, is often considered in a bivariate
system with autoregressive (AR) reduced form

ye=vitapL)y,— +ap(l)x,— +uy, (1a)

X, = vy T ay(L)y,— 1t ap(L)x,— | + uy, (1b)
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where v, and v, are intercept terms, u, = (u,,, 4,,) is bivariate white noise with
covariance matrix E(u,u;) =¥, and y, is independent of u, for s# ¢. Furthermore,
the

(IU(L) = 20 a,-j, ,,L"
n=

are polynomials in the lag operator L of possibly infinite order and the lag operator
is defined such that L"y, = y,_,.

If the system (1) is stationary and contains all relevant information y, is not
Granger-caused by x; if and only if a12(L)=0 and x, is not Granger-caused by y, if
and only if ay;(L)=0. Various tests of these restrictions have been proposed in the
literature. They are based on the assumption that the system (1) is stationary.

As mentioned in the introduction, stationarity of (1) requires that there are no
trends, nonstationary seasonal cycles or structural changes in the series x; and y,. To
remove trends and seasonal components initial data transformations such as
seasonal adjustment and differencing are sometimes used. Alternatively time
trends and/or seasonal dummies may be included in the system (1). We will focus
on structural instabilities in the following.

To demonstrate that such instabilities may indeed have a substantial impact on
the outcome of causality tests we have conducted a small Monte Carlo experiment.
We have generated 1,000 realizations of the bivariate Gaussian AR(1) process

yi=vi+05y,-1+05x- +uy, (2a)

Zl_l == 12’
X; = V2+0y,—1 +0.4X,—1 + Uy, (2b)
withvi=v;=0fort=0,1,...,100. The equation errors u;, and uy, are independent

standard normal variates generated by a NAG library subroutine. We have fitted
unrestricted vector AR(1) models to the system (2) by LS estimation for each
separate equation. The first value for each variable (=0) was used as presample
value in the estimation. Note that (2) is a system with Granger-causality from x to y
and no causality from y to x. A test for Granger-noncausality from y to x in this
simple system may be based on the t-ratio of the coefficient of y,— | in (2b). In the
1,000 replications of the experiment the absolute value of this ratio exceeded 1.96
(the critical value of an asymptotic 5% level test) in 58 cases. Thus, noncausality
from y to xis rejected in 5.8 % of the replications under the present ideal conditions
with no structural change. This reflects that the size of the test for this process and
sample size is about right.
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We have repeated the experiment with vi=v;=0 for r=0,...,50 and
vi=v,=1 for t=51,...,100. Thus, now there is a structural change after period
t=150. In this case noncausality from y to x was rejected in 719 replications. In other
words, causality from y to x is incorrectly accepted in almost 72% of the cases.
Consequently the structural change has a remarkable impact on the test.

Ashley, Granger, and Schmalensee (1980) emphasize that Granger’s concept
of causality is connected with out-of-sample prediction. Therefore it makes sense to
base the stationarity tests on out-of-sample predictions. For that purpose the
original sample is partitioned. The first part is used for estimating a time series
model which is then used for predicting the second part of the sample. If the
predictions deviate considerably from the actually observed values the stationarity
hypothesis is rejected. In other words, the data in the two subsamples are assumed
to be generated by different processes, if the model for the first subsample cannot
predict the second subsample with the expected precision.

To explain the idea behind the tests used below we denote the optimal forecast
of a K-dimensional stationary process y,, & periods into the future, by y/(4) and the
corresponding vector of forecast errors by e(h)=y,+,— y{h). If y, is Gaussian
(normally distributed) (/) is also normally distributed with mean (vector) zero and
the variance-covariance matrix is the forecast mean square error (MSE) matrix, say
L(h). In other words, e(h) ~ N(0, Z(h)) and consequently (k) = e(h) L(h) 'e(h)hasa
central y? distribution with K degrees of freedom if the null hypothesis of no
structural change is true. This way, a sequence of statistics is obtained for forecast
horizons A=1,2,... that can be used to test whether the forecast error is in
agreement with the stationarity hypothesis.

Alternatively the (Kh X 1) vector of forecast errors f(h) = (¢(1Y, ..., e(h)’) may
be considered. Under the aforementioned assumptions this vector has a multivaria-
te normal distribution with zero mean vector and covariance or MSE matrix
L(h)=E[f(h)f(h)], say. Thus, A(h)=f(hYL(h)~ '_f(h) has a central y? distribution
with Kh degrees of freedom. The statistic A(%) can be used to check whether the
observed values for 4 postsample periods are in agreement with the stationarity
assumption. For 2= 1 the tests based on #(1) and on A(1) are equivalent. However,
for h>1 using both tests is useful because they have different power against
different alternatives. A more detailed discussion of this topic can be found in
Litkepohl (1989).

It may be worth noting that these tests are in particular sensitive to increases in
the variability (heteroskedasticity) of the underlying process. For the present
purpose this is a valuable property since homoskedasticity is a prerequisite of
stationarity and is assumed in causality studies.

The stationarity of the system (1) implies stationarity of the individual series y,
and x, and the existence of individual AR representations, say
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ye=m+ BL)y—1 + e, (3a)
X =1+ BaAL)x,—1 T+ e, (3b)

where the #; are intercept terms,
Bly= 2 Bilr, i=1,2,
n=0

and the e; are univariate white noise processes (Liitkepohl 1987). Note, however,
that e, = (ey,, e2,)” will not be bivariate white noise in general. If any of the two
univariate processes in (3) is nonstationary the same will hold for the bivariate
system (1). Thus, a stationarity test of (1) may be conducted either by applying the
aforementioned tests to the bivariate system or by testing the stationarity of the
individual series (3a/b). If stationarity is rejected for one of the univariate
processes, stationarity of (1) is also rejected. We will apply the prediction tests
based on t(k) and A(h) to bivariate (K=2) and univariate (K=1) series since
univariate and multivariate tests have different power against different alternatives
(see Liitkepohl 1989 for details).

