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Preface 

Econometric models are made up of assumptions which never exactly match 
reality. Among the most contested ones is the requirement that the coefficients of 
an econometric model remain stable over time. Recent years have therefore seen 
numerous attempts to test for it or to model possible structural change when it can 
no longer be ignored. This collection of papers from Empirical Economics mirrors 
part of this development. 

The point of departure of most studies in this volume is the standard linear 
regression model 

Yt = x;fJt + Ut (t = I, ... , 1), 

where notation is obvious and where the index t emphasises the fact that structural 
change is mostly discussed and encountered in a time series context. It is much less 
of a problem for cross section data, although many tests apply there as well. 

The null hypothesis of most tests for structural change is that fJt = fJo for all t, 
i.e. that the same regression applies to all time periods in the sample and that the 
disturbances ut are well behaved. The well known Chow test for instance assumes 
that there is a single structural shift at a known point in time, i.e. that fJt = fJo 
(t< t*), and fJt = fJo + t1fJ (t"?:. t*), where t* is known. 

It can easily be generalized to multiple structural shifts, the timing of which 
must however still be known. Another generalisation, provided by Toyoda and 
Ohtani in this volume, is to different change points for individual coefficients. 
Under the usual alternative all coefficients change at once, but here it is shown in a 
demand for fuel application that change points for individual coefficients might 
well be different. 

P6tzelberger and Polasek consider the standard Chow test from a Bayesian 
viewpoint. By varying the prior distribution of t1fJ, they determine whether or not 
the structural change is robust against the different choices for the prior 
distribution, the major point being that a structural change can be diagnosed with 
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much more confidence if it is found substantial irrespective of the prior 
distribution. 

Leybourne and McCabe consider regreSSIOn coefficients which follow a 
random walk, i.e. where 

Here, the null hypothesis of structural stability is equivalent to Ho: at = 0. 
Alternatively, one can dismiss specific alternatives altogether and look for pure 
significance tests, as is done by King and Edwards. By suitable transformations of 
recursive (or other LUS) residuals, they reduce the problem to one of testing 
independently distributed uniform random variables. This is similar to the 
established CUSUM and CUSUM of squares tests, which likewise do not require 
any prior knowledge about the type and timing of structural shifts. 

Another group of papers in this volume consider standard procedures in non
standard situations. MacKinnon modifies the Chow test such as to become robust 
to heteroskedasticity among the disturbances Ut of the model, and Ploberger et al. 
adapt the CUSUM test to dynamic models of the form 

Yt = YYt-l + x;P + Ut, 

which are ruled out in the classical analysis with nonstochastic regressors. The 
problem is that recursive residuals are then no longer nid (0, if) (given nid 
disturbances), and the standard assessment of their cumulative sums breaks down. 

A different but perennial problem in all empirical work is adressed by 
Liitkepohl and Phillips/McCabe. This is the possible presence of several complica
tions at time. Liitkepohl considers test of causality in vector autoregressions, and 
shows that the true significance level far exceeds the nominal one when there is 
structural change in the regression coefficients. This implies that many rejections of 
non-causality which have been reported in empirical work in recent years may well 
be due to structural change. 

Phillips and McCabe suggest a sequential approach to testing for structural 
change to take care of such multiple violations of the assumptions of the model. It 
has become common practice in empirical econometrics (and a good one at that) to 
test a model for various misspecifications such as omitted variables, autocorrelated 
or heteroskedastic disturbances, incorrect functional form or structural change at a 
time. The obvious problem with this approach, which Phillips and McCabe at least 
partially resolve, is how to control the Type I error probability and how to draw 
conclusions from the results of the tests. 
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An annotated bibliography containing about 400 items by Hackl and 
Westlund of econometric and statistical work on structural change concludes this 
volume. It is a tribute to the dynamics of this literature that in the few months after 
the acceptance for publication of this bibliography, dozens of additional papers 
have appeared which deal with the testing and modelling of structural change. A 
huge literature, which is not touched upon here, has for instance evolved around 
the Kalman filter approach to parameter instability. New tests for structural 
change keep appearing at an increasing rate, and given the multitide of possible 
models and alternatives, this will continue for quite some time. I should be pleased 
if readers would judge this volume as a useful contribution to this fascinating field. 

Dortmund, April 1989 Walter Kramer 
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A Modification of the CUSUM Test in the Linear Regression 
Model with Lagged Dependent Variables 

By W. Ploberger, W. Kramer, and R. Altl 

Abstract: We consider testing for structural change in a dynamic linear regression model, and show that 

the well known CUSUM test, which has been initially devised only for the standard static model, can 
easily be modified such as to remain asymptotically valid also in this nonstandard situation. 

1 Introduction 

Consider the simple dynamic regression model 

(I) 

where the disturbances U1 are idd (0, 0.2) (not necessarily normal), I y I < I, u1 is 
independent of YI_j U~ I), and the pre-sample observation Yo is some fixed 
number. This paper is concerned with testing whether the regression coefficients " 
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and /3 remain stable over time. In particular, we address the applicability of the 
well known Brown-Durbin-Evans (1975) CUSUM test, which has initially been 
devised only for nonstochastic regressors, to the above dynamic model. 

Let xt = [xtl>"" XtK]', X= [XI>"" XT]', and xi = [0, ... ,0, Xl, X2,"" XT-;]" We 
then impose the following additional assumptions: X is nonstochastic, with 
II xtll = O( I), and there exist a finit~ vector c and finite matrices Qo (nonsingular) and 
Qi such that, as T- 00, 

I T 
- L x-c 
T t=l t , 

~ X'X - Qo, and 

J.- X' xi - Qi. 
T 

(2) 

(3) 

(4) 

Assumptions (3) and (4) guarantee consistency and asymptotic normality ofOLS in 
the model (l) (Theil 1971, p. 412), and (2) is implied by (3) whenever there is a 
constant in the regression. 

Let Zt=[Yt-I,X;], Z=[ZI, ... ,ZT]', Y=[Yl, ... ,YT]', U=[Ul, ... ,UT]', and 
J= [y,/3" ... ,/3K]'. The model (1) can then be rewritten as 

Y = ZJ + u, (5) 

where 

J.- £ Zt!!' d = [/3' c/(l - Y)] 
T t=l C 

(6) 

and (i/T)Z'Z - R for some finite matrix R. 
Disregarding for the moment the stochastic nature of the first column of Z, the 

CUSUM test for the stability of J is based on successive partial sums of recursive 
residuals Wr, which for K + 2 ~ r ~ T are defined as 

Wr = (Yr - z;j(r-l»/ir, (7) 
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where 

(8) 

Z<'-I) = [ZI, ... , Z,-I]', and a('- I) is the OLS estimate for J from the first r- 1 
observations (superscripts will in the sequel always signify that the respective 
quantity is based on observations with index no larger than the superscript). The 
test statistic is 

s= max 
K+I<,~T 

w<') 1/(1 + 2 r- K -1 ), 
-V-;=T=-=K=-=-1 T- K - 1 

where 

w<') = J..- L WI 
a I=K+2 

is the cumulated sum of the recursive residuals and where 

(
IT )1/2 a = 2 L (w, - w)2 . 

T-K- ,=K+2 

(see Harvey 1975 for a discussion of the appropriate estimate for 0"). 

(9) 

(10) 

(11) 

Given some significance level a, Brown, Durbin and Evans determine the 
appropriate critical value a, rather heuristically, by viewing the W<')'s as discrete 
readings from continuous Brownian Motion, i.e. by solving the expression 

Pr max I + 2 ~ a =-( W<') / ( r - K - I ) ) a 
K+I<r~T JT-K-I T-K-I 2 

(12) 

for a, where W<') is a continuous Gaussian process with mean and covariance 
function 

EW<') = 0, Ew<r)2 = r - K - 1 

E(W<')W<S» = min (r, s) - K - 1. (13) 
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Sen (1982) shows that, in the static model, this is asymptotically correct, in the sense 
that 

(14) 

The probability that S is greater than a therefore tends to 

a - Pr (ax r) crosses both lines), (15) 

where the latter term is negligible for the usual values of a (i.e. from one to ten 
percent). 

2 Asymptotic Null Distribution in the Dynamic Model 

Now consider the dynamic case. One can of course disregard the dynamic character 
of the regression and proceed with the CUSUM test as described above. We call this 
the dynamic CUSUM test. However, there is prima facie little reason to believe that 
the true rejection probability of this procedure will continue to be approxi'mated by 
the corresponding probability from a Gaussian process. Even if the disturbances 
were normal, the recursive residuals are now neither normal nor independent, due 
to the presence of common stochastic components. 

Dufour (1982, p. 46) notes that if we knew the true value ofy, the model could 
be reduced to standard form via 

y, - yy,~ 1= plX,1 + ... + pKX,K + u, (t = I, ... , 1). (16) 

One could then proceed as usual and recursively estimate the vector p. When y is 
unknown, one can replace it by the OLS estimate y from the full sample, and hope 
that the resulting recursive residuals and any tests based on them will have 
approximately the same properties as those based on the true y. We show next that 
this is indeed the case. The resulting variant of the CUSUM test will be referred to as 
the Dufour test. (Since this procedure does not fare well in our power investigation 
below, it is however only fair to say that Dufour did not in any way advocate this 
test. ) 
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Letl, = y,- YY,- I (t = 1, ... ,7). Similar to (7), (8) and (10), define for K < r~ T 

* * A Wr = (jr - x~f3(r-l»/gr, (17) 

(18) 

W(r) = L * f' W, (J. (19) 
,=K+l 

We then have the following result: 

Theorem 1: Let a be determined from (12), and assume that there is a constant in the 
regression (1). Then, under the conditions imposed at the beginning of this section, 

* } W(r) r-K a 
lim pr{ max ~ 1(1+2-)~a =-. 
T-oo K<r~T T- K T- K 2 

(20) 

The proof of Theorem I is rather involved, since it appears impossible to avoid the 
theory of weak convergence of probability measures on metric spaces. The problem 
is: how can we derive the limiting probability in (20) from the corresponding 
probability of a suitably defined limit process? Unfortunately, finite dimensional 

* distribution theory does not apply here, since the J.V{r) processes do not converge in 
distribution (in the ordinary sense) to anything. Therefore we have to view these 
sequences (properly standardized) as mappings from a probability space into 
something more general than finite dimensional Euclidean space. The most 
authoritative treatment of such issues, on which we will draw heavily in our proof 
below, is still Billingsley (1968). Breiman (1968) and Ganssler and Stute (1977) also 
provide useful introductions. A convenient summary of the state of the art is 
Serfling (1980, Chapter 1.11), and various special issues are discussed in depths in 
Hall and Heyde (1980, Chapter 4). 

Proof of Theorem 1: Let D[O, 1] be the set of all real valued functions on the [0, 1]
interval that are right continuous and have left limits, and let .'/ denote the (J-field 
generated by the Skorohod metric on D[O, 1] (see Billingsley 1968, Chapter 3). A 
mappingffrom some probability space into D[O, 1] measurable with respect to '/ is 
then called a random element. This generalizes the conventional notion of a 
random variable, i.e. a mapping from a probability space into Euclidean space, to 
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infinite dimensions. A sequence J<T) of random elements is said to converge in 
distribution (or weakly) tof(in symbols:f(T) g f) if 

Pr 0T) E M) - Pr (fE M) 

for all ME 91 with boundary off-measure zero. This again generalizes the usual 
convergence concept for probability distributions on Euclidean spaces. 

Associated with each random element f(w) (where w is an element of the 
underlying probability space) is a stochastic process f(z), O~z~ 1, via 
f(z, w) = f(w)(z), where we often drop the explicit reference to w. Conversely, for 
every stochastic process f(z) whose trajectories are constant or constant on 
intervals, there exists exactly one such random elementf(w). Since we will only 
encounter processes of this type below, we will henceforth not distinguish between 
random elements and stochastic processes and drop the ~ -superscript. 

The following results are either well known or easily shown and will 
subsequently be used to establish weak convergence of certain random elements: 

Lemma 1 (Billingsley 1968, Theorem 4.1): LetJ<T) and g<T) be random elements in 
D[O, 1] such thatJ<T)!!.. fas T-oo and 

sup I f(T)(z) - g<T)(z) I ..!!. O. 
O::;;;z::;;;1 

Then g<T) converges also in distribution to f 

Lemma 2 (Ploberger and Kramer 1986): Let XI be random variables such that 

1 T 
- L x/..!!.c 
T 1=1 

for some constant c. Then 

sup - L XI - CZ .... 0 (a.s.). 1
1 Tz I 

O::;;;z::;;;1 T 1=1 

(21) 

(22) 

(23) 
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Now, for the proof of the theorem, consider the random element 

* 1 r(z) 
W(7)(z)=-.--- L 

(JVT-K r=K+1 

* 1 * W r = ---===- wr(z), 

VT-K 
(24) 

where r(z) = [K + (T - K)z] is the largest integer less than or equal to K + (T - K)z. 
The trajectories of the process (24) are constant on the half open intervals «n - 1)/ 

* (T- K),n/(T- K)] (n = 1, ... , T- K), so W(1) is indeed a random element inD[O, 1]. 
Moreover, the probability in (20) can now be expressed as 

( w(r) I ( r - K ) ) Pr max ~ 1+2-- ~a 
K<r;Ji,T v T - K T-K 

= Pr (max W(1)(z)/(l + 2z) ~ a). (25) 
O;Ji,r;Ji,1 

Since the boundary of the event {sup W(z)/(l + 2z) = a} has W-measure zero, 
O;Ji,z;Ji,1 

Theorem 1 therefore follows from 

W(7).!!. w. (26) 

The hard part is to establish (26). To this purpose, consider the random elements 

r(z) 

L Wr , 
r=K+1 

(27) 

where W r is defined similar to ~ r, but with the true y in place of y. The W r can be 
viewed as recursive residuals from the standard static model, so Wm.!!. Win view of 
Sen (1982), and (26) follows from 

sup 
O;Ji,z;Ji,1 

I W(1)(z) - w(1)(z) I !!.. ° 

and Lemma 1. 

(28) 
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For proof of (28), keep z initially fixed, let Q(I) = X(t)'X(t), and consider 

r(2) 

* -T) 1 ~ * W(T)(z)-W( (z)=-,--- £.J (wr-w r) 
aVT-K r=K+I 

1 r(z) , (I-I) -I I-I } 
- _L xl[Q ] ~ XsYs-I Igl' 
T I-K+I s-I 

It is easily seen that 

,~ (Y-y)=Op(l). 
a T-K 

(29) 

(30) 

We show next that the term in pointed brackets on the rightmost side of (29) tends 
to zero in probability (uniformly in z). This is done by considering the two sums 

T 

separately. As to the first, we have ( L YI- I ) IT!'. (1' c/(l- y), where 
I=K+! gl c = lim (L xl)/T is from (2), so 

r(z) 

1.- L YI-!!'. z(1'c/(l - y) 
T I=K+! gl 

(31) 

(uniformly in z) in view of Lemma 2. Along similar lines, we show now that the 
expression on the right of (31) is also the probability limit (uniformly in z) of the 
second sum. 

From t[Q(I-lr l - Qo! and 

(32) 
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we have 

(33) 

uniformly in z, where the uniformity of the convergence again follows from Lemma 
2. Now we need the assumption that there is a constant in the regression. Moreover, 
assume without loss of generality that the constant is the last regressor, and that 
Qo = h. This implies that the mean regressor c equals c = [0, ... ,0, 1]" and that the 
Qi (i = 1,2, ... ) are block diagonal with unity in the K, K-position. Therefore, the 
limit on the right hand side of(33) equals the limit on the right hand side of (31), and 
the term in pointed brackets on the rightmost side of (29) tends to zero in 
probability, uniformly in z. Since the term in front of the pointed brackets remains 
stochastically bounded, this in turn establishes (28) and the theorem. 

3 Finite Sample Null Distribution 

In view of Theorem 1, it does not matter asymptotically whether y is known or 
estimated, given the model is correct (no structural change). Kramer, Ploberger and 
Alt (1987) show in addition that the Dynamic CUSUM test is likewise valid in the 
model (I). Below we report briefly on some Monte Carlo experiments to explore 
which procedure approximates its nominal size better in finite samples. (Any choice 
between them must of course also rest on their relative power under alternatives, 
but this issue is outside the scope of the present paper.) 

Most experiments below were based on the model 

y, = 0.5Y,-1 + (-I)' + 1 + u, (1 = 1, ... , T), (34) 

where Yo=O, u,=nid(O, I), and with T equal to 30, 60, 120 and 1,000. The 
particular x-series was chosen to ensure condition (2), and for ease of comparison 
with similar experiments in Ploberger, Kontrus, and Kramer (1986). 