Of course, in practice the forecasts and hence the forecast errors and MSEs are
based on estimated processes. In the following section only finite order AR
processes will be fitted and the tests will be based on AR models chosen by the three
model selection criteria AIC, HQ, and SC (see Judge et al. 1985, Sections 7.5.2 and
16.6.1a). These criteria have been used in various studies and some other criteria
are very similar. The SC criterion is the most parsimonious criterion and always
chooses the smallest order whereas AIC chooses the greatest order and HQ an
order in between. Liutkepohl (1988) has shown for the univariate case that using
such a procedure is justified even if the actual data generation process is not a finite
order AR process, provided the #(4) and A(%) statistics are appropriately modified
and used in conjunction with critical values from Frather than y? distributions. As
suggested by Liitkepohl (1989) the statistics #(4) and A(h) will be multiplied by
factors T/(T+ Kp + 1)K and T/(T+ Kp + 1)hK, respectively, where p is the order of
the AR model used for forecasting and T is the sample size used for estimation.
These correction factors follow from asymptotic approximations of the forecast
MSE:s that take into account that estimated rather than known processes are used.
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3 Empirical Results

This section discusses the stability of money and income models of the U.S.,
Canada, and West Germany after the first oil crisis in late 1973. For all three
countries data for the period 1970-1975 have been used in previous causality tests
without precautions for possible structural changes.

3.1 Results for the U.S.

Examples of studies for the U.S. in which causality tests have been based on data
covering the time of the first oil crisis include Thornton and Batten (1985),
DyReyes, Starleaf, and Wang (1980) (DSW) and Hsiao (1979a). They use quarterly
data for GNP and M1 for 1962.11-1982.111, 1950.1-1975.111, and 1947.1-1977.111,
respectively. While seasonally adjusted data were used in the last two studies,
Thornton and Batten are not precise about the data used. We will use quarterly,
seasonally adjusted, nominal GNP and M1 data for the period 1960.1-1975.1V as
published by the OECD (Historical Statistics 1960-1979). The tests are applied to
first differences of the logarithms of the original data. The estimation and
specification period is 1960.1-1973.1I and forecasts are computed for 1973.111-
1975.1V. The maximum lag length used in the AR model specification procedure is
eight. The resulting values of the test statistics are given in Table 1. Note that the
t(h) and A(h) statistics in the table have approximate F distributions under the null
hypothesis of no structural change with [K, 52— (K+ 1)p] and [KA,52 — (K + 1)p]
degrees of freedom, respectively. Here K =1 for the univariate tests and K= 2 for
tests based on the bivariate models. Of course, the test values in the table are not
independent.

Significant test values are obtained only for the second half of 1975. In other
words, the stability hypothesis is rejected only for the end of 1975 and not for the
period immediately following the oil price shock in late 1973. The instability seems
to arise from an unusual value of A ln GNP in 1975.111. Of course, such a result may
occur by chance, that is, the rejection of the null hypothesis may be a type I error.
Therefore the overall conclusion is that the tests do not strongly support the
hypothesis of a structural change caused by the 1973/74 oil crisis in the money-
income system of the U.S.
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3.2 Results for Canada

Studies using Canadian M1 and GNP data for 1973/74 in tests for causality include
DSW and Hsiao (1979b, 1981). The data used in this section are seasonally
adjusted, quarterly figures from 1955.1-1975.1V as published in the Appendix of
Hsiao (1979b). Again first differences of the logarithms of the original data are
used. The estimation period is 1955.1-1973.11 and the test values are computed for
1973.111-1975.1V as in the U.S. case. The maximum AR order used in the AR order
selection procedures is 14. Here we have used a higher maximum AR order than in
the previous section because more data are available. The results of the stability
tests are shown in Table 2. The degrees of freedom of the F distribu-
tions corresponding to the #(h) and A(h) tests are [K,72—(K+1)p] and
[AK, 72— (K + 1)p] respectively. Obviously the stability hypothesis is quite clearly
rejected in this case by the univariate as well as the bivariate tests.

Since one purpose of the study is do determine whether a structural instability
may have had in impact on the causality tests we have performed such tests for the
period 1955.1-1973.11 and 1955.1-1975.1V. The tests are standard F tests of the null
hypotheses a;(L)=0 (M1 does not cause GNP) and ay(L)=0 (GNP does not
cause M1). Since AIC, HQ, and SC have all chosen a bivariate AR(1) for the period
1955.1-1973.11 we have based the tests on AR(1) models. For the period 1955.1-
1973.11 we get

Aln GNP, = 0.016 + 0.072A1n GNP,_, + 0.207 Aln Ml,—, + &1y, (4a)
(5.38)  (0.61) 2.12)

AlnMI, = 0.004+ 0.172AIn GNP,_, + 0462 Aln M1, |+ &,  (4b)
(1.40)  (1.32) (4.31)

and for 1955.1-1975.1V we get

Aln GNP, = 0.014+ 0218 Aln GNP,_ |+ 0215AIn M1, + &, (5a)
4.87)  (2.02) (2.44)

Aln M1, = 0.005+ 0.237 Aln GNP,—, + 0.405AInMI,_, +d,  (5b)
(1.39)  (1.83) (3.81)

Here the numbers in parentheses are asymptotic ¢ statistics. ¢ tests are equivalent to
Ftests for the present AR(1) models. Hence, noncausality from GNP to M1 can be
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rejected at a 10% level of significance in (5) whereas the same is not true in (4).
Thus, applying the test to the data from the period prior to 1973.11 one would
clearly conclude that GNP is not likely to be causal for M1 while the same
conclusion is not reached from a 10% level test based on data up to 1975. In line
with the simulations reported in Section 2, this example demonstrates that not
taking into account possible structural changes may indeed have a significant effect
on the conclusions drawn from causality tests. Note that other causality tests may
lead to different results. However, if the foregoing strategy is used, different
conclusions may be obtained for the two periods.

3.3 Results for West Germany

West German data were also considered by DSW. We use quarterly, seasonally
adjusted, nominal GNP and M1 for the period 1960.1-1975.IV as published by the
Deutsche Bundesbank. Again first differences of logarithms are used. As for the
U.S. the estimation period is 1960.1-1973.11 and test values are computed for
1973.111-1975.1V. Using a maximum AR order of eight in the search procedure all
three criteria AIC, HQ, and SC choose p =0 as optimal AR order for the bivariate
system as well as the univariate series. The resulting test values are given in Table 3.
In this case the degrees of freedom of the F distributions corresponding to the t and
Atests are (K, 52) and (kK 52), respectively. None of the test values is significant at
the 1% level and those significant at the 5% level may be spurious. This view is
supported by the results of Liitkepohl (1988) where it was found that, for the
univariate case, the tests tend to reject the null hypothesis, when it is true, more
often than is indicated by the significance level chosen. Consequently, there is no
overwhelming evidence supporting the hypothesis of structural change.

4 Conclusions

This note has pointed out that structural stability of the system under investigation
is a crucial prerequisite for Granger-causality tests. Since the oil crisis in 1973/74
has been blamed for some turbulence in major industrialized economies we have
tested the structural stability of GNP/MI1 systems for the U.S., Canada, and West
Germany. For all three countries data covering the critical 1973/74 period have
been used in causality tests by some authors without taking into account possible
structural changes. For the U.S. and West Germany structural stability is not clearly
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Table 3. Results of Stability Tests for Quarterly, Seasonally Adjusted West German Data:
Estimation Period 1960.1-1973.11

forecast univariate models bivariate model
horizon AEnGNP Adnml
test quarter h AR (0) (AIC,HQ,SC) AR(0) (AIC,HQ,SC) AR (0) (AIC,HQ,SC)

t 1973.111 1 .01 4.95* 2.79
v 2 .06 .64 .32
1974.1 3 .13 .27 .15
11 4 .18 .13 .25
I1I 5 .05 .03 .03

v 6 1.13 3.33 3.47~
1975.1 7 3.24 .03 2.04
II 8 .06 1.98 1.04
IIX 9 .18 3.24 2.34
v 10 .01 .07 .03
A 1973.111 1 .01 4.95* 2.79
v 2 .03 2.79 1.56
1974.1 3 .07 1.95 1.09
II 4 .09 1.50 .88
IIX 5 .09 1.20 .1
v 6 .26 1.56 1.17
1975.1 7 .69 1.34 1.29
II 8 .61 1.42 1.26
111 9 .56 1.62 1.38
v 10 .50 1.47 1.25

* Significant at 5% level.

rejected so that this potential source of error in a causality test may not be a serious
one. On the other hand, stability is rejected for Canada. It is shown that not taking
into account the instability may give rise to misleading conclusions regarding the
causal structure of the system. As a consequence for applied work we suggest that
stability tests be conducted routinely prior to causality investigations if the
structural stability is in doubt.
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A Sequential Approach to Testing for Structural Change
in Econometric Models

By G. D. A. Phillips' and B. P. M. McCabe?®

Summary. The paper shows that the sequential approach to testing econometric models, particularly
testing for structural change, is both feasible and potentially very useful. In fact, this paper makes clear
the possibility of using the sequential approach as suggested by Dhrymes et al. (1972) and shows that the
statistical dependence between successive tests can be overcome in some cases.

1 Introduction

Modern econometric practice advocates that a given specification should be subject
to a rigorous testing procedure and it is now becoming routine to test for
misspecifications such as omitted variables, serially correlated disturbances,
structural change, heteroscedasticity and incorrect functional form. This kind of
intensive misspecification testing leads to problems of distortions in the inference
procedures but leading econometricians believe that the importance of carrying out
such tests overrides these problems.

While it is important to test econometric models rigorously it is also important
to seek to structure the testing procedure in such a way that problems of data
mining are minimised. In particular, we seek test procedures to test for the presence
of, possibly, several misspecifications simultaneously in such a way that: (a) the
overall Type 1 error probability is controlled within acceptable limits, and (b) the
test procedure while having good power properties provides some opportunity for
detecting individual types of misspecification.

' Garry D. A. Phillips, Dep. of Econometrics and Social Statistics, the University of Manchester,
Manchester M13 9PL, England.
 Brendan P. M. McCabe, School of Economic Studies, University of Leeds, Leeds LS2 9JT.

Helpful comments by David Hendry, Grayham Mizon and Jan Kiviet, on an earlier version of a related
paper, are gratefully acknowledged.
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This paper shows that in some cases these aims may be at least partially
achieved when the misspecifications are tested sequentially.