Table 1 reports the empirical rejection probabilities for nominal significance 
levels a equal to one, five and ten per cent, based on 1,000 independent replications 
(trials, runs). Under the heading of "static CUSUM test", we also give the results for 
the case where y = 0.5 is assumed known. This obviously amounts to the ordinary 
CUSUM test in the nonstochastic linear model. 
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Table 1. Monte Carlo estimates of finite sample significance levels 

T static C·-test 
1.0 5.0 10.0 

30 0.3 

60 0.1 

120 0.7 

1000 0.8 

2.7 

2.8 

3.7 

3.9 

6.8 

7.0 

6.8 

7.9 

significance level a (t, nominal) 

Dufour test 
1.0 5.0 10.0 

0.1 

0.3 

0.5 

1.0 

1.4 

2.2 

2.5 

4.6 

3.5 

5.4 

7.4 

9.5 

dynamic C·-test 
1.0 5.0 10.0 

0.3 

0.3 

0.4 

1.1 

2.8 

4.4 

3.0 

5.8 

6.0 

8.6 

7.5 

9.7 

Table 1 shows that the nominal size for all variants of the CUSUM test 
consistently overstates the true significance level, sometimes drastically so. 
Somewhat unexpectedly, the asymptotic approximation works better for the 
dynamic version than for the Dufour test. The gap between true and nominal size 
narrows as sample size increases, as predicted by our analytical results. 

We also investigated the robustness of these results to changes in the 
experimental design. Table 2 for instance reports empirical rejection probabilities 
for various alternative values of y, and for T= 120 (remaining design unchanged). 
These experiments show that the true size is fairly robust to changes in y in case of 
the Dynamic CUSUM test, but varies widely in case of the Dufour test, improving 
as y - - I and being completely off the mark as y --+ I. (There is no point in 
including the corresponding results for the Static CUSUM test, since its true 
rejection probability is the same for all y.) 

We found this volatility of the true size of the Dufour test also when varying the 
P parameters. As the proof of Theorem 1 shows, .this results from the form of the 
test statistic, which equals the test statistic of the Static CUSUM test, plus a 
remainder term that vanishes as T- 00. The correlation between these components 
depends on the underlying c5 vector. The size of the Dufour test is larger than the 
corresponding figure for the Static CUSUM test when this correlation is positive, 
and smaller when the correlation is negative. For some parameter combinations, 
the actual size of the Dufour test even surpassed the nominal size. 

The paper therefore ends on a rather unhappy note. Although the Dufour test 
turned out to be asymptotically valid irrespective of y (i.e. it is asymptotically both 
valid and similar), it exhibits extreme non-similarity and possible violations of size 
in finite samples. 



A Modification of the CUSUM Test 11 

Table 2. Empirical significance level for alternative ,'s 

a (nominal, ') 
y 

-.95 -.9 -.6 -.3 0 .3 .6 .9 .95 

a) Dufour Test 

1.0 0.5 0.7 0.3 0.7 0.5 0.7 

5.0 3.8 3.8 4.1 3.1 3.9 3.3 

10.0 8.7 8.4 7.4 8.2 7.7 6.9 

b) dynamic CUSUM Test 

.1.0 0.6 0.4 0.3 0.3 0.3 0.5 

5.0 2.9 3.3 3.3 2.8 3.1 3.4 

10.0 6.5 6.8 7.1 5.8 7.6 7.3 
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Heteroskedasticity-Robust Tests for Structural Change l 

By J. G. MacKinnon2 

Summary. It is remarkably easy to test for structural change, of the type that the classic For "Chow" test 

is designed to detect, in a manner that is robust to heteroskedasticity of possibly unknown form. This 

paper first discusses how to test for structural change in nonlinear regression models by using a variant 

of the Gauss-Newton regression. It then shows how to make these tests robust to heteroskedasticity of 
unknown form, and discusses several related procedures for doing so. Finally, it presents the results of a 

number of Monte Carlo experiments designed to see how well the new tests perform in finite samples. 

1 Introduction 

A classic problem in economerics is testing whether the coefficients of a regression 
model are the same in two or more separate subsamples. In the case of time-series 
data, where the subsamples generally correspond to different economic environ
ments, such as different exchange-rate or policy regimes, such tests are generally 
referred to as tests for structural change. They are equally applicable to cross
section data, where the subsamples might correspond to different groups of 
observations such as large firms and small firms, rich countries and poor countries, 
or men and women. Evidently there could well be more than two such groups of 
observations. 

The classical F test for the equality of two sets of coefficients in linear 
regression models is commonly referred to by economists as the Chow test, after the 
early and influential paper by Chow (1960). Another exposition of this procedure is 
Fisher (1970). The classic approach is to partition the data into two parts, possibly 
after re-ordering. The n-vector y of observations on the dependent variable is 
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Canada. I am grateful to Allan Gregory and Simon Power for helpful comments on an earlier draft. 

2 James G. MacKinnon, Department of Economics, Queen's University, Kingston, Ontario, Canada, 

K7L 3N6. 
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divided into an nl-vector YI and an nrvector Y2, and the n X k matrix X of 
observations on the regressors is divided into an nl X k matrix XI and an n2 X k 
matrix X2, with n = nl + n2. Thus the maintained hypothesis may be written as 

(1) 

where PI and fl2 are each k-vectors of parameters to be estimated. The null 
hypothesis to be tested is that PI = fl2 = p. Under it, (1) reduces to 

(2) 

In the usual case where both nl and n2 are greater than k, it is easy to construct a test 
of (2) against (1) by using an ordinary F test. The unrestricted sum of squared 
residuals from OLS estimation of (1) is 

(3) 

where M; == I - X;(Xr Xr I Xr for i = 1,2 denotes the n X n matrix which projects 
orthogonally off the subspace spanned by the columns of the matrix X;. The vectors 
MIYI and M2Y2 are the residuals from the regressions of YI on XI and Y2 on X2 

respectively. Thus USSR is simply the sum of the two sums of squared residuals. 
The restricted sum of squared residuals, from OLS estimation of (2), is 

(4) 

where Mx == 1- X(XTX)-l XT. Thus the ordinary F statistic is 

(yTMxY - YfMIYI - yIM2Y2)/k _ (RSSR - SSRI - SSR2)/k 

(YfMIYI + yIM2Y2)/(n - 2k) (SSRI + SSR2)/(n - 2k) . 
(5) 

This test statistic, which is what many applied econometricians refer to as the 
"Chow test", has k and (n - 2k) degrees of freedom because the unrestricted model 



Heteroskedasticity-Robust Tests for Structural Change 15 

has 2k parameters while the restricted model has only k. It will be exactly 
distributed as F(k, n - 2k) if the error turms u are normal and independent of the 
fixed regressors X, and k times it will be asymptotically distributed as X2(k) under 
much weaker conditions. 

The ordinary Chow test (5) has one obvious and very serious limitation. Like 
all conventional F tests, it is (in general) valid only under the rather strong 
assumption that E(uuT) = (J2 I. This assumption may be particularly implausible 
when one is testing the equality of two sets of regression parameters, since if the 
parameter vector P differs between two regimes the variance (J2 may well be 
different as well. A number of papers have addressed this issue, including Toyoda 
(1974), layatissa (1977), Schmidt and Sickles (1977), Watt (1979), Honda (1982), 
Phillips and McCabe (1983), Ohtani and Toyoda (1985), Toyoda and Ohtani (1986) 
and Weerahandi (1987). However, none of these papers proposes the very simple 
approach of using a test which is robust to heteroskedasticity of unknown form. 
The work of Eicker (1963) and White (1980) has made such tests available, and 
Davidson and MacKinnon (1985) have provided simple ways to calculate them 
using artificial regressions. In this paper I show how the results of the latter authors 
may be used to calculate several heteroskedasticity-robust variants of the Chow 
test. 

The plan of the paper is as follows. In Section 2 I discuss how to test for 
structural change in nonlinear regression models by using a variant of the Gauss
Newtonn regression. In Section 3 I then discuss ways to make the tests discussed in 
Section 2 robust to heteroskedasticity of unknown form. Finally, in Section 4, I 
present the results of some Monte Carlo experiments designed to see how well the 
new tests perform in finite samples. 

2 Testing for Structural Change in Nonlinear Regression Models 

Nonlinear regression models may seem unnecessarily complicated, but studying 
them makes it easier to see how to make Chow-type tests robust to heteroskedasti
city. Suppose that the null hypothesis is 

(6) 

where the regression functions x,(P), which may depend on exogenous and/or 
lagged dependent variables and on a k-vector of parameters p, are assumed to be 
twice continuously differentiable. The matrix X(P), with typical element 
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X(P) = ax{(p) 
II ap;' (7) 

will playa major role in the analysis. In the case of the linear regression model 
y = Xp+ U, X(P) is simply the matrix X. It is assumed that 

plim (n- I XT(P)X(P)) (8) 
n-OO 

exists and is a positive-definite matrix. 
For simplicity I shall assume that the sample is to be divided into only two 

groups of observations; extensions to the many-group case are obvious. We first 
define a vector 8= [61 ... 6nf, letting 6{ = 0 if observation t belongs to group I and 
6{ = I if observation t belongs to group 2. Note that it would be possible to let 6{ take 
on values between zero and one for some observations, which might be useful if it 
were thought that the transition between regimes was gradual rather than abrupt. If 
the null hypothesis is (6) the alternative hypothesis may be written as 

(9) 

Thus the regression function is X{(PI) if 6{ = 0 and X{(P2) if 6{ = 1. 
The alternative hypothesis HI can be rewritten as 

(10) 

where y= /h - PI. This makes it clear that Ho is equivalent to the null hypothesis 
that y= O. Since the latter is simply a set of zero restrictions on the parameters of a 
nonlinear regression function, we can use a Gauss-Newton regression to test it; see 
Engle (1982 b) or Davidson and MacKinnon (1984). The Gauss-Newton regression, 
or GNR, for testing Ho against HI is easily seen to be 

(11) 

where P denotes the nonlinear least squares (NLS) estimates of P for the whole 
sample. 
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The GNR (11) may be written more compactly as 

u = Xb + b * Xc + errors, ( 12) 

where u is an n-vector with typical element YI- XI([J) and X is an n X k matrix with 
typical row x/iJ). Here" *" denotes the direct product of two matrices, a typical 
element of b * X being 6IX I;([J), so that b * XI equals XI when 61 = 1 and 0 when 
61 = O. Thus we can perform the test by estimating the model using the entire sample 
and regressing the residuals on the matrix of derivatives X and on the matrix b * X, 
which is X with the rows which correspond to group 1 observations set to zero. 
There is no need to reorder the data. Several asymptotically valid test statistics can 
then be computed, including the ordinary F statistic for the null hypothesis that 
c=O. In the usual case where k is less than min(n"n2), it will have k degrees of 
freedom in the numerator and (n - 2k) degrees of freedom in the denominator. 

Unlike the ordinary "Chow test" (5), this procedure is applicable even if 
min (n" n2) < k. Suppose, without loss of generality, that n2 < k and n, > k. Then 
the matrix b * X, which has k columns, will have n2 < k rows which are not just 
rows of zeros, and hence will have rank at most n2. When equation (12) is estimated, 
at most n2 elements of c will be identifiable, and the residuals corresponding to all 
observations which belong to group 2 will be zero. Thus the degrees of freedom for 
the numerator of the F statistic, which is equal to the rank of [X b * X] minus the 
rank of X, must be at most n2. The degrees of freedom for the denominator will 
normally be n, - k. Note that when XI(P) = XIPand min (n" n2) > k, the Ftest based 
on the GNR (12) is numerically identical to the "Chow test" (5). This follows from 
the fact that the sum of squared residuals from (12) will then be equal to 
SSR, + SSR2, the sum of the SSR's from estimating the regression separately over 
the two groups of observations. 

It may be of interest to test whether a subset of the parameters of a model, 
rather than all of the parameters, are the same over two (or more) subsamples. It is 
easy to modify the tests already discussed to deal with this case. The null and 
alternative hypotheses can now be written as 

(13) 

and 

(14) 
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where a is an I-vector of parameters which are assumed to be the same over the two 
subsamples and P is an m-vector of parameters the constancy of which is to be 
tested. The Gauss-Newton regression is easily seen to be 

it = Xaa + Xpb + ~ * Xpc + errors. (15) 

where Xa is an n X I matrix with typical element axr( a, P)/ aai and Xp is an n X m 
matrix with typical element aXr(a,p)/aPj, both evaluated at the estimates (ll,P) 
from (13). One would then use the F statistic for c = 0, which if m < min (n], n2) will 
have m and (n-I-2m) degrees of freedom. 

There are several asymptotically equivalent test statistics which may be 
calculated from the artificial regression (12). They all have the same numerator, 
which is the explained sum of squares from that regression. The denominator may 
be anything which consistently estimates a2, and if the statistic is to be compared to 
the F(k, 2n - k) rather than the X2(k) distribution, it must first be multiplied by 
(n - 2k)/k. If we let Z denote ~ * X, then the numerator of all the test statistics is 

(16) 

where Mx == 1- X(XTi)-1 XT. What may be the best of the many valid test statistics 
is the ordinary F statistic for c = 0 in (12), which is 

itTMxZ(ZTMxi)-1 ZTMxit/ k 
itTM,:zit/(n - 2k) 

( 17) 

where Mx: z is the matrix which projects orthogonally off the subspace spanned by X 
and Z jointly. Expression (17) is just (n - 2k)/k times the explained sum of squares 
from (12) divided by the sum of squared residuals from (12). 

Rewriting expression (16) so that all factors are 0(1), we obtain 

(18) 

This expression is a quadratic form in the vector 

(19) 
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Standard asymptotic theory tells us that this vector is asymptotically normally 
distributed with mean vector zero and covariance matrix 

a2 plim (n-1Z™xZ). (20) 
n-OO 

The middle matrix in (18), times anything which consistently estimates a2, provides 
a consistent estimate of (20). Thus (18), divided by anything which consistently 
estimates a2, must be asymptotically distributed as X2(k). 

The key point which emerges from the above discussion is that every test 
statistic based on the GNR (12) is actually testing whether the k-vector (19) has 
mean zero asymptotically. Under relatively weak assumptions this vector will be 
asymptotically normal, since it is essentially a weighted sum of n independent 
random variables (the elements of the vector u). Under the much stronger 
assumption ofhomoskedasticity, its asymptotic covariance matrix will be given by 
(20), which allows us to use tests based on the GNR. Without this assumption, we 
will still be able to compute test statistics as quadratic forms in n- 1/ 2 ZTMJI and 
expect them to be asymptotically distributed as X2(k), provided that we can 
somehow obtain an estimate of the asymptotic covariance matrix of n -1/2 ZTM.;u 
which is consistent in the presence of heteroskedasticity. How this may be done is 
discussed in the next section. 

3 Heteroskedasticity-Robust Tests 

We are now ready to drop the often implausible assumption that E(uuT) = a21. 
Instead, we shall assume initially that 

E(uul) = fl, QI/ = a;, Qts = 0 for t =1= s, 0 < at < amax . (21) 

Thus the covariance matrix of the error terms u, fl, is assumed to be an n X n 

diagonal matrix with a; as its t-th diagonal element. Except that at is assumed to be 
bounded from above by some possibly very large number amax , we are not assuming 
that anything is known about the a;'s. These assumptions admit virtually any 
interesting pattern of heteroskedasticity, including autoregressive conditional 
heteroskedasticity (ARCH errors; see Engle 1982a), since there is nothing which 
prevents a; from depending on variables which affect xr(P). They do however rule 
out serial correlation or any other sort of dependence across observations. 
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Under the assumptions (21), it is easy to see that the asymptotic covariance 
matrix of the vector (19) is 

plim (n-1ZTMxfJMxZ). (22) 
n- OG 

It is in general not possible to estimate fl, an n X n matrix which in this case has n 
non-zero elements, consistently. However, by a slight modification of the 
arguments used by White (1980), one can show that the matrix 

(23) 

consistently estimates (22), where Q is an n X n diagonal matrix with a; as the t-th 
diagonal element, and the diagonal elements a; have the property that 

a; - (J; + D, as n - 00. (24) 

Here D, is a random variable which asymptotically has mean zero and finite 
variance and is independent of X and Z. There are many choices for a;, of which the 
simplest is it;, the square of the t-th residual from the initial NLS estimation 
of Ho. . 

Combining (19) and (23), we obtain the family of test statistics 

(25) 

Since n- I/ 2ZJMxu is asymptotically normal with covariance matrix (22) and the 
matrix (23) consistently estimates (22), it is clear that (25) will be asymptotically 
distributed as X2(k) under Ho. As shown by Davidson and MacKinnon (1985), 
variants of (25) can be computed by means of two different artificial regressions. 
The most generally applicable of these is 

itT/aT = a,(MxZ),C + error. (26) 

The explained sum of squares from regression (26) is the test statistic (25). The inner 
product of the regressor matrix with itself is ZTMxQMxZ, while its inner product 
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with the regressand is uTMxZ. The latter expression does not involve the Gt's 
because the G/ which multiplies each of the regressors cancels with the II G/ which 
mUltiplies the regressand. For regression (26) to be computable, G/ must never be 
exactly equal to zero, since if it were the regressand would be undefined; this 
problem can be avoided in practice by setting G/ to a very small number whenever it 
should really be zero. 