In a well known paper, Dhrymes et al. (1972, p. 299) drew attention to the
desirability of using a sequential approach to test for, inter alia, structural change
but it was acknowledged that no easy solution to this problem had been identified, a
principal stumbling block involving the problem of statistical dependence between
successive hypothesis tests. Here we consider a sequential approach to testing for
misspecification and we focus, particularly, on the problem of testing for structural
change when either serial correlation or heteroscedasticity, or both, may be
present. We show that a sequence of independent tests may be based upon well
known test statistics for these misspecifications.

2 A Sequential Approach to Testing for Misspecification

In the recent econometric literature, see especially, Mizon (1977), there has been
much concern to develop an appropriate strategy for model selection. The practice
of selecting models after applying numerous conventional tests of significance has
well-recognised deficiencies and to overcome these problems, a search process has
been advocated in which tests of specification are conducted on hypotheses within
an overall maintained hypothesis which is carefully chosen to be the most general
hypothesis likely to be relevant. If a composite hypothesis representing the most
restricted model, is tested against the maintained and not rejected, then the position
is straighforward but when the restricted model is rejected, one does not know
which of the constituent hypotheses are responsible. However, if the hypotheses are
nested and uniquely ordered, then when any hypothesis is true all preceding
hypotheses in the nest must be true and if any hypothesis is false all succeeding ones
must be false. This has the advantage of allowing a composite hypothesis to be
tested using a sequential procedure which can determine the hypotheses responsi-
ble for the rejection. Mizon notes that the sequential approach has certain optimal
power properties in the class of procedures that fix the probabilities of accepting a
less restricted hypothesis than the true one. Also, this approach, which is outlined
in Anderson (1971), may be extended to non-linear models. An important
characteristic of the approach is that the asymptotic distribution of the statistic for
testing any hypothesis in the ordered sequence against the less restricted hypothesis
immediately preceding it, depends on the validity of all less restricted hypotheses in
the sequence but not on that of more restricted hypotheses, and each of these test
statistics 1s asymptotically independent. Thus control over the overall Type 1
error probability is possible. If the significance level for each test is chosen at a;,
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then the significance level of the implicit test of the r-th hypothesis is
1—I1 (1 —a;) which is a monotonically non decreasing function of r.

i=1

Our concern is with multiple misspecification testing and it is worthwhile to
examine a sequential approach particularly if robust procedures are required. In
some cases there will be an ordering of nested hypotheses which will permit the
development of mutually independent sequential tests and which will ensure that
the distribution of the statistic for testing any hypothesis in the ordered sequence
against the less restricted hypothesis immediately preceding it depends on the
validity of all the less restricted hypotheses in the sequence but not on that of more
restricted hypotheses.

An important result in developing independent tests is the Independence
Theorem due to Basu (1955) which is noted in Hogg (1961). Broadly, the theorem
states that if in a regular estimation problem there exists a boundedly complete set
of joint sufficient statistics for m unknown parameters, a necessary and sufficient
condition that a statistic Q be stochastically independent of the joint sufficient
statistics is that the distribution of Q be free of the unknown parameters, see also
Hogg and Craig (1956, p. 219).

Some applications of the Theorem in an econometric context are discussed in
Phillips and McCabe (1988).

3 Sequential Testing: Useful Results

In an earlier paper Phillips and McCabe (1983) examined a sequential approach to
testing for structural change in a linear regression model where the composite
hypothesis includes changes in both the regression coefficients and the disturbance
variance. In this case although there is no unique ordering of the constituent
hypotheses it is possible to partition the composite hypothesis so that independent
test statistics are available for the resulting tests. To see this we assume a linear
regression model

y=Xp+e 3.1)

where y is a TX 1 vector of observations, X is a T X k matrix of rank k containing
observations on k non-stochastic regressor variables, f is a kX1 vector of
unknown parameters and &£~ N(0, 6°I7). Rewriting (3.1) in the form
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Y1 X1 0 b &y
+ 3.2)

2 0 Xof \ B &

where ¢;~ N(0, a,-zlri), i=1,2,and T\, T, >k with T} + T, =T, the structural change
hypothesis may be written in the following sequence:

Hy:0t#03, p1# B>
H] 20'12:0'%, ﬁﬁéﬂz

H0:O'12:O'%, ﬁlzﬂz.

This ordering is not unique but it has the property that the distribution of the
statistic for testing any hypothesis in the ordered sequence against the less restricted
hypothesis immediately preceding it does not depend on the validity of more
restricted hypotheses and the test statistics are independent under Hy. As a result
the overall type 1 error probability can be controlled and the interpretation of a
significant test result is straightforward. In fact, in this case, the procedure has the
desirable property of yielding a uniformly most powerful invariant test of H»
against Hy as noted by Anderson and Mizon (1984).

In practice we shall often wish to combine a structural change test with other
misspecification tests, particularly a test for serial correlation, and to extend the
above analysis we shall write the model as

y=Xp+ZAp+¢

where Z= (/32) and Af=(B—p). (3.3)

It is well known that the Analysis of Covariance (AOC) test for structural change is
identical to an F significance test of the coefficients of Z in (3.3). However, it is of
interest to note that Basu’s Independence Theorem may be invoked to deduce that
the AOC test statistic is distributed independently of any misspecification test
which is free of 8, 4 and o2 e.g. LM tests, the Durbin Watson test and various
heteroscedasticity tests, when there are no misspecifications.
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Here we are particularly concerned to examine a test for serial correlation and

to do this we shall put g*= (fb) and X* = (X: Z). The least squares estimator of
f* is then given by

B
ﬂ*: = (X'*X*)_IX'*y
4p
XX\ +XX, XX\ ' XintXiy
X3X, XX, X3y

On inverting the above matrix using a well known theorem for inverting a
partitioned matrix, we have

B (Xi X))~ Xy,
4p (X322 X3y2— (Xi X0y~ Xiyy
B
B~
It is easy to see that the residual vector is given by

y1—X12>’1 &

>
I
I

y2— Xap2 &

where the sub-vectors are those which would be obtained when the two regressions
are performed separately.