If u; is used for G;, and it is probably the most natural choice, an even simpler 
artificial regression is available. It is 

I = fJMxZc + errors, (27) 

where I is an n-vector of ones and fJ is an n X n diagonal matrix with u/ as the t-th 
diagonal element. The explained sum of squares from (27) is 

(28) 

The vector I TfJ is simply uT, and the matrix fJTfJ is simply .Q with u~ being used for 
G~, so that (28) is just a special case of (25). The artificial regression (27) is very easy 
to compute. The regressand is a vector of ones. Each of the regressors is the vector 
of residuals from a regression of Z on X, each element of which has been multiplied 
by the appropriate element of u (to see this, observe that fJMtZ= u * MrZ). Thus 
one simply has to perform k + I linear regressions. Since k of them involve the same 
set of regressors (the matrix i), the computational burden (given appropriate 
software) is only moderately greater than that of performing two linear regressions. 

There are other choices for G; besides u;. One that was proposed in the context 
of heteroskedasticity-consistent covariance matrix estimators (HCCME's) for 
linear regression models by MacKinnon and White (1985) is 

··2 -2/(M-) (J/ = U/ x II, (29) 

where (MJII denotes the t-th diagonal element of the matrix Mx. The reason for 
using (29) is that in the case of a linear regression model with homoskedastic 
residuals, it provides an unbiased estimate of (J; (= (J2), correcting the tendency of 
squared residuals to be too small. 

In the context of testing for structural change, assumptions (21) may seem 
more unrestrictive than is needed. What has traditionally worried econometricians 
about the ordinary F test is not the possibility that there may be heteroskedasticity 
of unknown form, but the possibility that the variance of the error terms may 
simply be different in the two sub-samples. It is easy to derive a version of (25) 
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which allows only for this possibility. First, estimate the model over each ofthe two 
groups of observations, obtaining sums of squared residuals SSR1 and SSR2 
respectively. Then make the definitions: 

• ( SSR1 )1/2 . ( SSR2 )1/2 
0'1 = and 0'2 = , 

nl - k n2 - k 
(30) 

and let at = al for all observations where ()t = 0 and at = a2 for all observations 
where ()t = 1. Now run regression (26) using the ar's so defined. The explained sum 
of squares from this regression will have the form of (25), and will clearly provide an 
asymptotically valid test statistic if in fact group I observations have variance a1 
and group 2 observations have variance 01. Of course, if one is willing to make the 
assumption that the variance is constant over each of the sub-samples, various 
other procedures are available; see layatissa (1977), Weerahandi (1987), Watt 
(1979), Honda (1982) and Ohtani and Toyoda (1985), among others. 

4 Finite-sample Properties of the Tests 

The tests suggested in the previous section are valid only asymptotically. If they are 
to be useful in practice, their known asymptotic distributions must provide 
reasonably good approximations to their unknown finite-sample distributions. In 
this section I report the results of several Monte Carlo experiments designed to 
investigate whether this is so. For obvious reasons, attention is restricted to the case 
of linear regression models. Experiments were run for samples of sizes 50, 200 and 
800, with nl equal to ()n, () being either 0.5 or 0.2, and with 0'1 variously equal to 0'2, 

four times 0'2 or one quarter of 0'2. In all experiments there were four regressors 
including a constant term. The X matrix was initially chosen for a sample of size 50 
and replicated as many times as necessary as the sample size was increased, so as to 
ensure that the matrix n -I XTX did not change. The regressors were a constant, the 
Canadian 90-day treasury bill rate, the quarterly percentage rate of change in real 
Canadian GNP, seasonally adjusted at annual rates, and the exchange rate between 
the Canadian and U.S. dollars, in Canadian dollars per U.S. dollar, all for the 
period 1971:3 to 1983:4. 

Choosing the X matrix in this way makes it easy to see how the sample size 
affects the results. However, it may make the performance of the heteroskedastici
ty-robust (HR) tests appear to be unrealistically good in moderately large samples. 
As Chesher and lewitt (1987) have shown, the values of the few smallest diagonal 
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elements of Mx can have a very big impact on the finite-sample performance of 
HCCME's. Replicating the X matrix as the sample size is increased ensures that all 
diagonal elements of Mx approach one at a rate proportional to lin, so that once n 
becomes large the HR tests are bound to perform reasonably well. With real data 
sets, one would certainly expect the smallest elements of Mx to approach one as n 
tends to infinity, but possibly at a rate much slower than l/n, thus implying that the 
HR tests might perform less well for larger samples than these experiments suggest. 
In the experiments, the smallest elements of M.r were 0.7965 for n = 50, 0.9491 for 
n = 200 and 0.9873 for n = 800. 

The four test statistics that were computed in the course of the experiments 
were the following: 

I. The ordinary Ftest, expression (5), which is valid only under homoskedasticity. 
It will be denoted F. 

2. The heteroskedasticity-robust test statistic (28), based on the artificial 
regression (27). It will be denoted HR I. 

3. A heteroskedasticity-robust test statistic like (25), in which at defined by (29) is 
used in place of id. This statistic, which will be denoted HR2, is somewhat 
harder to compute that HR I. 

4. A test statistic with the form of (25), but where at is either 0"1 or 0"2, where the 
latter were defined in (30). This statistic, which will be denoted 2V (for two 
variances) will be asymptotically valid under much less general assumptions 
than HRI and HR2. 

The results of the Monte Carlo experiments are presented in Tables I and 2. Table 1 
contains results for 18 experiments where the null hypothesis that PI = /h was 
correct. The percentage of the time that each test rejected the null hypothesis at the 
nominal I %,5% and 10% levels is shown in the table. These numbers should thus 
be very close to 1.0, 5.0 and 10.0 if the tests are behaving in finite samples as 
asymptotic theory says they should. 

In the first group of experiments, the variance in the two subsamples was equal. 
The ordinary Ftest is thus completely valid, and, as we would expect, the rejection 
frequencies for the F test were indeed very close to what they should be. All the 
other tests performed reasonably well when 0"1 = 0"2. However, HRI and HR2 
tended to under-reject, especially for () = 0.2 (when nl was one-quarter the size of 
n2), while 2 V tended to over-reject somewhat. The performance of all tests 
improved sharply with the sample size, and one could feel confident about using 
any of them for n ~ 200. 

In the second group of experiments, 0"2 was four times as large as 0"1. The F test 
was therefore no longer valid, but it continued to perform quite well for () = 0.5. 
However, it rejected the null far too infrequently for () = 0.2. The two HR tests 
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Table 1. Rejection Frequencies when the Null Hypothesis is True 

n (/',/02 9 Test Rejection Frequencies 
9 Test Rejection Frequencies 

IX 5X lOX IX 5X lOX 

50 111 .5 F 1.10 5.15 10.30 .2 F 0.70 4.65 9.85 
HR, 0.45 5.00 10.30 HR, O.oot 0.70t 5.10t 
HRz 0.25t 3.00t 8.05- HRz O.oot 0.25t 2.40t 
2V 2.60t 7.30t 13.05t 2V 6. lOt 12.90t 19.00t 

200 111 .5 F 1.05 4.85 10.25 .2 F 1.35 5.90 9.95 
HR, 0.55 4.50 9.65 HR, 0.55 3.75 9.70 
HRz 0.55 4.25 9.10 HRz 0.55 3.55 8.90 
2V 1. 30 5.30 11. 00 2V 2.25t .7. sst 11.80· 

800 111 .5 F 1.25 5.30 10.40 .2 F 1.25 5.30 10.30 
HR, 1. 15 5.45 10.05 HR, 0.95 5.00 9.85 
HRz 1.10 5.45 9.90 HRz 0.95 4.85 9.60 
2V 1. 35 5.40 10.50 2V 1. 20 5.60 10.70 

50 114 .5 F 2.65t 7. lOt 11.80· .2 F O.oot 0.10t 0.15t 
HR, 0.60 4 45 11. 70 HR, O.oot 0.25t 0.80t 
HRz 0.15t 2.70t 7.80t HRz O.oot 0.10t 0.55t 
2V 2. sot 7. sot 13.80t 2V 3.70t 9.60t 14.75t 

200 114 .5 F 2.35t 8.35t 12.60t .2 F O.oot 0.15t 0.30t 
HR, 1.20 5.45 10.80 HR, 0.25t 1. 90t 5.65t 
HRz 0.95 5.05 10.40 HRz 0.20t 1.65t 5.30t 
2V 1.60· 6.60· 11. 95· 2V 1.65· 6.05 11. 55 

800 1/4 .5 F 1.80t 5.35 10.10 .2 F O.oot 0.05t 0.15t 
HR, 1.00 4.85 10.10 HR, 0.75 4.05 7. sst 
HRz 1. 00 4.70 10.00 HRz 0.75 3.95 7.35t 
2V 1.20 5.25 9.90 2V 1. 45 5.75 9.60 

50 4/1 .5 F 2.45t 8.70t 13.90· .2 F 47.45t 63.70t 70. sot 
HR, 0.60 4 95 11.15 HR, 0.90 7.40t 16.05t 
HRz 0.20t 3.05t 7.75t HRz 0.40· 4.90 11. 60 
2V 2.45t 7.45t 12.40t 2V 9. 1St 16. 1St 22.20t 

200 4/1 .5 F 2.70t 8.05t 12.95t .2 F 38.70t 56.70t 64.90t 
HR, 1. 10 4.90 10.30 HR, 1.25 5.30 10.40 
HRz 0.95 4.60 9.75 HRz 0.90 4.50 9.70 
2V 1. 50 5.90 11.35 2V 2.30t 6.65t 11. 95· 

800 4/1 .5 F 2.40t 7.60 12.60 .2 F 39.05t 55.60t 65. 1St 
HR, 0.65 4.35 10.25 HR, 1.00 5.75 10.60 
HRz 0.65 4.35 10.05 HRz 0.95 5.45 10.50 
2V 0.80 4.65 9.90 2V 0.95 5.55 10.85 

Notes: All results are based on 2,000 replications. 

* and t indicate that the quantity in question differs significantly at the O.oJ and 0.001 level respectively 
from what it should be if the test statistic were distributed as X2( 4) or F( 4, n - 8). 

performed reasonably well for 0=0.5, but also grossly under-rejected for 0=0.2. 
Even for n = 800, they tended to reject too infrequently in the latter case. The 2 V test 
over-rejected quite severely for n = 50 and moderately for n = 200, but performed 
very well for n = 800. The third group of experiments was similar to the second, 
except that 0"1 was now four times as large as 0"2. This changed many results 
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dramatically. The F test continued to perform surprisingly well for () = 0.5, but 
rejected the null far too often for () = 0.2. The two HR tests generally performed 
well, although they over-rejected somewhat when n = 50. The 2 V test continued to 
over-reject quite severely when n = 50 and moderately when n = 200. 

From Table I two conclusions emerge. First, the two HR tests generally 
perform quite well, but usually tend to under-reject. There is thus no reason to 
prefer HR2 to the simpler HR 1; the former simply under-rejects more severely in 
most cases. Nevertheless, there are evidently some cases where HR1 can seriously 
over-reject, at least for small samples, so that routine use of this test as if it were an 
exact test is not justified. Secondly, the 2 V test performs very well in medium and 
large samples but tends to over-reject in smaller ones. Its good performance in 
reasonably large samples makes sense, because it would be an exact test if 0-1 and 0-2 
were replaced by a1 and a2. Provided that both n1 and n2 are reasonably large, 0-1 
and 0-2 will provide good estimates of a1 and a2, and hence it is not surprising that 
the test performs well. Of course, in these circumstances the Wald test examined by 
Watt (1979), Honda (1982) and Ohtani and Toyoda (1985), which also uses the 
estimates 0-1 and 0-2, might well perform even better. 

Table 2 presents results for 18 experiments where the null hypothesis was false. 
The parameters were chosen so that for the case where a1 = a2 and () = 0.5, the Ftest 
would reject the null roughly half the time. The difference between P1 and /h was 
made proportional to n- 1/ 2 so that there would be no tendency for the rejection 
frequencies to increase with the sample size. What should happen under this 
scheme as n ~ 00 is that all tests which are asymptotically equivalent will tend to the 
same random variable, and thus reject the null the same fraction of the time. The 
results in Table 2 largely speak for themselves. Once again, the 2V test performs 
well. It performs quite similarly to HR1 and HR2 in most cases for n = 800, but 
generally rejects the null more frequently for smaller sample sizes. 

The limited Monte Carlo experiments reported on here certainly do not 
provide a definitive study of heteroskedasticity-robust tests for structural change. 
For example, no attempt was made to study the effect of combining the ordinary F 
test with the 2 V test by first doing a pretest of the hypothesis that a1 = a2 (see 
Phillips and McCabe 1983 or Toyoda and Ohtani 1986). Such a strategy seems 
appealing, and would presumably produce results somewhere between those for F 
and 2 V, depending on the significance level of the pretest. There was also no 
attempt to quantify the size-power tradeoffs of the various tests, although how 
useful such an exercise is when size is not known in practice is unclear. 

The most substantial omission is that the undoubtedly very complex relation
ships between test performance, the number of regressors and the structure of the X 
matrix were not studied at all. To do so would be a major undertaking, because it 
seems unlikely that Monte Carlo evidence alone, without a strong theoretical 
framework based on work like that of Chesher and lewitt (1987), would allow one 
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Table 2. Rejection Frequencies when the Null Hypothesis is False 

n 0',/0'2 9 Test Rejection Frequencies 
9 Test Rejection Frequencies 

.1r. 5r. lOr. 1r. 5r. lOr. 

50 1/1 .5 F 22.40 45.60 59.05 .2 F 16.70 38.65 52.35 
HR, 10.65 39.00 56.70 HR, 0.25 8.00 23.15 
HR2 5.65 29.40 47.90 HR2 0.15 3.60 13.75 
2V 30.45 52.80 63.70 2V 31.45 47.85 58.00 

200 1/1 .5 F 26.00 50.20 62.20 .2 F 20.55 41. 50 54.60 
HR, 23.65 48.50 61. 05 HR, 9.80 31. 85 47.60 
HR2 22.45 46.55 59.70 HR2 8.90 30.25 45.55 
2V 28.05 51. 30 63.10 2V 23.65 43.90 56.30 

800 1/1 .5 F 26.80 51. 25 64.60 .2 F 21. 60 42.55 55.05 
HR, 26.40 51.20 64.15 HR, 18.05 40.20 53.50 
HR2 25.70 51. 05 63.95 HR2 17.40 39.75 53.20 
2V 27.25 51. 35 64.80 2V 22.00 42.10 56.00 

50 1/4 .5 F 23.50 43.90 56.55 .2 F 0.95 5.45 12.10 
HR, 11. 90 39.40 57.85 HR, 0.00 3.20 19.15 
HR2 6.40 29.85 48.95 HR2 0.00 1. 10 9.45 
2V 36.55 57.35 69.50 2V 52.05 72.45 80.55 

200 1/4 .5 F 25.70 46.65 58.05 .2 F 0.85 5.95 12.90 
HR, 24.95 51. 05 64.95 HR, 15.50 45.60 63.15 
HR2 23.70 49.20 63.65 HR2 14.60 42.80 61.10 
2V 31. 90 56.15 67.40 2V 47.75 71. 50 80.10 

800 1/4 .5 F 24.80 44.90 57.45 .2 F 0.95 6.50 14.20 
HR, 28.80 52.25 65.80 HR, 37.10 65.30 76.95 
HR2 28.50 51. 90 65.50 HR2 36.85 64.70 76.65 
2V 30.95 53.40 66.30 2V 47.50 71. 10 80.40 

50 4/1 .5 F 24.35 47.55 61.60 .2 F 78.30 88.70 92.45 
HR, 19.95 55.50 73.35 HR, 2.35 19.30 36.90 
HR2 11.95 44. 10 65.10 HR2 1. 05 11. 60 27.50 
2V 47.95 69.85 80.25 2V 26.25 40.05 48.95 

200 4/1 .5 F 26.20 51. 70 63.25 .2 F 76.15 86.30 89.80 
HR, 39.50 66.05 77.55 HR, 9.25 29.20 42.60 
HR2 37.50 64.35 76.25 HR2 8.15 27.50 41. 25 
2V 46.55 69.75 79.00 2V 17.10 33.25 44.60 

800 4/1 .5 F 28.80 51. 70 64.00 .2 F 75.75 85.75 90. 15 
HR, 44.55 69.00 79.75 1m, 13.45 30.55 43.60 
HR2 44.20 68.70 79.50 HR2 13. 15 30.30 43.05 
2V 45.55 69.70 79.95 2V 14.85 32.50 43.25 

Note: All results are based on 2,000 replications. 

to say anything interesting about those relationships. Nevertheless, a few fairly 
strong results do seem to emerge from the Monte Carlo experiments. These are: 

1. There seems to be no reason to use HR2 instead of the simpler HR I. 

2. Since HRI never seriously over-rejects at the 1 % level, one should probably 
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view an HR, statistic which is significant at the 1 % level as providing quite 
strong evidence against the null hypothesis. 