A test for serial correlation may be performed based upon the residual vector ¢
which has all the usual properties of a least squares residual vector. The bounds test
statistic is

T
- A’A

&€

d
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where A is TX T and the number of degrees of freedom is T— 2k. The AOC test is
based upon

(B — B((X5X) " + (X1 X))~ Ba— Bu)/k

F= o
&e/(T—2k)

3.4)

and, given this form of the statistic, it is easy to deduce the independence of Fand d
under the null hypothesis of serial independence of the disturbance either by
invoking the Independence Theorem or by noting that each term of the F ratio is,
separately, distributed independently of 4.

It is clear that if the following sequence is considered

Hy:p#0,5:17 f>
Hi:p=0,51#p>
Hy:p=0,p1=p>

and the above test statistics are used, the tests are independent under Hy and the
overall type 1 error probability may be controlled exactly. Notice too that, in
testing for serial correlation, one does not need to assume that §; = f,.

Suppose now that a test for heteroscedasticity is required. Difficulties arise,
though, when tests for serial correlation and heteroscedasticity are included in the
same sequence since the null distribution of the usual test statistic for one
misspecification is affected by the presence of the other misspecification. In
addition, even when neither misspecification is present, the test statistics commonly
employed are not independent in small samples.

However, in certain cases it is possible to modify the usual test statistics so that
the null distribution of the test for serial correlation may be unaffected by the
presence of heteroscedasticity and the test statistics are independent when neither
misspecification is present. For example, the heteroscedasticity hypothesis of
interest in the context of testing for structural change is given by

N &
= X+ (3.5)

)2 &2
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where ai—N(O,a?ITi), i=1,2, with 61 #03 and T, T,>k. The null hypothesis is
chosen as Hy : 67 = 03 and the appropriate test is the Variance Ratio (VR) test based
on

Fi= BSSY(T=h) _ B4/(T— k)
RSS|/(Ti—k)  &&/(Ti—k)

(3.6)

where RSS; = ¢£/¢;is the residual sum of squares from a regression carried out on the
corresponding T; observations, i =1, 2. Note that no reordering of the observations
is involved and under Hy, Fi ~FKT>,—k, T, — k).

To find an appropriate test for the serial correlation hypothesis that the
disturbances are generated by the first order autoregressive process

w=pu—1+e, |pl<l,t=12,...,T.

we shall consider the statistics

gk .
:A,—A’ I:1’2' (37)

EiEj

d;

When p =0, d) and d; are each distributed as a Durbin-Watson ratio test and their
distributions do not depend on the 6?,i=1,2. Inaddition they are both distributed
independently of the VR statistic under the overall null hypothesis, i.e. when
neither misspecification is present.

It follows, therefore, that we can find a sequential test procedure having the
desired characteristics provided that the test for serial correlation is performed first
and is based on the d;, i = 1, 2. One possibility is to pool the results of the separate
tests and reject the hypothesis of no serial correlation if either test rejects. If this
procedure is followed and each test is carried out at the 2!/,% level, the overall test
size is controlled at $%. An alternative approach which yields a more powerful test,
is to base the test on the LM type statistic

T, T,
di=—d|+ —d,. .
3=t (3.3)

The null distribution of d; is unknown but it can be approximated by the
distribution of a §f variate with the same mean and variance so that a test based on 3
may be close to being exact. To examine this a set of Monte Carlo experiments was
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carried out and a simple version of (3.5) was simulated which included one
regressor variable and a constant term. The regressor variable data was generated
lognormally and T was chosen as 30 with T;=7,=15. The experiments are
discussed in section 5 but it is appropriate to note now that in several independent
runs of 1,000 replications, the estimated rejection probability for a serial
correlation test based on (3.8) was always close to the nominal significance level.
Thus for the Monte Carlo experiments we may treat the test as being, essentially,
exact.
It is of interest that a test of the structural change hypothesis

i X1 0\ [h £
= + (3.9)

»2 0 X/ \p &

based upon the AOC test, may be added to the sequential testing procedure.

The distributions of (3.6) and (3.8) are not affected by the structural change
hypothesis and, furthermore, the three test statistics are mutually independent
under the overall null hypothesis. A proof of this independence is given in the
Appendix.

The sequence of nested hypotheses then takes the form

Hy: p#0, 61 # a3, p17# Pa,
Hy: p=0, ai# a3, 1 # o,
Hi: p=0, a?=a3}, f1#pa,

Hy: p=0, a7=a3, f1=p>.