3. The 2 V test performs very well in medium and large samples, although it over
rejects somewhat in small samples. It generally has more power than the HR 
tests. 

5 Conclusion 

This paper has shown that it is remarkably easy to test for structural change in a 
fashion which is robust to heteroskedasticity of unknown form. The tests can also 
be modified so that they are robust only to a more structured form of 
heteroskedasticity in which the variance differs between the two subsamples, 
although since numerous other solutions to this simpler problem are available, this 
modification may be of limited interest. The new tests are asymptotically valid for 
both linear and nonlinear regression models. Monte Carlo evidence for the linear 
case suggests that, although the finite-sample performance of even the best tests is 
sometimes poor, the ordinary F test can be so misleading that it clearly makes no 
sense to ignore the possibility of heteroskedasticity when testing for structural 
change. At the very least one should double-check the results of the F test by using 
one of the tests discussed in this paper. 
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A Switching Regression Model with Different Change-Points 
for Individual Coefficients and its Application 
to the Energy Demand Equations for Japan1 

By T. Toyoda2 and K. Ohtani3 

Abstract: In this paper, we set up a switching regression model in which individual coefficients are 

allowed to shift at different change-points. We also apply it to the energy demand equations and 

examine structural change in the demands for total fuel oil and for light oil and kerosene at the second oil 

crisis. It is shown that assuming the different change-points for individual coefficients yields more 
plausible results than assuming the same change-point for all coefficients. 

1 Introduction 

Since Quandt (1958) proposed a switching regression model, the model has often 
been used to detect a structural change-point in some economic equations. Based 
on the switching regression model, for example, Stern/Baum/Greene (1979) 
studied structural change in the aggregate import and export demand equations for 
the United States and Boughton (1981) studied structural change in the demand 
equation for money. 

From the theoretical and practical viewpoints, the switching regression model 
has been extended to some directions. For example, Salazar/Breomeling/Chi 
(1981) and Ohtani (1982) considered the switching regression model when the 
error terms are autocorrelated. Also, Bacon/Watts (1971), Tsurumi (1980) and 
Katayama/Ohtani/Toyoda (1987) considered the switching regression model when 
the change in regression coefficients occurs gradually. 
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3SQ, England, and Faculty of Economics, Kobe University, Nada-ku, Kobe 657, Japan. 

) Kazuhiro Ohtani, Faculty of Economics, Kobe University, Nada-ku, Kobe 657, Japan. 
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Although the switching regression models studied so far assume that all 
coefficients shift at the same change-point, the change-point may be different 
among the regression coefficients in some practical situations. The first purpose of 
this paper is to set up a switching regression model in which individual coefficients 
are allowed to shift at the different change-points. 

As an application of the gradual switching regression model, Ohtani/ 
Katayama (1985) examined structural change at the first oil crisis in the energy 
demand equation for Japan which is explained both by the relative price and 
economic activity variables. Although Toyoda/Ohtani/Katayama (1987) exami
ned structural change in the same-type energy demand equations for Japan both at 
the first and second oil crises, we used no formal methods to detect change-points. 
Namely, we selected some plausible change-points by conjecture, and conducted 
the Chow test proposed by Chow (1960) and the Wald test proposed by Watt 
(1979). In the process of our study in Toyoda/Ohtani/Katayama (1987), we found a 
strong evidence that the individual coefficients for the explanatory variables, i.e., 
the relative price and an economic activity variable, might shift at different time
points. This evidence has motivated us to our second purpose of this paper, i.e., to 
examine and estimate change-points of individual coefficients in some energy 
demand equatIOns for Japan. It is shown that assuming the different change-points 
for individual coefficients yields more plausible results than assuming the same 
change-point for all coefficients. 

2 The Different Change-Points Model 

Consider a switching regression model 

Ie 

YI = L (Pi + Ail6JXil + f.{, (1) 
i=\ 

where, for t = 1,2, ... , T, YI is the I-th observation on the dependent variable, XiI is the 
t-th observation on the i-th independent variable, Ail is the dummy variable defined 
as 

Ail = 0 for t ~ Ii, 
(2) 

Ail = 1 for 1>li, 
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and E{ is the error term which is normally and independently distributed with zero 
mean and constant variance (72 (i.e., E{ ~ NID(O, (72». Although it may be possible to 
allow the error variance also shift between two regimes as in, e.g., Quandt (1958), 
we rather prefer simplicity to complexity as our first approach to the present new 
problem, i.e., we assume that it remains constant over the whole period. 

Defining Ai{ as in (2) means that the i-th coefficient shifts from Pi to Pi + 6i at an 
unknown change-point If (k ~ If ~ T- k). If we assume that all It's are the same 
(i.e., If = Ii = ... = Ii), the switching regression model defined in (I) and (2) (say, 
the different change-points model) reduces to the traditional switching regression 
model that all coefficients shift at the same change-point (say, the same change
point model). If we have prior knowledge that the j-th coefficient does not shift, the 
prior knowledge can be utilized by putting 6i = ° with appropriate adjustment of 
the number of the independent variables. 

Denoting 

YI 

Y2 Xl2 ••• Xk22 ,1,12XI2 .•• ,1,k2xk2 

y*= ,X*= 

the model (I) and (2) can be rewritten in the matrix form as 

y* = X*() + E; E ~ N(O, (72h). (3) 

Note that X* depends on the vector of change-points, t* = (tf, ti, ... tt), through 
the dummy variables Ait'S (i= 1,2, ... , k). 

The log-likelihood function for (3) is 

L(t*, (), (72) = -(TI2) log 2n - (TI2) log (72 - (y* - X*()),(y* - X*()/2(72. (4) 



32 T. Toyoda and K. Ohtani 

Differentiating (4) with respect to () and (72, and equating the resultant equations to 
zero, we obtain the conditional maximum likelihood (ML) estimates of () and (72 

given t*: 

e* = (X*'X*)-'X*'y*, (5) 

(6) 

Substituting (5) and (6) into (4), we obtain the concentrated log-likelihood 
function: 

Lmax(t*) = -(TI2)(1 + log 2n:) - (TI2) log &*2. (7) 

Since Lmax(t*) depends on t* only, the ML estimate of t* can be obtained by a grid 
search over the region k -;;;;, tt -;;;;, T- k (i = 1,2, ... , k). 

The likelihood ratio test for stability of coefficients cannot be conducted, since 
tt's are defined as integer values (e.g. , Johnston 1984, p. 409). However, the change 
in the i-th coefficient (i.e., Pi) can be tested by conducting a conditional test for the 
null hypothesis, Ho: 6i = 0, given the ML estimates of tt's. 

3 Structural Change in the Energy Demand Equations for Japan 

Applying the different change-points model set up in the previous section, we 
examine structural change in the demand equations for total fuel oil and for light oil 
and kerosene in Japan before and after the second oil crisis. Note that a large 
component of total fuel oil is heavy oil and it is used mainly in the industrial sector 
(i.e., about 55% in 1985) while a considerable part of light oil and kerosene is 
consumed in the household sector (i.e., about 87% used in the non-industrial sector 
in 1985). 

The model we adopt here is a partial adjustment demand equation, which is 
most popular in studies in this area. It is simple but valuable in allowing for 
instantaneous and non-instantaneous demand adjustments to price and income (or 
an economic activity level). Our model is specified as 

(8) 
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Fig. I. Behaviours of the demand for total fuel oil (EI), its relative price (PI) and real GOP (YI ) 

where, at the time-point t, EI is the energy demand, PI is the relative price of energy 
to the general price, YI is the real income (real GOP), E I - I is the energy demand 
lagged one period and [;1 is the error term distributed as NIO(O, 0-2). The estimates of 
coefficients P2 and P3 are the estimates of short-run (instantaneous) price and 
income elasticities, respectively. These estimates multiplied by 1/(1 - P4) are the 
long-run estimates of the same elasticities. 

The data used in our study are seasonally adjusted quarterly data for Japan 
from the first quarter of 1976 (1976:Ql) to the fourth quarter of 1985 (1985:Q4). 
See Appendix for their sources and definition of the variables. Figures I and 2 show 
the behaviours of the variables used in this study. From the figures, it seems that the 
demand for total fuel oil has had a declining tendency after the second oil crisis (i.e., 
after around 1979-1980), but the demand for light oil and kerosene has had an 
increasing tendency except for the period 1979-1983 when the demand remained 
unchanged or rather slightly decreased. Converting the basic energy demand 
equation given in (8) into the different change-points model given in (1) and (2), we 
estimated the change-points and other parameters of the demand equations for 
total fuel oil and for light oil and kerosene. For comparison, we also estimated the 
change-points and other parameters of the energy demand equations based on the 
traditional same change-point model. The estimation results are shown in Tables I 
and 2. The estimates of the change-points are also shown by the vertical lines in 
Figs. I and 2. Note that if the coefficient bi for each independent variable is 
significantly different from zero, the coefficient Pi significantly shifts from Pi to 
Pi + bi. Since the change-points in the different change-points model vary with the 
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Fig. 2. Behaviours of the demand for light oil and kerosene (£,), its relative price (P,) and real GOP (Y,) 

Table 1. Estimation results for total fuel oil 

Model Const. P. Y. I!.-I 'i" (J D. Y. 

Salle t· 1983:4 0.947 0.025 2.830 
change-polnt 

R 3.764 -0.084 -0.045 0.706 
(2. 60) (-3.08) (-0.56) (9.11) 

(] 57.292 -0.635 -3.149 -1.686 
(5.03) (-1.74) (-4. 50) (-5.69) 

R+{] 61.056 -0.719 -3.194 -0.980 

Different t· 1982: 1 1983:4 1984: 1 1982:1 0.945 0.025 2.583 
change-po i n ts 

R 4.082 -0.080 -0.045 0.677 
(2. 63) (-2.68) (-0.51) (5.97) 

(] 7.669 0.202 -0.010 -0.716 
(3.50) (4.24) (-4.50) (-3.52) 

R+{] 11.751 0.122 -0.055 -0.039 

Notes: Values in parentheses are I-values. RZ is the coefficient of determination adjusted by 
degrees of freedom. O. W. is the value of the Ourbin-Watson ratio. 
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Table 2. Estimation results for light oil and kerosene 

Model Const. p, y, E,ol R" C1 D. W. 

Sue t· 1983:4 0.772 0.037 2.206 
change-po i n t 

P -0.582 -0.110 0.666 0.200 
(-0.40) (-2. 96) (3.76) (1. 23) 

II 36.814 -0.654 -2. 271 -0.889 
(2.41) (-I. 31) (-2. 16) (-2.08) 

P+ll 36.232 -0.764 -1.605 -0.689 

Different t' 1979:2 1983:2 1979: 2 1977: 1 0.834 0.031 2.176 
change-points 

P -12.339 -0.070 1. 904 -0.131 
(-3.21) (-1.34) (5.35) (-0.92) 

II 21. 557 0.151 -1.783 -0.009 
(4. 44) (3.89) (-4.43) (-2.74) 

P+ll 9.218 0.081 0.121 -0.140 

Notes: The same as in Table I. 

Table 3. Short- and long-run elasticities of price and income 

Short-run Long-run 

Energy Model Period p, y, E'ol p, y, 

Tota.l Sue 1976:QI-1983:Q4 -0.084 -0.045 0.706 -0.286 -0.153 
fuel oil change-point 1984: QI-l985 :Q4 -0.719 -3. 194 -0.980 -0.363 -1.613 

Different 1976:QI-l982:Ql -O.oao -0.045 0.677 -0.248 -0.139 
change-points 1982:Q2-1983:Q4 -O.oao -0.045 -0.039 -0.077 -0.043 

1984:QI-l984:Ql 0.122 -0.045 -0.039 0.117 -0.043 
1984: Q2-1985 :Q4 0.122 -0.055 -0.039 0.117 -0.053 

Light oil Sue 1976: Q1-l983:Q4 -0.110 0.666 0.200 -0.138 0.833 
a.nd kerosene cha.nge-po I n t 1984:Q1-l985:Q4 -0.764 -1. 605 -0.689 -0.452 -0.950 

Different 1976:QI-l977:Q1 -0.070 1. 904 -0.131 -0.062 1.683 
change-points 1977:Q2-1979:Q2 -0.070 1. 904 -0.140 -0.061 1. 670 

1979: Q3-1983:Q2 -0.070 0.121 -0.140 -0.061 0.106 
1983:Q3-1985:Q4 0.081 0.121 -0.140 0.071 0.106 
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coefficient, the long-run elasticities both of price and income shift not only by the 
change in their short-run elasticities but also by the change in the adjustment 
parameter. Thus, to clarify the changes in long-run elasticities of price and income, 
we show in Table 3 the estimates of the short-run and long-run elasticities for the 
subperiods divided by the change-point of each coefficient. 

4 Interpretation of the Estimation Results 

First, as to structural change in the demand equation for total fuel oil, we see the 
following facts from Tables I and 3. 

(1) Based on the same change-point model, the estimate of the change-point is 
1983: Q4, which is considerably lagged from the period of the second oil crisis. The 
short-run and long-run price elasticities before and after the change are negative 
and their absolute values become larger after the change. Also, the short-run and 
long-run income elasticities before and after the change are negative. Although the 
negative income elasticities are not expected from the theory, the reason may be as 
follows. That is, total fuel oil is mainly used in the industrial sector, and the 
industrial sector introduced the oil-saving technology after the first oil crisis so that 
the demand for total fuel oil rather tends to decrease even if GOP increases. From 
Fig. 1, the behaviour of demand of total fuel oil before the change seems consistent 
with that of the price. Since the income elasticity is not highly significant before the 
change, the effect of the income on the demand for total fuel oil may be weak. 
However, since the change in the income elasticity is significant and its absolute 
value becomes considerably larger, the demand for total fuel oil after the change 
may tend to decrease by the larger negative income effect though the price is stable 
or rather tends to decrease. 

(2) Based on the different change-points model, the price elasticity shifts at 
1983: Q4, which is the same as the change-point based on the same change-point 
model. However, the price elasticity becomes positive after the change. The change
point of the income elasticity is 1984: Q I, which is slightly different from the 
change-point based on the same change-point model. The change-points of the 
adjustment parameter and the constant term are 1982: Q 1, which is considerably 
different from the change-point based on the same change-point model. This result 
means that the change in adjustment occurred in an earlier stage than the changes in 
price and income elasticities. Although the absolute values of the price and income 
elasticities are smaller in the different change-points model than in the same 
change-point model, the behaviour of demand for total fuel oil before the change 
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seems to be equally explained by the behaviours of the price and income variables in 
both models. However, the absolute value of the income elasticity based on the 
same change-point model seems too large after the change. Specifically, Table 3 
shows that the long-run income elasticity based on the same change-point model is 
negative and its absolute value becomes larger by more than 1.0 after the change. 
Although the signs of the estimates of the changed price and income elasticities 
based on the different change-points model are opposite to the ones expected from 
the demand theory after the change, their absolute values both in the short-run and 
long-run are much smaller than those based on the same change-point model. Since 
energy is the indispensable necessity particularly in the industrial sector, the smaller 
elasticities depicted in the different change-points model seem more plausible in the 
long-run. 

Next, as to structural change in the demand for light oil and kerosene, we see 
the following facts from Tables 2 and 3. 

(1) Based on the same change-point model, the estimate of the change-point is 
1983: Q4, which is the same as the result for total fuel oil. The income elasticity is 
positive before the change, but it becomes negative after the change. Also, the 
absolute value of the price elasticity becomes larger after the change. Although the 
price elasticity is negative and highly significant before the change, the effect of 
price hike between 1978: Q4 and 1983: Q 1 does not seem to be fully reflected in the 
demand for light oil and kerosene since Fig. 2 shows that the decrease of the 
demand is very slight during that period. 

(2) Based on the different change-points model, the income elasticity and the 
constant term shift at 1979: Q2, which is just around the second oil crisis. Also, the 
price elasticity shifts at 1983: Q2. However, the price elasticity becomes positive 
after the change though its absolute value is small. It is interesting that the change in 
price elasticity occurs around the period when the price begins to decrease. The 
adjustment parameter shifts at 1977: Q 1 though the magnitude of change is very 
small. 