Note that when the individual tests are based on (3.6), (3.8) and the AOC test in
(3.4), the distribution of the statistic for testing any hypothesis in the ordered
sequence against the less restricted hypothesis immediately preceding it, does not
depend on the validity of more restricted hypotheses. The hypotheses are tested in
turn until one either accepts H;, i=1,2, 3, or one rejects all hypotheses and arrives
at Hy. If H;, i=1,2,3, is accepted, it is assumed that a misspecification has been
found and the procedure stops. As a consequence, if H, is accepted, the structural
change hypothesis regarding f is, essentially, untested. However, if 7 a3 is
regarded as an alternative hypothesis which is of intrinsic rather than merely
instrumental interest, the structural change hypothesis could be tested using a Wald
test, assuming that o7 # o3.
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4 Non-Sequential Testing for Structural Change

In this section we consider the traditional non-sequential approach to testing for
structural change. We suppose that, as in the case discussed in Section 3, tests for
serial correlation and heteroscedasticity will also be carried out. The approach is to
choose an optimal test for the particular case of interest. Thus the test for serial
correlation is based upon the Durbin-Watson statistic using the residuals from the
full regression in (3.1) i.e. e=y —Xf)’. The test statistic used is

VNR = £4¢ (4.1
ee

where 4 is a T X Ttridiagonal matrix of well-known form. The distribution of VNR
is approximated by a f-distribution with the same mean and variance.

A test for heteroscedasticity is based upon the LM statistic proposed by
Harrison and McCabe (1977). For the particular type of heteroscedasticity
hypothesis under consideration their test is locally best invariant. The test statistic
used is:

¢'Be
H=
- (4.2

where B is an appropriate selector matrix of order TX T with T, ones and T) zeros
on its principal diagonal, and zeros elsewhere. Notice that H is a ratio of the last T»
squared residuals to the sum of squared residuals. Again the f-approximation to
the distribution of H is used to determine its critical values.

Finally, a test for changes in the regression coefficients will be based upon the
Analysis of Covariance (AOC) test. This is the test which is widely used in practice.

Our non-sequential testing procedure is to conduct all three tests at a nominal
1.7% level. Although the three test statistics are not mutually independent under
the overall null i.e. when neither problem is present, the overall test size is close to
5%. In 1,000 replications of a Monte-Carlo experiment discussed in Section 5 the
estimated size was 4.7%.
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5 Sequential and Non-Sequential Testing for Structural Change:
Some Monte Carlo Results

In this section we consider the results of a set of Monte Carlo experiments designed
to compare a sequential approach to testing for structural change with the
traditional non-sequential approach.

A simple linear regression model of the form

y=a+px,+e, 1=12,..,T,

was simulated where data for the explanatory variable x, was generated lognormal-
ly from a distribution in which exp x ~ N(1, 1.31), and, in addition, ¢, ~ N(0, 1). For
simplicity, the parameters were chosen as a=pf=0. Serial correlation was
introduced into the disturbance term by forming &, = pe,— | + u, where p was chosen
as 0.3, 0.5 or 0.8. Heteroscedasticy was created by choosing E(¢?)=1,1=1,..., 15,
and E(¢?)=2,t=16,...,30. Finally, structural change in the regression parameter
was introduced by putting #=0,¢=1,...,15,and f=1, =186, ..., 30.

One thousand replications were employed in each experiment and used to
estimate the probability of rejecting the model in the presence of different
combinations of misspecifications, for both sequential and nonsequential test
procedures.

The results of the study are given in Table 1 in four sections. However, the
reader should note some difficulty in comparing these results. The sequential test
procedure stops whenever a significant test result is obtained since a respecification
of the model is indicated. To continue would involve testing in the presence of a
misspecification other than the one to be tested for. Because of this, not all possible
misspecifications are tested. The data shown for sequential tests indicate the
estimated probability that a rejection will occur at a particular stage of the
sequential procedure and the estimated probability that the specification will be
rejected at some stage is obtained by lateral summation to yield the column headed
P.(R). Notice that, by its nature, the sequential procedure cannot detect more than
one mispecification. On the other hand, with the nonsequential approach, all the
mispecification tests are carried out and the estimated probabilities shown refer to
individual tests which, in nearly all cases, are conducted in the context of more than
one misspecification as indicated by the first three columns. The probability that a
specification is rejected following a significant result in at least one of the tests, is
given in the final column headed P,(R). This is not obtained as the lateral
summation of the rejection probabilities for the individual tests, however.

Each individual test was carried out at a nominal 1.7 % significance level. In the
case of the sequential procedure, where the test statistics are independent under the
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Table 1. Estimated Probabilities of Rejection in Sequential and Non-sequential Tests: 7= 30

Nominal significance level is 1.7% for each test

Tl = TZ =15 Sequential Tests Non-sequential Tests
1000 replications dy = VR~ ACGC
] Aa2 A8 d3 VR AOC Pr(R) VNR H AOC Pr(R)
0.0 0 0 |.0l6 014 .017 -047 016 014 .017 .047
0.3 0 0 | .17 014  .081 -266 .245 016 092 .287
1 0.5 0 0 |.510 011 .115 .636 -626 .022 .217 «650
0.8 0 0 |.s08 .003  .127 .938 <940 .032 .551 947
0.0 0 1 |.011 .019 .833 -863 344 .001 .857 -868
0.3 0 1 |.208 012 .702 2922 747 .004 901 .928
2 0.5 0 1 |.504 012 .469 -985 .929 .008 <946 .978
0.8 0 1 |.802 .005  .193 1.00 .998 .010 1.000 1.000
0.0 1 0 |.025 461 011 .503 .022 .580 .016 .596
0.3 1 0 |{.230 344 057 -631 .278 551 .100 676
3 0.5 1 0 | .495 .203  .074 772 .598 .488 .197 .801
0.8 1 0 | .796 .063  .088 947 .934 .386 512 .958
0.0 1 1 |.034 455 .237 .726 .139 .302 .397 647
0.3 1 1 | .230 348 .240 .818 486 .281 520 .783
4 0.5 1 1 | .478 .201  .255 <934 774 .223 -691 -905
0.8 1 1 | .769 072  .158 .999 .986 .089 964 998

Notes

1. pistheserial correlation parameter which is fixed for each experiment. 4¢? is the incremental change
in the disturbance variance over the last 7> observations. In fact 462 = | means that the disturbance
variance doubles. 4f is the incremental change in the parameter § over the last T observations.

2. d;refers to a test for serial correlation based on (3.8) where its distribution is approximated by a f§
variate with the same mean and variance. VNR is the DW test again employing the f approximation.
VR and AOC refer to the Variance Ratio and Analysis of Covariance tests, respectively, while H is
the Harrison-McCabe LM test for heteroscedasticity.

3. Pr(R)is the probability of rejecting the specification. In the case of non-sequential tests, this is the
probability that at least one of the tests rejects.

4. For the sequential tests, the probabilities shown refer to the rejection at that stage of the sequential
test procedure. The procedure terminates once a rejection occurs.

5. The nominal overall Type I error probability is 1—(0.983)*=0.05. This holds to a close
approximation in both procedures.

overall null, the Type 1 error probability is 1—(0.983)>=0.05. In the non-
sequential case, the test statistic used to test for serial correlation will not be
independent of the H and AOC test statistics under the overall null but the
dependence appears to be weak. Consequently, the overall Type 1 error probability
of the non-sequential test procedure closely approximates that of the sequential
procedure and, for practical purposes, we may assume that they are equal.
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The Monte Carlo results are presented in Table 1. The four experiments are
intended to examine the robustness or otherwise of individual tests to the presence
of more than one misspecification, and to provide some indication of the
comparative performance of the sequential and non-sequential test procedures.

The VNR and H tests are known to be more powerful than their counterparts in
the sequential procedures, d3 and VR, and this is demonstrated in experiments 1
and 3. The H test is seen to be non-robust to serial correlation in experiment 3
and to structural change in experiment 4 — compare the first rows of experiments 3
and 4.

In experiments 1 and 2 it seen that the VNR test is very non-robust to structural
change. Indeed the VNR test has size 0.344 in the presence of structural change and
the AOC test has size 0.551 when p=0.8. However the rejection probabilities of
both the VNR test in the context of structural change and the AOC test in the
presence of serial correlation, are greatly increased.

The problems of distinguishing between serial correlation and structural
change are largely avoided in the sequential approach. When serial correlation is
the problem and not structural change, or when structural change is the problem
and not serial correlation, there is a relatively high probability of detecting the
misspecification.

A further problem of non-robustness of the AOC test is seen when heterosce-
dasticity also occurs - compare the first rows of experiments 2 and 4 where it is seen
that the AOC test power falls sharply when heteroscedasticity is introduced.

The overall rejection probabilities for the sequential and non-sequential
approaches are interesting. If either serial correlation is the sole misspecification or
it occurs with structural change, there is little difference between the rejection
probabilities in the two procedures. If serial correlation occurs with heteroscedasti-
city and not structural change, the non-sequential approach has the higher
rejection probabilities. However, when both heteroscedasticity and structural
change occur, with and without serial correlation, it is seen in experiment 4 that the
sequential approach yields the highest rejection probabilities.

It seems therefore that when tests are structured to take account of more than
one misspecification, there may be a gain in overall power if those misspecifications
occur but if allowed for misspecifications fare not all present, this may lead to some
loss of overall power.

Perhaps the single most important finding in this study is the support given
to the sequential approach when testing for serial correlation and structural
change.
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Appendix
The Independence of the Test Statistics

Our proof is rather more general than required and we shall first show the mutual
8'1A1£1 8'2A2£2

,——— €11 and ¢3¢> where 4| and A, are arbitrary con-

independence of —
€181 €262

formable matrices and &~ N(0, azlri,k), i=1,2.
The joint characteristic function of these statistics is

’

r T e1d e erAz¢ , ,
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e s €1€] €262
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where &, ~ N(0, oI, - ) and &~ N(0, 6’Ir, - ) are independent.
Making the substitutions

N=(1-213)2%,,  yr=(1—21)"2,,
we have

_ =k (h—k)
O, 12,13, 14) = (1 — 213) 7 (1= 21y

o oc

g14¢e erAre
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Obviously

gier  &her el £5¢)

Chf”(g,lAlgl 8'2A282):chf"(8'114181 ) Chfn(él'zAzaz)‘

and so ¢(ty, 1, 13, 314) is simply a product of the characteristic functions. Hence

glde) €546

—, , £1€) and ¢€5¢; are mutually independent.
€181 €262

An immediate consequence of this result is the mutual independence of the
14ie;

Le.
ici

, i=1,2, and any function of ¢&i¢; and ¢5¢;. In addition, it is well-known

&5 . & Ak

that # and ¢fe) + e, are independent. It follows that the ——, =12,
£18] Ei&i

£26) , , .

—— and ¢}g; + &3¢, are mutually independent.

E1€1

It is of interest that the statistics in (3.6) and (3.8) can be written in terms of
recursive residuals which have the same properties as the ¢, i = 1, 2, which appear in
the foregoing analysis. Thus (3.6) and (3.8) may be written respectively as

’ _ r 4% 1 o4
£, =26/ (T —k) and d3:£81/1181 I edre

el /(Ty—k) T &\ T &5

where the ¢, i=1,2, are vectors of recursive residuals and the 4 i=1,2, are
suitably chosen conformable matrices.

Finally we need the following result which is, essentially, proved in Harvey and
Phillips (1977).