(3) Based on the results in the different change-points model, the effects of the 
price on the demand for light oil and kerosene seem weak before 1979: Q2 since the 
absolute value of the price elasticity is small and also the price variable is not highly 
significant. However, since the income elasticity is large and highly significant 
before 1979: Q2, the demand for light oil and kerosene seems to increase by the 
income effects. Since the absolute value of the price and income elasticities are 
small for the period between 1979: Q3 and 1983: Q2, the decrease in the demand for 
light oil and kerosene might be slight in that period. Specifically, since the price 
variable is not highly significant before 1983: Q2, the price hike might not affect the 
demand for light oil and kerosene. Comparing the results based on the same 
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change-point model with the one based on the different change-points model, the 
behaviour of the demand for light oil and kerosene during the period of the price 
hike (i.e., 1978: Q4-1983: Q 1) seems to be explained better by the latter model than 
the former. Since the price elasticity is positive after 1983: Q3 and the price tends to 
decrease after 1983: Q 1, it is expected that the demand for light oil and kerosene 
decreases after 1983: Q3. On the other hand, the income elasticity is positive and the 
growth rate of GOP seems slightly higher after 1983:Ql than before 1982:Q4. 
Thus, the price and income effects might be offset, so that the demand for light oil 
and kerosene might be rather stable after 1983: Q3. 

Appendix: Data Sources and Definition of Variables 

Energy demand was drawn from various issues of Yearbook oJCoal, Petroleum and 
Coke Statistics compiled by the Research and Statistics Department, Ministry of 
International Trade and Industry. The units of total fuel oil and of light oil and 
kerosene are kilocalories and they are measured in logarithms in Figs. 1 and 2. 

The ratios of the domestic wholesale prices of total fuel oil and of light oil and 
kerosene to the GOP deflator are used as their relative prices. The domestic 
wholesale prices were drawn from Price Indexes Annual, Bank of Japan 
(1975= 100.0) and the GOP deflator (1975= 100.0) and GOP were drawn from 
Annual Report oj National Account, Economic Planning Agency. The relative prices 
and GOP are measured in logarithms in Figs. 1 and 2, and GOP is re-scaled so as to 
match with the units of other variables. 
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Testing for Coefficient Constancy in Random Walk Models 
with Particular Reference to the Initial Value Problem 

By S. 1. Leybourne l and B. P. M. McCabe2 

Summary: This article is concerned with Locally Best Invariant tests for coefficient stability in a 
univariate random walk coefficient regression model. In particular, we explore the effects that different 
assumptions about the initial value of the random walk process have on the form and asymptotic 
distribution of the resulting test statistics. When this initial value is allowed to be random, it is shown 
that the test statistics are either exactly the same, or possess the same asymptotic distributions, as when 
the initial value is fixed. 

Key words: Brownian Motion, Brownian Bridge, Invariance, Locally Best Invariant Test, Mixing, 
Random Walk, Weak Convergence. 

1.0 Introduction and Summary 

This article explores the effect of different assumptions made about the initial 
value Po on the Locally Best Invariant test of w2 = 0 in the model 

y,=X,p,+et (1) 

P,=P'-l +1J, (2) 

1=1, ... ,7: 

We assume that (J2 is an unknown nuisance parameter and that x, is a known 
exogenous variable. When w2 = 0 is true then P, is constant and its value depends on 
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what is assumed about the initial value of the sequence. The initial value of Po may 
be considered to be either fixed or random. When it is considered to be fixed, it is 
either assumed to be known (i.e. zero without loss of generality) or unknown and 
equal to p, say. In the case where it is random it is conventionally assumed to be 
N(O, a2/;}~2), where ~2 is a known and possibly large number. Most generally, one 
may assume that Po is distributed as N(fJ, a2w2~2) with P and ~2 unknown. Of course, 
the distribution of Po is assumed independent of those of f: t and 'It. 

The fixed Po case has been studied by, for example, Garbade (1977). However, 
the situation where Po is random does not seem to have been studied before and this 
article derives the Locally Best Invariant test of w2 = 0, showing that the test 
statistics are either exactly or asymptotically the same as in the case when Po is fixed. 
Section 4 summarises the asymptotic distribution theory required for implemen
ting the test in the absence of normality (under normality, the method of Imhof 
(1961) could be used to determine exact distributions). This is done under standard 
mixing conditions. 

2.0 The Likelihood Function of the Observables 

The above model can be cast in an alternative but equivalent form as follows. By 
repeated back substitution of (2) into (1) 

Yt=Xt ~ 'Ii + XtPo + f:t 
i =, 

from which it is easily established that 

Of course, when Po is fixed, then ~2 = 0. In a vector notation we may write, for 
y = (Y',Y2, .. ·,YT)', 
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where X is a TX T diagonal matrix with t-th diagonal element equal to XI, x is a TX 1 
vector of the x/s and V is a TX T symmetric positive definite matrix whose (i,j)-th 

element is equal to min (i,]). The TX 1 vector i consists of a column of ones. 

3.0 Locally Best Invariant Tests 

From (3) we see that a2 is always a nuisance parameter and so too are /3 and ~2 if 
they are unknown. It is clear that the role of /3 is the same irrespective of whether ~2 
is zero or not i.e. whether /30 is random or not. A great advantage of testing 
problems being invariant to certain transformations is that the distributions of 
maximal invariants often depends on a smaller number of parameters, thus 
eliminating the effect of other parameters. For example, irrespective of the status of 
/3 and ~2, testing for w2 = 0 is invariant under 

(4) 

and a maximal invariant is given by 

where [;= y- xfJ and it is distributed free of a2• If /3 and ~2 are known, the Locally 
Best Invariant test is given by 

(5) 

For further details see King and Hillier (1985). If /3 is unknown and ~2 is known or 
unknown then under the transformation 

y-ay+xJ, (6) 
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where a is a positive scalar and 0 is an arbitrary scalar, a maximal invariant is 
w=Pi:/(i:''i:)1/2, where P is a (T-I)XT dimensional matrix which satisfies 
PP'=h-l and P'P=M=I-xx'/(x'x). The density of this maximal invariant is 
proportional to 

(7) 

Evaluating PQP', we see 

since i'X=x' and i'XP' = x'P' =0. Hence, the distribution of this maximal 
invariant does not depend, interestingly enough, on ~2 i.e. the location and scale 
invariance rule automatically eliminates the covariance parameter ~2 in addition to 
P and (J2. The Locally Best Invariant test is 

(8) 

where i: = y- xp and p is the estimated value of P from the regression of y on x. 
Further insight into this phenomenon may be obtained in the case where XI = 1 

for all t and (J2 is assumed to be known. Then, under the transformation 

y-y+oi 

where 0 is an arbitrary constant, maximal invariants include {YI-Yk, 
t= I, ... , T, t#k}(for any value of k) and {YI- y, t= 1, ... , T}. By writing 

I 

YI= Ll1i+Po+el 

it is clear that these maximal invariants do not involve any distributional 
characteristics of Po whatsoever. It is immaterial whether Po has a diffuse prior 
distribution or, indeed, what value of k is chosen. 
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It is perhaps of interest to note that invariance rule (6) is not appealing in the 
case where fJo ~ N(O, (J2w2~2) since the family of distributions given in (3) is not 
closed under location invariance in this case. 

3.1 The Locally Best Invariant Test when Po is Fixed 

When fJo is known we see that y is distributed as in (3) with fJ = ~2 = 0. The problem 
of testing w2 = ° is seen to be invariant under the transformation (4) and so the 
Locally Best Invariant test follows from (5) and is given by 

y'XVXyjy'y. (9) 

Under normality, the exact distribution of (9) may be calculated via Imhofs 
method. Section 4 gives the asymptotic distribution when y is allowed to be 
a-mlxmg. 

When fJo is unknown, and hence is a nuisance parameter as well, we note that 
the testing problem is invariant under (6) and the Locally Best Invariant test 

c'(XVX)cj c' c 

follows from (8). The distribution of this statistic may be calculated, as before, 
using Imhofs method under normality. The asymptotic distribution is also given in 
Section 4. 

3.2 The Locally Best Invariant Test when Po is Random 

We first consider the case when fJo is distributed as N(O, (J2w2~2) and ~2 is known. 
From (5), the Locally Best Invariant test, under transformation (4), is given by 

y'X(V + ~2;i')Xyjy'y = y'XVXyjy'y + ~2y'X;i'Xyjy'y. (10) 

As ~2 is known, under the assumption of normality we may determine the exact 
distribution of this statistic via Imhofs method. We note that the statistic is 
increasing in ~2 and, as it increases, the power of the test will approach one. Thus, 
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whilst one may assume that ~2 is large in order to simulate the effect of a 
noninformative prior for Po, it is clear that ~2 is very informative about the 
distribution of y under the alternative. 

When Po is distributed as N(p, a2w2~2) then under transformation (6), the 
Locally Best Invariant test is 

E'(XVX)EjE'E 

as follows from (8). This is, of course, the same test as was obtained when Po was 
fixed but unknown. 

4.0 Aysmptotic Distributions of the Tests 

Whilst we have used the normality assumption to derive the Locally Best Invariant 
test we need only assume that {ell forms an a-mixing sequence under the null in 
order to derive its asymptotic distribution. This allows {e(} to be, subject to mild 
regularity conditions, nonstationary, heteroscedastic and serially correlated. 
Accordingly, we make the following assumptions for any specified sequence {~(} 

Assumption 1: The sequence {~(} satisfies 

1) E(~()=O forallt, 

2) sup EI~(IP+t<oo for some P>2 and e>O, 
( 

4) {~(} is a-mixing with coefficients am which satisfy 

oc 

We define the partial sum process for a sequence ~( as a function on D[O 1] by 

i 

WT(r)=T-I/2(T~-1 L ~( i/T~r<(i+l)jT,i=O, ... ,T. 
(=1 
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It follows from Herrndorf (1984) that WT(r)~ W(r) where "~" means converges 
weakly and W(r) is a Brownian motion on C[O 1]. Since the limit processes 
considered here are all in C[O 1] use of the sup norm will suffice as a metric. 
Further details on the results presented below (and possible generalisations) are 
given in Leybourne and McCabe (1989). 

Lemma 1: If the sequence {Xtyr} satisfies Assumption 1, then 

I 

a;ax~211Y'XVXy/y'y~W2== J W(r)2dr 
o 

where a;=Lt V(~:r Yt)/T, a;y=Lt V(~:r xtYt)/T and W(r) is a Brownian motion 
process. 

Now define 

T 

xT(r) == L x}/ L Xt2 i/T~ r < (i + 1)/T. 
t= I t= I 

Lemma 2: Under Assumption 1 for the sequence {Xtet} and the condition that 
xT(r)-r, 

I 

ala;;2T-1c'(XVX)c/c'c ~ B2 == J B(r)2dr 
o 

where a; = Lt V(~T er)/T, a;c = Lt V(~T xtet)/T and B(r) is a Brownian bridge 
process. 

The proof is similar to Lemma 1 and is also omitted. Note that if ~T xi/T 
converges to a constant then xT(r) - r in C[O 1]. 

Lemma 3: Under Assumption 1 for the sequence {XtYt}, 

is asymptotically equivalent to a;a;,2 T- 1y'XVXy/y'y and its asymptotic distribu
tion is given by Lemma 1. 
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Proof: From (10) 

y'X(V + ~2ii')Xy/y'y = y'XVXy/y'y + ~2y'Xii'Xy/y'y 

and the Lemma follows if r 1 times the latter term converges to zero. Since 
i' Xy /T=rl xIYI/T converges in probability to zero under Assumption 1, the second 
term converges to zero and the result holds. 

Hence, asymptotically, the test statistic (10) does not depend on the value of ~2, 
and thus it is not necessary that c;2 be known. It follows that there is no difference, 
asymptotically, between the assumption that Po = 0 and that of P ~ N(O, (T2(()2c;2) in 
the sense that the same test statistic arises in both cases. 
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Transformations for an Exact Goodness-of-Fit Test 
of Structural Change in the Linear Regression Modell 

By M. L. King and P. M. Edwards2 

Abstract: This paper considers testing for structural change of unknown form in the linear regression 
model as a problem of testing for goodness-of-fit. Transformations of recursive (or other LUS) residuals 
that reduce the problem to one of testing independently distributed uniform variables are presented. 
Exact empirical distribution function tests can then be applied without having to estimate unknown 
parameters. The tests are illustrated by their application to a money demand model. 

1 Introduction 

In many applications, the standard assumptions required for the classical linear 
regression model are somewhat questionable. This is particularly true in econome
tric applications, where for example, it is often difficult to find convincing 
arguments as to why the regression relationship is constant over time. In fact, the 
main point of the Lucas (1976) critique of quantitative economic policy analysis is 
that policy changes can cause parameter changes in economic relationships over 
time. Of course, if these changes are of a minor nature, then it may well be that the 
standard linear regression model provides a useful and meaningful approximation. 
It would be silly to build a complicated model when a simple one will do. It is 
therefore important to be able to test the adequacy of a fitted linear regression 
model. Typically, little may be known about how and when the regression 
relationship might change so that the test will need to cast a wide net. One possible 
approach is to apply a goodness-of-fit test to the linear regression. 

1 This research was supported by a grant from the Australian Research Council. It was also supported 
by the ESRC under grant HR8323 while the first author was visiting the Department of Economics at the 
University of Southampton. The authors wish to thank Simone Grose for research assistance and 
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2 Maxwell L. King, Professor of Econometrics and Phillip M. Edwards, Statistical Planning Officer, 

Monash University, Clayton, Victoria 3168, Australia. 
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The first such test that usually springs to mind is the well-known X2 test. This is 
less than ideal for, as Stephens (1974) observed, it has long been known that for 
goodness-of-fit problems in which the distribution function is continuous and 
completely specified, tests based on the empirical distribution function (EDF) are 
more powerful than the l test. A disadvantage of EDF based tests is that when 
unknown parameters in the distribution function are replaced by their estimates, 
the distributions of the test statistics under the null hypothesis change. Stephens 
gives some approximate critical values of various statistics for a random sample 
from the normal distribution with zero mean and unknown variance as well as 
unknown mean and variance. 

The Cusum of squares test for structural change proposed by Brown, Durbin 
and Evans (1975) can be viewed as an approximate Kolmogorov-Smirnov EDF test 
applied to recursive residuals that have undergone a secondary nonlinear 
transformation. To see this, let 

(1) 

denote the standard linear regression model where y is n XI, X is an n X k 
nonstochastic matrix of rank k < n, P is a k X 1 vector of unknown parameters and 
(J is an unknown scale parameter. Also let a), j= k + I, ... , n denote the recursive 
residuals from (I). (For a definition of recursive residuals see, for example, Phillips 
and Harvey 1974, Brown, Durbin and Evans 1975 or Farebrother 1976b.) The 
Cusum of squares test is based on whether, for r=k+ I, ... , n, 

( r ) I( n ) Sr= L a} L a} 
}=k+ I }=k+1 

is always in the range 

±co+(r-k)/m, (2) 

where Co is an appropriately chosen value and m = n - k. Because Sn = 1, this 
acceptance region is equivalent to 

max {sk+;-i/m}<co 
i=l, ... ,m-l 

and 
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max {ijm-sk+il<co 
i=l, ... ,m-l 

which is of the form of the modified Kolmogorov-Smirnov test provided Sk + I, ... , Sn 

is an ordered sample of independent observations from the uniform (0,1) 
distribution. 

For the case when m is even, Brown, Durbin and Evans noted that the joint 
distribution of 

(3) 

is identical to that of an ordered sample of independent observations from the 
uniform (0, 1) distribution, If the test is based on these (mI2) - 1 statistics then 
Durbin's (1969) table of significance points for the modified Kolmogorov-Smirnov 
EDF test can be used to determine Co. Brown, Durbin and Evans suggested using 
this value, or a linearly interpolated value if m is odd, for Co in (2), They reported 
that Monte Carlo evidence indicated that this choice of Co value yields true 
significance levels slightly above nominal levels. An exact EDF test when m is even, 
could have been based on the (mI2) - 1 statistics given by (3) with an obvious 
reduction in power. 

In this paper we propose alternative transformations of recursive and other 
residuals which allow exact EDF tests to be applied to a full set of observations. 
Invariance arguments are used to reduce the goodness-of-fit testing problem to one 
of testing independent variables from the uniform (0, 1) distribution so that the 
standard EDF tests such as the Kolmogorov-Smirnov, Cramer-von Mises, Kuiper, 
Watson and Anderson-Darling tests can be used. A similar approach has been 
suggested by Csorgo, Seshadri and Yalovsky (1973) (also see Mardia 1980) for the 
special case of a random sample from the normal distribution with unknown mean 
and variance. 

The proposed transformations are discussed in the next section and the results 
of an application of the proposed testing procedure to an annual model of the 
demand for money in the USA are presented in Section 3. 
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2 The Transformation 

Our goodness-of-fit problem is one of testing 

against 

where both /3 and (72 are unknown. Observe that if Ha is true then at least one of 
either 

(i) E(y) # X/3, 

(ii) Var (y) # (72In, 

(iii) y is non-normal, 

is true so we are indeed casting a wide net. While it is obvious how a structural 
change might result in (i) or (ii) being true, note that (iii) will occur in a regression 
whose errors switch distribution at some point in time. 

This testing problem is invariant to transformations of the form 

Y*=Yoy+Xy, (4) 

where Yo is a scalar and y is a k X I vector. This is because if Ho holds then 

which means that Ho also holds for y*. Furthermore, if Ha is true because of at least 
one of (i), (ii) or (iii) holding then the same will also be true of y* given the form of 
(4). 

As King (1980) notes, the m X I vector 



Transformations for an Exact Goodness-of-Fit Test 53 

is a maximal invariant under the group of transformations defined by (4) where 
z = My is the vector of ordinary least squares residuals, M= In - X(X'XT lX', and 
PI is an m X n matrix such that M = P]PI and PIP] = 1m. 

Under Ro, v is uniformly distributed over the surface of the unit m-sphere. 
Because of this, when v is transformed to polar coordinates, ()j E [0, n], j= I, 
2, ... , m - 2, ()m-I E [0, 2n], via 

(
j-I ) 

Vj= II sin()i cos()j 2<5.j<5.m-l, 
1=1 

m-I 

Vm = II sin ()i, 
i=1 

it follows (see Goldman 1976) that ()I, ... , ()m-I are independent random variables 
under Ro with probability density functions: 

()jE[O,n], j=I,2, ... ,m-2, 

Observe that if ei is the m X 1 vector of zeros with the i-th element being unity, then 
()I is the angle between el and v, and ()j is the angle between ej and the projection of v 
onto the manifold spanned by ej, ej+ 1, ... , em for j= 2, ... , m - 1. 

Given the independence of ()I, ... , ()m-I under Ro, the transformations 

lij 

Wj= J Po/x)dx, j= l, ... ,m-I, 
o 

result in independently distributed uniform variables on the interval (0, I) under 
Ro. These transformations can be performed using the following formulae: 

Wm-I = ()m-I/(2n). 
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For 1 ~j~m- 2 and m-j odd, let q=(m-l-J)/2. Then 

+ (-I)q2-(2q-l) qj:.1 (-1)k(2q){Sin (2q - 2k)OA/{2q - 2k}] . 
k=O k 

For 1~j~m-2andm-j even,letq=(m-2-J)/2. Then 

Wj=T(q+3/2)n- I /2{T(q+ l)}-I 

[2-2q(-1)q+1 k~O (_1)k(2q: 1) (cos {(2q+ 1- 2k)Oj}-1)/(2q+ 1-2k)] 

The resultant Wj,j= 1, ... , m-l, after having been sorted into ascending order 

can be used to calculate standard test statistics based on the EOF as follows: 

(i) The Kolmogorov-Smirnov statistics D, D+, D-: 

D+= max {i/(m-l)-wY)}, D-= max [wY)-W-l)/(m-l)}] 
l::5i::5m-1 l::5i::5m-1 

(ii) The Cramer-von Mises statistic W2: 

m-I 

W2= L [wY)-{(2i-l)/(2m-2)}]2+ 1/{12(m-l)}. 
;=1 
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(iii) The Kuiper statistic V: 

(iv) The Watson statistic U2: 

m-] 

where W=(.L wi)/(m-l). 
1=] 

(v) The Anderson-Darling statistic A2: 

m-] 

A2=- L [(2i-I){logwjil+log(l-wjm-il)}!(m-I)]-(m-I). 
i=] 

Stephens (1974) presents tables for finding the critical values of each of the 
statistics. (Also see Pearson and Hartley 1972.) 

How should one compute v? Observe that Var (p]z) = rrP]Mp] = rrlm so that 
p]Z - N(O, (72Im). This implies that v can be regarded as a linear unbiased with scalar 
covariance matrix (LUS) residual vector divided by its norm. For any given 
regression model there are an infinite number of LUS residual vectors. Some of the 
best known are Theil's (1965, 1968) BLUS residuals and recursive residuals. These 
and other LUS residuals are reviewed by King (1987). 

When testing for structural change, we recommend the use of recursive 
residuals. They can be calculated recursively either forwards in time or backwards 
in time. If one suspects that a change may have occurred late in the estimation 
period then tests based on backward recursive residuals are likely to have better 
power. Because BLUS residuals are "best" estimates of m of the unknown 
disturbances they may be preferable when testing specifically for non-normality. 
Algorithms for computing BLUS and recursive residuals may be found in 
Farebrother (l976a, 1976b). 
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Table 1. Values of the EDF test statistics for Klein's demand 
for money model; 1879-1974 

Test Forward recursive Backward recursive 
Statistics residuals residuals 

D+ 0.2038 0.1328 
-D 0.2120 0.2469 

D 0.2120 0.2469 
t} 1.6114 1.2790 

V 0.4159 0.3797 

if 1.6114 1. 1222 
A2 9.3343 7.5476 

3 An Example 

This section considers the application of the above exact EDF tests to an annual 
regression model of the demand for money in the USA suggested by Klein (1977). 
This model was used by Kramer and Sonnberger (1986) to illustrate the use of 
diagnostic testing in practice. Using Klein's notation, the model is 

(5) 

where M is the quantity of money (M2), YP is real permanent income, rs is a short 
term interest rate, rM is the rate of return on money, S(P/P) is a measure of 
variability of the rate of price changes and u is the disturbance term. Annual 
observations of these variables for 1879-1974 are given by Kramer and Sonnberger 
(1986, Table A.1). 

Farebrother's (l976b) algorithm was used to calculate recursive residuals 
forwards in time and backwards in time. Both sets of residuals, calculated using the 
full data set (1879-1974), were transformed as outlined above and the resultant 
Wj, j = I, ... ,89, were sorted into ascending order. The calculated values of each of 
the ED F test statistics are given in Table 1. With one exception, all tests reject Ho at 
the one per cent significance level. The one exception is the D+ test based on 
backwards recursive residuals which is significant at the five per cent level. There is 
ample evidence that the classical linear regression based on (5) does not fit the data 
well. 
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Robust Bayesian Analysis of a Parameter Change 
in Linear Regression 

By K. P6tzelberger and W. Polasek I 

Summary: Robust Bayesian analyses in a conjugate normal framework have been developed by Leamer 
(I 978) and Polasek and P6tzelberger (I987). Fixing the prior mean and varying the prior covariance 
matrix yields a so-called feasible ellipsoid for the posterior mean and robust HPD regions, also called 
HiFi-regions. This paper considers the application of this approach to gain robust Bayesian inference in 
case of a parameter change in regression models. 

1 Introduction 

The estimation and detection of a parameter shift in a linear regression model has 
gained increasing attention in the econometric literature. Many adhoc models have 
been proposed from a classical point of view, but only a few Bayesian treatments 
are known. Tsurumi (1977), Tsurumi and Sheflin (1984), and Ilmakunnas and 
Tsurumi (1984) have used Bayesian highest posterior density (HPD) intervals to 
test for shifts in the parameters of a model in the presence of heteroscedastic and 
autocorrelated errors. These methods assume a known switching point, whereas 
Smith (1977), Salazar, Broemeling and Chi (1981), and Ohtani (1981) are searching 
for the unknown join point. 

In this paper we follow a slightly different route for the linear model with 
switching regimes and known join point. We assume a partial prior specification 
for the amount of the shift in the coefficients and then we find via a Bayesian 
robustness analysis as to how sensitive the posterior distribution reacts to changes 
in the strength of the prior distribution. The results are presented by the so-called 
feasible ellipsoid (Leamer 1978) and the HiFi-region (Polasek and P6tzelberger 
1987), a robust version of the well known HPD-intervalls. The assumption of a shift 

I Klaus P6tzeIberger and Wolfgang Polasek, University of Basel, Institute for Statistics and 
Econometrics, Petersgraben 5 I, 405 I Basel, Switzerland. 
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has a robust Bayesianjustification, if the size in the parameter change can be judged 
large enough from different a prior views. 

The next section introduces the basic linear model with two regimes and 
section 3 derives the feasible ellipsoid and the so-called HiFi-region for this model. 
In a concluding section we summarize our results. The appendix gives details of the 
calculation of the posterior mean. 

2 The Basic Model 

Let Y=(YI>""YT)' be a TXl dependent variable and X=(XI>""XT)' a TXK 
matrix vector of independent variables. We assume a linear regression of the form 
Y = Xp + u, where u is the error term. Furthermore, consider a change in the 
parameters after time n resulting in a regression model in two regimes. 

Yr=X;P+Url t= 1, ... ,n; (2.1) 

Yr =X;<p + <»+ Ut2 t=n + 1, ... , T. 

The residuals are assumed to be i.i.d. with mean 0 and precision 0'1 and 0'2, 

respectively: 

(2.2) 

LetYI be the dependent variable and XI the independent variables in the first regime 
and Y2 and X2 in the second regime. Then we can write the model (2.1) in the form 

where <> is the change in the parameters at point n. 
The likelihood function for this model (2.3) is given by 

(2.4) 
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With prior information about p and J given as block-normal distribution 

(2.5) 

we find after some algebra (see appendix) that the posterior distribution of J after 
seeing the data Y = (v I> Y2)' is normal with mean J** and variance-covariance 
matrix Q**-I given by 

(2.6) 

(2.7) 

Q** = Q* + X21j1X2· (2.8) 

IjI in (2.7) and (2.8) is the metric of the log-likelihood function of Y2 - X2J given by 

(2.9) 

(in (2.7) is the mode of the likelihood of Y2 - X2J: 

(2.10) 

and p* * is the metric of the posterior density of p given J: 

(2.11) 

The posterior mean (2.7) of the shift parameter J can be written as a matrix 
weighted average of the prior location J* and the diffuse parameter-location Jnon, 
a posterior mean one would obtain if the prior knowledge for J would be 
noninformative (but not necessarily about p, because IjI depends on p** and 
therefore on P*). 

(2.12) 
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t5non can be expressed as 

(2.l3) 

where J is the ML-estimate of the difference between the regression estimates of the 
first and the second regime: 

(2.14) 

with the OLS-estimates 

(2.15) 

The case of a diffuse prior for pin (2.5) (i.e. the classical ML- or OLS-estimate) is 
included in the formulas (2.7) to (2.11) by setting the precision matrix p* to zero. 
The noninformative estimate t5non reduces then to the ML-Iocation J in (2.13). The 
estimates of the residual variances are 

(2.16) 

3 Feasible Ellipsoids and HiFi-Regions 

3.1 The Feasible Ellipsoid 

The first result of conjugate Bayesian robustness was derived in Chamberlain and 
Leamer (1976) for the normal linear regression model with a full rank TXp data 
matrix X and the full rank precision matrices Rand 1:, i.e. 

(3.1) 

They showed that the posterior mean 
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h1:= (X'RX + IT I(X'RY + )h*). (3.2) 

is constrained to lie in the ellipsoid 

(j3 - h)' X' RX(j3 - h)::; c, (3.3) 

where h=(h+h*)/2, h=(X'RX)-IX'RY is the OLS-estimate of P, and 
c = (h* - h),X'RX(h* - h)/4 is a constant. This ellipsoid can be written also in the 
form 

F= closure {h 1:1 L pos. def. and symmetric} = ELL(h*, h, X'RX), (3.4) 

where ELL(*, *, *) describes an ellipse with diameter h* to h, and metric X'RX, as in 
(3.3). 

3.2 Extreme Bound Analysis (EBA) 

Reporting of ellipsoids can be done graphically only in two dimensions and for 
higher dimensions one would like to have simpler tools available. Projecting this 
ellipsoid onto the coordiante axes yields the so-called extreme bounds: 

EBA~(i)=hi+Z(C[X'RXt)I/2, i= 1, ... ,p, (3.5) 

where [A]ii stands for the i-th diagonal element of A-I and c is given as in (3.3). Z is 1 
for the upper bound EBA U and -1 for the lower bound EBA,. 

3.3 HiFi-Regions 

A HPD region of size a for the normal linear regression model (3.1) is given by 

(3.6) 
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where i(p, a) denotes the a-quantile of the chi2-distribution with p degrees of 
freedom. The closure of the union of all HPD region of fixed size a is denoted by 
HiFia: 

HiFia = closure U HPDa(L), 
rEM+ 

(3.7) 

where IM+ is the set of all positive definite symmetric matrices. To each ellipsoid F 
we can construct a HiFi-region with 0.5::; a::; 1. By HiFiYU, a) we denote as before 
the lower und the upper bound for the i-th coefficient of the HiFi-region of size a. 

3.4 Robust Shift Analysis for Lower Bounded Prior Variances 

In the two-regime model (2.3) we apply the Bayesian bounded robustness ideas 
given in Leamer (1982) or Polasek (1984) for the precision matrix Q of the shift 
parameter <5. By bounding the prior precision matrices Q from above (i.e. the 
variance from below) we derive special robustness results in form of smaller feasible 
ellipsoids than (3.3). Bounding the prior precision matrices Q means excluding 
orthodox priors, where the mean of the shift parameter has really a degenerate (one 
point) distribution. 

F or fixed prior knowledge for the shift parameter <5* and fixed Qo the set of <5* * 
with Q being any precision matrix such that Qo - Q is a positive definite and 
symmetric matrix is given by the ellipsoid 

(<5** - m),H(<5** - m)::; c*, (3.8) 

H=M+MQo'M with M=X2lJ1X2, (3.9a) 

m = (<5non + <511)/2, (3.9b) 

c* = (<5non - JII )' H( <5non - JII)/4, (3.9c) 
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with t5non being the noninformative part of (2.12). The feasible ellipsoid (3.8) is now 
determined by the parameters P = ELL(t5non , 1511 , H), where 1511 is given by 

(3.10) 

This ellipsoid can be also obtained if we make the following consideration: After a 
break has occured in a time series, the variance of the error process might be 
different than before. If the second variance is larger then the original ellipsoid (3.1) 
can be used. If it is smaller than in the first regime then this kind of uncertainty 
changes the set of posterior means only by changing the upper bound matrix Qo to 
QOO"I/OJ where we allow 0"2 to vary in the intervaIO~0"2~0"!. 

4 Examples 

This section demonstrates the approach with 2 examples: The first one checks 
whether the simple Keynesian consumption function in Austria has changed after 
the oil-shock depression in 1975. The second example checks whether the Swiss 
consumption function has changed after 1975 as well. 

Example 4.1: Consumption Function in Austria 

As prior information for the consumption function and the shift parameter we 
assume a conjugate normal distribution for p: 

p_ N[( ° ), ( 100 0) = (0.01 ° ) -1] 15-N[(O), ~]. (4.1) 

0.8 ° 0.252 ° 16 ° 
For the shift parameter 15 we assume a priori no shift-effects, implying a prior mean 

15* = 0. 
Then the lower bound of the variance of the shift parameter is determined by 

excluding the set of prior distributions which are considered as too informative, i.e. 
too sharp around the prior mode. We suggest a simple approach for our example: 
Expecting in general no shift effects imply a prior mode (expectation in a conjugate 
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Table 4.la. Regression estimates for Austria: Classical summary 

Dependent Variable: C% 

Variable Std. Err. t 
Name Coefficient Estimate Statistic Prob> t 

Constant 3.772 1.171 3.220 0.003 
GNP% 0.193 0.224 0.859 0.397 
Dummy -3.209 1.373 -2.337 0.026 
Dum*GNP .. _ .. 0.599 0.344 1.742 0.092 

Table 4.l.b. EBA and HiFi-regions for the shift parameter 

Constant slope 
sets I bounds lower upper lower upper 

F -7.10 0.1 -0.38 1.74 
FU -7.00 -3.08 0.40 1.37 
HPD(a =.9) -11.31 -2.68 0.09 2.62 

HiFi(a =.9) -11.40 1.25 -1.06 2.92 

framework) J* = 0, but we want to exclude all prior distributions which have 
roughly 50% (exact 46.2%) of their mass inside the bivariate ±a square region 
(-1, 1) X (-1, 1). This approach gives an upper bound precision matrix Qo = h the 
identity matrix. 

The classical summary of our regression shift model is given in Table 4.1.a, and 
the associated scatterplot and regression lines are shown in Fig. 4.1. The robust 
Bayesian summaries are listed in Table 4.1 b and shown graphically in Fig. 4.2. All 
HPD and HiFi-regions are given for a = 90%. The parameters of the upper 
bounded ellipsoid Pu are Jnon =(-7.0, 1.36) and J II =(-3.08, 0.41). They are 
marked by a square and a triangle in Fig. 4.2. Recall that Jnon is the location for the 
shift parameter J where we are diffuse about J but informative with prior (4.1) 
about /3. JII is the (limiting) location parameter if we incorporate the precision 
bound Qo, i.e. if we exclude all orthodox priors beyond this precision bound. Qo 
denotes the upper bound ellipsoid between these two points. Note that it is 
relatively thin. The HPD-region is centered around Jnon and denotes the diffuse 
90 % credibility region for the shift parameters J where the prior information for /3 
included. Note that all HiFi-regions for J have to be larger than this HPD-region. 
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y = 0.5624 + 0.7913x R = 0.60 

Y = 3.7718 + 0.1926x R = 0.25 

• 
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• 
• 
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GNP% 
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Fig. 4.1. The Austrian consumption function before and after the oil shock 

The HiFi-region is shown for the unbounded ellipsoid F, which passes through Jnon 
and J* = 0 (marked by a*). 