Lemma: The analysis of covariance test statistic given in (3.4) can be written in the
form

_ eses/k
(e1e1 +e2e2)/(T— 2k)

where the ¢, i=1,2,3 are mutually independent normal random vectors of
recursive residuals with zero means and common scalar covariance matrices.
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* ’
_ cidie . £5%8)
Now it is clear that the -ﬁ i=1,2, ==, ¢le1 + €16, and &ie; are all mu-
i€ ghe

tually independent. It follows, trivially, that Fy, dy and F are mutually independent
also.
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Statistical Analysis of “Structural Change”:
An Annotated Bibliography

By P. Hackl' and A. H. Westlund®

1 Introduction

The typical “structural change” situation is - from the point of view of a statistician
- as follows: To cope with a particular economic phenomenon a model is specified,
and it is suspected that for different periods of time, or for different spatial regions,
different sets of parameter values are needed in order to describe the reality
adequately; the “change point” which separates these periods, or regions, is
unknown. Questions that arise in this context include: Is it necessary to assume that
the parameters are changing? When, or where, does a change occur or - if it takes
place over a certain period of time - what is its onset and duration? How much do
parameters before and after the change differ? What type of model is appropriate in
a particular situation (e.g., two-phase regression, stochastic parameter models)?

Non-constancy of the parameters is an essential element of “structural
change”. This nonconstancy of the parameters can appear as an inadequacy of the
model which is specified to represent the phenomenon in question; diagnostic
checking methods can be applied to identify such nonconstancies. On the other
hand, parameter variability can be incorporated in the model.

References included in this bibliography concentrate on two topics:

1. Detection of non-constancy of parameters in regression and time-series
models.

2. Statistical analysis of models with time-varying parameters.

I Professor Dr. Peter Hackl, Department of Statistics, University of Economics, Vienna, Austria, in
1988/89 Visiting Professor at the Department of Statistics and Actuarial Science, The University of
lowa, lowa City, USA.

* Professor Dr. Anders H. Westlund, Department of Economic Statistics, Stockholm School of
Economics, Stockholm, Sweden.
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The first group of references deals with the change point problem in the context of
regression models. Constancy of a sequence of random variables is related to the
analysis of residuals which might be performed in order to detect non-constancy of
the regression parameters; therefore, papers are also included which discuss the
analysis of parameter constancy of (time-ordered) sequences of random variables.
Several papers discuss the analysis of constancy of parameters of time series
models.

The second group of references is concerned with estimation procedures for
regression models with time-varying parameters. These papers are of interest
because time-varying parameter models might be appropriate for model specifica-
tion in the presence of non-constancy. Also, such parameterizations can be used to
detect instability in the coefficients. Some papers are included which discuss
forecasting problems in the situation on non-constant parameters. No or nearly no
weight is given to some topics which are related to those mentioned above, viz.,
continuous sampling inspection, heteroscedasticity, analysis of non-constancy of
time-series parameters in the frequency domain, and disequilibrium models. The
reason for these limitations lie partly in the subjects, partly in the fact that our
efforts had to be restricted.

The close connection of questions of model stability with economic problems
leads us to discuss briefly what is known under “structural change” among
economists. In economics this notion is not clearly defined. However, a notion
related to “structural change” which, in the context of a linear dynamic model, is
clearly defined, is the concept of stability. It refers to the dominant root of the
characteristic equation of the system: The system is stable if the dominant root lies
within the unit circle (cf. Theil and Boot 1962; Oberhofer and Kmenta 1973). This
concept, however, is of little help for defining “structural change” if it is accepted
that structural change implies non-constant relations between elements (variables)
of the system. Economists speak about structural change not only in this rather
concrete sense but also if there are substantial changes in certain characteristics,
e.g., the mean, of the endogenous variables of the system. Consequently, the
borderline between structural change and stability is not strict, the notion
“structural change” is not well-defined, and questions concerning the theoretical
motivation of structural change, its measurability, and others, cannot be discussed
properly. We hope that this bibliography contributes to a more commonly
accepted use of the notion “structural change”.

This paper resulted as a part of the activities of a ITASA (International Institute
for Applied Systems Analysis, Laxenburg/Austria) Working Group on “Statistical
Analysis and Forecasting of Economic Structurat Change“, a group of statisticians
and econometricians which held meetings in 1985 and 1986. At that time no
comprehensive basis in book-form was available on this subject, but four
bibliographies: Hinkley et al. (1980), Johnson (1977, 1980), and Shaban (1980). A
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unified and updated compilation based on these papers (Hackl and Westlund 1985)
is a forerunner of the bibliography in hand.

In the meanwhile, two books, viz. Broemeling and Tsurumi (1987) and Schulze
(1987), appeared which treat the regression aspects of the subject from a Bayesian’s
and a frequentist’s point of view, respectively. Furthermore, a number of recent
monographies include special chapters related to the subject: Chow (1984), Judge
et al. (1985), Nicholls and Pagan (1985). In a few months, Hackl (1988) will present
results of the above-mentioned IIASA Working Group, including some specially
invited papers, in form of a multi-author volume: Both surveying articles and
specialized research papers give a comprehensive view of the subject, of related
statistical and mathematical methods and problems, and of future directions.

Most references included in this bibliography were published in methodologi-
cal (statistical and econometric) journals. Our work is partially based on the four
above mentioned bibliographies which delivered about 50% of the references cited
here. Most of the remaining papers appeared after these bibliographies were
published, a fact that indicates the still growing interest in this subject. Papers
which mainly deal with applications were not incorporated, except papers which
were published in methodological journals. Of course, we do not claim that this
bibliography is complete.

2 The Subject-Matter Codes

The entries in the list of papers (Chapter 3) are annotated ac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>