To draw robust Bayesian inferences we have to take into account that the 
extreme bounds of the simple ellipsoid F always cover the origin, since the prior 
location for J* was chosen that way. Only by excluding orthodox priors we can 
bound away the smaller ellipsoid FU from the coordinate axis. It is interesting to 
observe that the mass of the HiFi-region is in the NW-orthant of the parameter 
space. The HiFiU-region which corresponds to the F" ellipsoid (not shown in the 
Figure for technical reasons) is only slightly larger than the HPD region. 

The HiFi-region shows that even with very "weird" prior precisions (from the 
point of view of the data), a Bayesian analysis of this data set leads to conclusions 
which are in the neighborhoud of the diffuse HPD region. This implies that the data 
are very conclusive for a parameter change in the consumption function, even if we 
take into account very dissentive prior views about the shift parameters. 
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Fig. 4.2. Robust Bayesian summaries for structural change in Austria. <> ... Jnon ... (left) point on the F
ellipsoid; /::,. ... J Il (right) point on the F-ellipsoid; * ... prior location J* = (0, 0); F" = ELL(Jnon, J Il , H) 
upper bound ellipsoid, F=ELL(Jnon,J*, XRX) feasible ellipsoid, Ho ... diffuse 90% HPD-intervalt 

(classical confidence region) 

Example 4.2: Consumption Function in Switzerland 

As in example 4.1 we want to find out about the effects of the oil shock for the 
consumption pattern in Switzerland. In particular we are interested if the data are 
consistent with the hypothesis that there was no oil shock effect. As before we set 
the prior means of the shift parameters to zero, but exclude all orthodox priors, i.e. 
we bound the prior precision (covariance) matrices away from the zero location. 
The upper bound precision matrix (lower bound variance matrix) is again set to the 
identity matrix: Qo = h This means we exclude all priors which are to sharp around 
the prior location, i.e. assign at least 46.5 % to the unit (IJ-square (-1, 1) X (-1, 1). 

As one can see from Table 4.2.a, the classical data evidence is not strong about 
the shifting slope parameter, but from is more conclusive for the intercept. This 
weak data evidence transforms in Fig. 4.3 into a large 90% HPD interval which 
intersects the coordiante axis. With the bounded prior information we can 
conclude that there was a downward shift in the (simple) consumption function for 
the posterior means of the shift parameters because the defining parameters, 
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Table 4.2.a. Regression estimates for Switzerland: Classical summary 

Variable 
Nama 

Constant 
GIl 
Dummy1 
Dum-GNP 

8 

c 
0 
::: 6 Q. 

E 
::J 
UI 
c 4 0 
0 

2 

0 

-2 

-4 
-10 

Dependent Variable: Consumption 

Std. Err. t 
Coefficient Estimate Statistic Prob> t 

1.882 
0.428 

-1.001 
0.006 

0.456 
0.090 
0.600 
0.153 

4.128 
4.734 

-1.667 
0.039 

Regime 1: y = 1.88 + 0.43x R = 0.66 

Regime 2: y = 0.88 + 0.43x R = 0.85 

o 10 

0.000 
0.000 
0.104 
0.969 

I!I Cons1 
• Cons2 

Fig. 4.3. Consumption function in Switzerland before and after the oil shock 1975 

Jnon=(-1.58,0.14) and J II =(-1.24,O.09), lie close together. But this small P 
ellipsoid is deceptive, because the corresponding HiFi region remains large. Even if 
we exclude these strong prior views, then the upper bounded HiFiU-region still 
intersects the coordinate axes, because the HiFi region has to be larger than the 
HPD region. This means that the robust Bayesian inference is quite fragile for a 
shift in the consumption function. Therefore we conclude that there exists prior 
views which can show that there was a shift in the consumption function and on the 
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Table4.2.b. EBA and HiFi-regions for the shift parameters 

Constant slope 
bounds / sets lower upper lower upper 

F -1.61 0.03 -0.11 0.26 
FU -1.58 -1.24 0.09 0.15 
HPD(a=.9) -3.61 0.45 -.32 0.60 
HiFi(a =.9) -3.63 0.88 0.44 0.67 

02 

0.6 

0.4 

0.2 

0.0 

·0.2 

-0.4 

-0.6 
-4 -3 -2 -1 0 01 

Fig.4.4. Robust Bayesian summaries for structural change in Switzerland. 0 '" onon '" (left) point on 
the F-ellipsoid; f':, ... 011 (right) point on the F-ellipsoid; * ... prior location 0* = (0, 0); F" = ELL(onon, 0110 

H) upper bound ellipsoid, F= ELL(onon, 0*, X'RX) feasible ellipsoid, Ho ... diffuse 90 % HPD-intervall 

(classical confidence region) 

other side there might be other prior views which lead to the conclusions that there 
was no change in the consumption function at all. 

Note that judging a possible shift in the regression by HiFi regions can be 
viewed as an approximate robust Bayes test. This is similar to the usual procedure 
that HPD (or confidence) intervals represents sets of hypotheses which cannot be 
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rejected. A full Bayesian test treatment would have to take into account prior 
probabilities for the hypotheses. 

The extreme bounds for the robust Bayesian summaries are given in Table 
4.2. b. They convey in general much less information than the graphical summary in 
Fig. 4.4. 

4 Conclusions 

The approach has shown that the ordinary Bayes analysis of the linear model can be 
extended to the case of a change in the regime during the observation period. The 
robust analysis allows to judge the change parameters from different priori views. 
As the examples for the simple consumtion function in Switzerland and Austria 
show, both countries react quite differently to the oil shock in 1975. By excluding 
orthodox or too sharp prior densities we find conclusive robust Bayesian evidence 
that the oil shock has shifted the Austrian cosumption function, but not necessarily 
the Swiss one. 

Acknowledgement: The authors would like to thank an anonymous referee for pointing out various 
inaccuracies and Dr. U. MUller for help with the Swiss data example. 

Appendix: Derivation of the Posterior Mean of b: 

By mUltiplying the joint likelihood function l(p, Jly) in (2.4) with the prior density 
of P we find for the joint density p(p, J,y) a normal kernel: 

l(p, Jly)p(P) ex: exp (- g12) (AI) 

with g in the exponent given as the sum of three quadratic forms in p: 

(A2) 
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Completing the quadratic form in P we find for g the expression 

g= (/3 - P**),P* *(/3 - P**) + c, (A3) 

where the posteriori parameters are given by the posteriori precision P**: 

(A4a) 

and the posterior mean P**: 

(A4b) 

and the constant c depends on the shift parameter 15: 

Integrating out P in (A 1) we find now the likelihood function of the shift parameter 
15 as: 

/(15) oc exp (- ~ (15 - cf>)''1'(15 - cf>+ (A5) 

Now'l'is given in (2.9) and cf> by 

(A6) 

Since the marginal likelihood function of 15 has the form of the usual normal density 
we can multiply it with the normal prior density of 15 given in (2.5) and following the 
usual algebra we finally get the result (2.7) and (2.8). 
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The Stability Assumption in Tests of Causality 
Between Money and Income 

By H. Liitkepohl' 

Abstract: This note argues that structural stability is an important condition for tests of Granger
causality. Despite this fact the standard causality tests are sometimes applied to data for which 
structural stability cannot be assumed a priori. Therefore the stability of GNP/M I systems of the U.S., 
Canada, and West Germany in the aftermath of the 1973/74 oil crisis is analyzed using formal statistical 
tests. Prediction tests are particularly useful for that purpose. The stability of the model for Canadian 
data is rejected whereas stability is not rejected for the U.S. and West Germany. 

1 Introduction 

In recent years the Granger-causal relationship between money and income has 
been discussed in a large number of articles for various periods and countries (e.g., 
Sims 1972; Williams, Goodhart, and Gowland 1976; Ciccolo 1978; Hsiao 1979a, b, 
1981; DeReyes, Starleaf and Wang 1980; Thornton and Batten 1985 to list just a 
few). The results of the various tests and the conclusions drawn for the money
income relationship differ considerably in some of the studies. Therefore the 
limitations of the tests and the methodology on which the tests are based have been 
investigated. For example, measurement errors (Newbold 1978; Schwert 1979), 
seasonal adjustment (Geweke 1982), data transformations (Feige and Pearce 1979), 
omitted variables (Liitkepohl 1982), and lag length selection (Thornton and Batten 
1985) may have an impact on the outcome of the tests. A further problem will be 
considered in the following. 

I Helmut Lutkepohl, Institut fUr Statistik und Okonometrie, Christian-Albrechts-Universitlit Kiel, 
Olshausenstr. 40-60, 2300 Kiell, West Germany. 
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One of the basic assumptions on which many of the tests rely is the stationarity 
of the money-income system. The stationarity assumption excludes trends, certain 
seasonal components and structural instabilities in the sample period. While trends 
and seasonal terms are usually taken care of by data transformations or inclusion of 
seasonal dummies and/or time trends in the model, the possibility of structural 
instability has not been allowed for by some authors. On the other hand, recent 
studies suggest that in economic systems the stability assumption may be 
problematic for the period after World War II. In particular, there is some evidence 
that the oil price shock in 1973/74 has caused substantial turbulence in some 
economies (e.g., Darby 1982; Hamilton 1983; Burbidge and Harrison 1984). In 
several studies data from that period have been used in testing for Granger
causality, without precautions for structural instabilities. Therefore the reliability 
of these tests may be questionable if indeed structural instabilities can be detected in 
the data series used. The purpose of this study is to look into the structural stability 
of some time series used in causality tests without adjustments for structural 
change. 

We acknowledge that there are studies where structural change is allowed for. 
Moreover, in some investigations only data prior to the 1973/74 oil crisis have been 
used. The focus in this study is on series that implicitly have been assumed 
stationary although they cover periods before and after the 1973 oil price shock. 

The structure of the remainder of the paper is as follows. In the next section 
some aspects of the concept of Granger-causality will be reviewed briefly and the 
stationarity tests will be explained. They are based on predictions and are therefore 
in line with Granger's causality concept. In Section 3 the stationarity of some time 
series that have been used in causality analyses will be investigated. It turns out that 
stationarity of some of the series is indeed rejected by the tests. Conclusions are 
presented in the last section. 

2 Granger-Causality and Stability Tests 

Granger-causality between two variables YI and XI is often considered in a bivariate 
system with autoregressive (AR) reduced form 

(I a) 

(I b) 
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where vI and V2 are intercept terms, !,!I = (u ll , u21)' is bivariate white noise with 
covariance matrix E(!,!I!,!;) =~!! and !,!I is independent of !'!s for s =P I. Furthermore, 
the 

aij(L) = L aij.nLn 
n=O 

are polynomials in the lag operator L of possibly infinite order and the lag operator 
is defined such that LnYI = YI-n' 

If the system (I) is stationary and contains all relevant information YI is not 
Granger-caused by XI if and only if aI2(L) == 0 and XI is not Granger-caused by YI if 
and only if a2l(L)==0. Various tests of these restrictions have been proposed in the 
literature. They are based on the assumption that the system (I) is stationary. 

As mentioned in the introduction, stationarity of (I) requires that there are no 
trends, nonstationary seasonal cycles or structural changes in the series XI and Yt- To 
remove trends and seasonal components initial data transformations such as 
seasonal adjustment and differencing are sometimes used. Alternatively time 
trends and/or seasonal dummies may be included in the system (I). We will focus 
on structural instabilities in the following. 

To demonstrate that such instabilities may indeed have a substantial impact on 
the outcome of causality tests we have conducted a small Monte Carlo experiment. 
We have generated 1,000 realizations of the bivariate Gaussian AR(I) process 

(2a) 

(2b) 

with VI = V2 = 0 for 1 = 0,1, ... ,100. The equation errors Ult and U21 are independent 
standard normal variates generated by a NAG library subroutine. We have fitted 
unrestricted vector AR(I) models to the system (2) by LS estimation for each 
separate equation. The first value for each variable (1 = 0) was used as presample 
value in the estimation. Note that (2) is a system with Granger-causality from X to Y 
and no causality from Y to x. A test for Granger-noncausality from Y to X in this 
simple system may be based on the I-ratio of the coefficient of YI- I in (2 b). In the 
1,000 replications of the experiment the absolute value of this ratio exceeded 1.96 
(the critical value of an asymptotic 5% level test) in 58 cases. Thus, noncausality 
from Y to X is rejected in 5.8 % of the replications under the present ideal conditions 
with no structural change. This reflects that the size of the test for this process and 
sample size is about right. 
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We have repeated the experiment with VI = V2 = 0 for t = 0, ... ,50 and 
VI = V2 = I for t = 51, ... , 100. Thus, now there is a structural change after period 
t = 50. In this case non causality from y to x was rejected in 719 replications. In other 
words, causality from y to x is incorrectly accepted in almost 72% of the cases. 
Consequently the structural change has a remarkable impact on the test. 

Ashley, Granger, and Schmalensee (1980) emphasize that Granger's concept 
of causality is connected with out-of-sample prediction. Therefore it makes sense to 
base the stationarity tests on out-of-sample predictions. For ·that purpose the 
original sample is partitioned. The first part is used for estimating a time series 
model which is then used for predicting the second part of the sample. If the 
predictions deviate considerably from the actually observed values the stationarity 
hypothesis is rejected. In other words, the data in the two subsamples are assumed 
to be generated by different processes, if the model for the first subsample cannot 
predict the second subsample with the expected precision. 

To explain the idea behind the tests used below we denote the optimal forecast 
of a K-dimensional stationary process XI, h periods into the future, by xtCh) and the 
corresponding vector of forecast errors by g(h) = XI+h- xtCh). If XI is Gaussian 
(normally distributed) g(h) is also normally distributed with mean (vector) zero and 
the variance-covariance matrix is the forecast mean square error (MSE) matrix, say 
""1-(h). In other words, g(h) ~ N(O, ""1-(h)) and consequently t(h) = g(h)' ""1-(h)-l g(h) has a 
central X2 distribution with K degrees of freedom if the null hypothesis of no 
structural change is true. This way, a sequence of statistics is obtained for forecast 
horizons h = 1,2, ... that can be used to test whether the forecast error is in 
agreement with the stationarity hypothesis. 

Alternatively the (Kh X I) vector of forecast errors [(h) = (g(I)" ... , g(h)')' may 
be considered. Under the aforementioned assumptions this vector has a multivaria
te normal distribution with zero mean vector and covariance or MSE matrix 
~(h) = E[[(h)[(h)'J, say. Thus, A(h) = [(h)'~(h)- '[(h) has a central X2 distribution 
with Kh degrees of freedom. The statistic A(h) can be used to check whether the 
observed values for h postsample periods are in agreement with the stationarity 
assumption. For h = I the tests based on t(l) and on A(l) are equivalent. However, 
for h> I using both tests is useful because they have different power against 
different alternatives. A more detailed discussion of this topic can be found in 
Liitkepohl (1989). 

It may be worth noting that these tests are in particular sensitive to increases in 
the variability (heteroskedasticity) of the underlying process. For the present 
purpose this is a valuable property since homoskedasticity is a prerequisite of 
stationarity and is assumed in causality studies. 

The stationarity of the system (I) implies stationarity of the individual series YI 
and XI and the existence of individual AR representations, say 
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where the '7i are intercept terms, 

fJi(L) = L fJi,nLn, i = 1,2, 
n=O 

and the eit are univariate white noise processes (Liitkepohl 1987). Note, however, 
that flt = (ell> e2t)' will not be bivariate white noise in general. If any of the two 
univariate processes in (3) is nonstationary the same will hold for the bivariate 
system (1). Thus, a stationarity test of (I) may be conducted either by applying the 
aforementioned tests to the bivariate system or by testing the stationarity of the 
individual series (3a/b). If stationarity is rejected for one of the univariate 
processes, stationarity of (1) is also rejected. We will apply the prediction tests 
based on t(h) and A(h) to bivariate (K = 2) and univariate (K = I) series since 
univariate and multivariate tests have different power against different alternatives 
(see Liitkepohl 1989 for details). 

Of course, in practice the forecasts and hence the forecast errors and MSEs are 
based on estimated processes. In the following section only finite order AR 
processes will be fitted and the tests will be based on AR models chosen by the three 
model selection criteria AlC, HQ, and SC (see Judge et al. 1985, Sections 7.5.2 and 
16.6.1 a). These criteria have been used in various studies and some other criteria 
are very similar. The SC criterion is the most parsimonious criterion and always 
chooses the smallest order whereas Ale chooses the greatest order and HQ an 
order in between. Liitkepohl (1988) has shown for the univariate case that using 
such a procedure is justified even if the actual data generation process is not a finite 
order AR process, provided the t(h) and A(h) statistics are appropriately modified 
and used in conjunction with critical values from F rather than X2 distributions. As 
suggested by Liitkepohl (1989) the statistics t(h) and A(h) will be multiplied by 
factors T/(T+ Kp + I)K and T/(T+ Kp + l)hK, respectively, where p is the order of 
the AR model used for forecasting and T is the sample size used for estimation. 
These correction factors follow from asymptotic approximations of the forecast 
MSEs that take into account that estimated rather than known processes are used. 
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3 Empirical Results 

This section discusses the stability of money and income models of the U.S., 
Canada, and West Germany after the first oil crisis in late 1973. For all three 
countries data for the period 1970-1975 have been used in previous causality tests 
without precautions for possible structural changes. 

3.1 Results for the U.S. 

Examples of studies for the U.S. in which causality tests have been based on data 
covering the time of the first oil crisis include Thornton and Batten (1985), 
DyReyes, Starleaf, and Wang (1980) (DSW) and Hsiao (1979 a). They use quarterly 
data for GNP and Ml for 1962.11-1982.I1I, 1950.I-1975.I1I, and 1947.1-1977.III, 
respectively. While seasonally adjusted data were used in the last two studies, 
Thornton and Batten are not precise about the data used. We will use quarterly, 
seasonally adjusted, nominal GNP and Ml data for the period 1960.I-1975.IV as 
published by the OECD (Historical Statistics 1960-1979). The tests are applied to 
first differences of the logarithms of the original data. The estimation and 
specification period is 1960.1-1973.11 and forecasts are computed for 1973.III-
1975.1Y. The maximum lag length used in the AR model specification procedure is 
eight. The resulting values of the test statistics are given in Table 1. Note that the 
t(h) and A(h) statistics in the table have approximate F distributions under the null 
hypothesis of no structural change with [K, 52 - (K + l)p] and [Kh, 52 -(K + l)p] 
degrees of freedom, respectively. Here K = 1 for the univariate tests and K = 2 for 
tests based on the bivariate models. Of course, the test values in the table are not 
independent. 

Significant test values are obtained only for the second half of 1975. In other 
words, the stability hypothesis is rejected only for the end of 1975 and not for the 
period immediately following the oil price shock in late 1973. The instability seems 
to arise from an unusual value of 1\ In GNP in 1975.111. Of course, such a result may 
occur by chance, that is, the rejection of the null hypothesis may be a type I error. 
Therefore the overall conclusion is that the tests do not strongly support the 
hypothesis of a structural change caused by the 1973/74 oil crisis in the money
income system of the U.S. 
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3.2 Results for Canada 

Studies using Canadian Ml and GNP data for 1973/74 in tests for causality include 
DSW and Hsiao (l979b, 1981). The data used in this section are seasonally 
adjusted, quarterly figures from 1955.1-1975.1V as published in the Appendix of 
Hsiao (l979b). Again first differences of the logarithms of the original data are 
used. The estimation period is 1955.1-1973.11 and the test values are computed for 
1973.III-1975.1Vas in the u.S. case. The maximum AR order used in the AR order 
selection procedures is 14. Here we have used a higher maximum AR order than in 
the previous section because more data are available. The results of the stability 
tests are shown in Table 2. The degrees of freedom of the F distribu
tions corresponding to the t(h) and A(h) tests are [K, 72 - (K + l)p] and 
[hK, 72-(K+ l)p] respectively. Obviously the stability hypothesis is quite clearly 
rejected in this case by the univariate as well as the bivariate tests. 

Since one purpose of the study is do determine whether a structural instability 
may have had in impact on the causality tests we have performed such tests for the 
period 1955.1-1973.11 and 1955.1-1975.1V. The tests are standard Ftests of the null 
hypotheses adL)=O (Ml does not cause GNP) and a21(L)=0 (GNP does not 
cause Ml). Since AIC, HQ, and SC have all chosen a bivariate AR(l) for the period 
1955.1-1973.11 we have based the tests on AR(l) models. For the period 1955.1-
1973.11 we get 

A In GNP, = 0.016 + 0.072 A In GNP,-I + 0.207 A In Ml,-I + Ult (4a) 
(5.38) (0.61) (2.12) 

AlnMl,= 0.004+ 0.172 A In GNP,-l+ 0.462AlnMl,-I+U2, (4b) 
(1.40) (1.32) (4.31) 

and for 1955.1-1975.1V we get 

A In GNP, = 0.014 + 0.218 A In GNP,-l + 0.215 A In Ml,-I + UI' (5a) 
(4.87) (2.02) (2.44) 

A In Ml, = 0.005 + 0.237 A In GNP,-I + 0.405 A In Ml r-I + U2, (5b) 
(1.39) (1.83) (3.81) 

Here the numbers in parentheses are asymptotic t statistics. t tests are equivalent to 
Ftests for the present AR(I) models. Hence, noncausality from GNP to Ml can be 
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rejected at a 10% level of significance in (5) whereas the same is not true in (4). 
Thus, applying the test to the data from the period prior to 1973.11 one would 
clearly conclude that GNP is not likely to be causal for Ml while the same 
conclusion is not reached from a 10% level test based on data up to 1975. In line 
with the simulations reported in Section 2, this example demonstrates that not 
taking into account possible structural changes may indeed have a significant effect 
on the conclusions drawn from causality tests. Note that other causality tests may 
lead to different results. However, if the foregoing strategy is used, different 
conclusions may be obtained for the two periods. 

3.3 Results for West Germany 

West German data were also considered by DSW. We use quarterly, seasonally 
adjusted, nominal GNP and MI for the period 1960.l-1975.1V as published by the 
Deutsche Bundesbank. Again first differences of logarithms are used. As for the 
U.S. the estimation period is 1960.l-1973.II and test values are computed for 
1973.III-1975.1V. Using a maximum AR order of eight in the search procedure all 
three criteria AIC, HQ, and SC choose p = 0 as optimal AR order for the bivariate 
system as well as the univariate series. The resulting test values are given in Table 3. 
In this case the degrees of freedom of the F distributions corresponding to the t and 
.A. tests are (K, 52) and (hK, 52), respectively. None of the test values is significant at 
the 1 % level and those significant at the 5 % level may be spurious. This view is 
supported by the results of Ltitkepohl (1988) where it was found that, for the 
univariate case, the tests tend to reject the null hypothesis, when it is true, more 
often than is indicated by the significance level chosen. Consequently, there is no 
overwhelming evidence supporting the hypothesis of structural change. 

4 Conclusions 

This note has pointed out that structural stability of the system under investigation 
is a crucial prerequisite for Granger-causality tests. Since the oil crisis in 1973/74 
has been blamed for some turbulence in major industrialized economies we have 
tested the structural stability ofGNP/Ml systems for the U.S., Canada, and West 
Germany. For all three countries data covering the critical 1973/74 period have 
been used in causality tests by some authors without taking into account possible 
structural changes. For the U.S. and West Germany structural stability is not clearly 
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Table 3. Results of Stability Tests for Quarterly, Seasonally Adjusted West German Data: 
Estimation Period 1960.1-1973.11 

forecast univariate models bivariate model 

horizon MnGNP 6!I1MI 

quarter h AR(O) (AIC,HQ,SC) AR(O) (AIC,HQ,SC) AR(O) (AIC,HQ,SC) 

1973.III .01 4.95* 2.79 
IV 2 .06 .64 .32 

1974.1 3 .13 .27 .15 
II 4 .18 .13 .25 
III 5 .05 .03 .03 
IV 6 1.13 3.33 3.47* 

1975.1 7 3.24 .03 2.04 
II 8 .06 1.98 1.04 
III 9 .18 3.24 2.34 
IV 10 .01 .07 .03 

1973.III 1 .01 4.95* 2.79 
IV 2 .03 2.79 1.56 

1974.1 3 .07 1.95 1.09 
II 4 .09 1. 50 .88 
III 5 .09 1. 20 .71 
IV 6 .26 1. 56 1.17 

1975.1 7 .69 1.34 1.29 
II 8 .61 1.42 1.26 
III 9 .56 1.62 1.38 
IV 10 .50 1.47 1.25 

* Significant at 5 % level. 

rejected so that this potential source of error in a causality test may not be a serious 
one. On the other hand, stability is rejected for Canada. It is shown that not taking 
into account the instability may give rise to misleading conclusions regarding the 
causal structure of the system. As a consequence for applied work we suggest that 
stability tests be conducted routinely prior to causality investigations if the 
structural stability is in doubt. 
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A Sequential Approach to Testing for Structural Change 
in Econometric Models 

By G. D. A. Phillips' and B. P. M. McCabe2 

Summary. The paper shows that the sequential approach to testing econometric models, particularly 
testing for structural change, is both feasible and potentially very useful. In fact, this paper makes clear 
the possibility of using the sequential approach as suggested by Dhrymes et al. (1972) and shows that the 
statistical dependence between successive tests can be overcome in some cases. 

1 Introduction 

Modern econometric practice advocates that a given specification should be subject 
to a rigorous testing procedure and it is now becoming routine to test for 
misspecifications such as omitted variables, serially correlated disturbances, 
structural change, heteroscedasticity and incorrect functional form. This kind of 
intensive misspecification testing leads to problems of distortions in the inference 
procedures but leading econometricians believe that the importance of carrying out 
such tests overrides these problems. 

While it is important to test econometric models rigorously it is also important 
to seek to structure the testing procedure in such a way that problems of data 
mining are minimised. In particular, we seek test procedures to test for the presence 
of, possibly, several misspecifications simultaneously in such a way that: (a) the 
overall Type 1 error probability is controlled within acceptable limits, and (b) the 
test procedure while having good power properties provides some opportunity for 
detecting individual types of misspecification. 

I Garry D. A. Phillips, Dep. of Econometrics and Social Statistics, the University of Manchester, 

Manchester M13 9PL, England. 
1 Brendan P. M. McCabe, School of Economic Studies, University of Leeds, Leeds LS2 9JT. 
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This paper shows that in some cases these aims may be at least partially 
achieved when the misspecifications are tested sequentially. 

In a well known paper, Dhrymes et al. (1972, p. 299) drew attention to the 
desirability of using a sequential approach to test for, inter alia, structural change 
but it was acknowledged that no easy solution to this problem had been identified, a 
principal stumbling block involving the problem of statistical dependence between 
successive hypothesis tests. Here we consider a sequential approach to testing for 
misspecification and we focus, particularly, on the problem of testing for structural 
change when either serial correlation or heteroscedasticity, or both, may be 
present. We show that a sequence of independent tests may be based upon well 
known test statistics for these misspecifications. 

2 A Sequential Approach to Testing for Misspecification 

In the recent econometric literature, see especially, Mizon (1977), there has been 
much concern to develop an appropriate strategy for model selection. The practice 
of selecting models after applying numerous conventional tests of significance has 
well-recognised deficiencies and to overcome these problems, a search process has 
been advocated in which tests of specification are conducted on hypotheses within 
an overall maintained hypothesis which is carefully chosen to be the most general 
hypothesis likely to be relevant. If a composite hypothesis representing the most 
restricted model, is tested against the maintained and not rejected, then the position 
is straighforward but when the restricted model is rejected, one does not know 
which of the constituent hypotheses are responsible. However, if the hypotheses are 
nested and uniquely ordered, then when any hypothesis is true all preceding 
hypotheses in the nest must be true and if any hypothesis is false all succeeding ones 
must be false. This has the advantage of allowing a composite hypothesis to be 
tested using a sequential procedure which can determine the hypotheses responsi
ble for the rejection. Mizon notes that the sequential approach has certain optimal 
power properties in the class of procedures that fix the probabilities of accepting a 
less restricted hypothesis than the true one. Also, this approach, which is outlined 
in Anderson (1971), may be extended to non-linear models. An important 
characteristic of the approach is that the asymptotic distribution of the statistic for 
testing any hypothesis in the ordered sequence against the less restricted hypothesis 
immediately preceding it, depends on the validity of all less restricted hypotheses in 
the sequence but not on that of more restricted hypotheses, and each of these test 
statistics is asymptotically independent. Thus control over the overall Type 1 
error probability is possible. If the significance level for each test is chosen at a" 
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then the significance level of the implicit test of the r-th hypothesis is 
,. 

1- II (I - ai) which is a monotonically non decreasing function of r. 
i=1 

Our concern is with multiple misspecification testing and it is worthwhile to 
examine a sequential approach particularly if robust procedures are required. In 
some cases there will be an ordering of nested hypotheses which will permit the 
development of mutually independent sequential tests and which will ensure that 
the distribution of the statistic for testing any hypothesis in the ordered sequence 
against the less restricted hypothesis immediately preceding it depends on the 
validity of all the less restricted hypotheses in the sequence but not on that of more 
restricted hypotheses. 

An important result in developing independent tests is the Independence 
Theorem due to Basu (1955) which is noted in Hogg (1961). Broadly, the theorem 
states that if in a regular estimation problem there exists a boundedly complete set 
of joint sufficient statistics for m unknown parameters, a necessary and sufficient 
condition that a statistic Q be stochastically independent of the joint sufficient 
statistics is that the distribution of Q be free of the unknown parameters, see also 
Hogg and Craig (1956, p. 219). 

Some applications of the Theorem in an econometric context are discussed in 
Phillips and McCabe (1988). 

3 Sequential Testing: Useful Results 

In an earlier paper Phillips and McCabe (1983) examined a sequential approach to 
testing for structural change in a linear regression model where the composite 
hypothesis includes changes in both the regression coefficients and the disturbance 
variance. In this case although there is no unique ordering of the constituent 
hypotheses it is possible to partition the composite hypothesis so that independent 
test statistics are available for the resulting tests. To see this we assume a linear 
regression model 

y=XP+f: (3.1) 

where y is a TX 1 vector of observations, X is a TX k matrix of rank k containing 
observations on k non-stochastic regressor variables, P is a k X 1 vector of 
unknown parameters and f: - N(O, (J2h). Rewriting (3.1) in the form 
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(3.2) 

where Cj - N(O, a} Ir), i = 1,2, and TI , T2> k with TI + T2 = T, the structural change 
hypothesis may be written in the following sequence: 

This ordering is not unique but it has the property that the distribution of the 
statistic for testing any hypothesis in the ordered sequence against the less restricted 
hypothesis immediately preceding it does not depend on the validity of more 
restricted hypotheses and the test statistics are independent under Ho. As a result 
the overall type 1 error probability can be controlled and the interpretation of a 
significant test result is straightforward. In fact, in this case, the procedure has the 
desirable property of yielding a uniformly most powerful invariant test of H2 
against Ho as noted by Anderson and Mizon (1984). 

In practice we shall often wish to combine a structural change test with other 
misspecification tests, particularly a test for serial correlation, and to extend the 
above analysis we shall write the model as 

y=X/31 + ZA/3+c 

where Z= (1J and A/3=(/32-/3I). (3.3) 

It is well known that the Analysis of Covariance (AOC) test for structural change is 
identical to an F significance test of the coefficients of Z in (3.3). However, it is of 
interest to note that Basu's Independence Theorem may be invoked to deduce that 
the AOC test statistic is distributed independently of any misspecification test 
which is free of /31, A/3 and 0 2 e.g. LM tests, the Durbin Watson test and various 
heteroscedasticity tests, when there are no misspecifications. 
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Here we are particularly concerned to examine a test for serial correlation and 

to do this we shall put P* = ( P'p) and X* = (X: Z). The least squares estimator of 
P* is then given by L1 

( ~p~) = P*= LJ" (X'*X*)-IX'*y 

= (XiXl + X2 X2, 

X2 X2 

On inverting the above matrix using a well known theorem for inverting a 
partitioned matrix, we have 

It is easy to see that the residual vector is given by 

c:= (YI-Xl~l) = (:21) 
Y2- X2P2 L 

where the sub-vectors are those which would be obtained when the two regressions 
are performed separately. 

A test for serial correlation may be performed based upon the residual vector f; 
which has all the usual properties of a least squares residual vector. The bounds test 
statistic is 
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where A is TX Tand the number of degrees offreedom is T- 2k. The AOe test is 
based upon 

F= (jJ2 - PI)'((X2X2r' + (XiX,)-')-'(jJ2 - P,)/k 
'i''f-/(T-2k) 

(3.4) 

and, given this form of the statistic, it is easy to deduce the independence of Fand d 
under the null hypothesis of serial independence of the disturbance either by 
invoking the Independence Theorem or by noting that each term of the F ratio is, 
separately, distributed independently of d. 

It is clear that if the following sequence is considered 

HO:P=O,fJI =fJ2 

and the above test statistics are used, the tests are independent under Ho and the 
overall type 1 error probability may be controlled exactly. Notice too that, in 
testing for serial correlation, one does not need to assume that fJ 1 = fJ2. 

Suppose now that a test for heteroscedasticity is required. Difficulties arise, 
though, when tests for serial correlation and heteroscedasticity are included in the 
same sequence since the null distribution of the usual test statistic for one 
misspecification is affected by the presence of the other misspecification. In 
addition, even when neither misspecification is present, the test statistics commonly 
employed are not independent in small samples. 

However, in certain cases it is possible to modify the usual test statistics so that 
the null distribution of the test for serial correlation may be unaffected by the 
presence of heteroscedasticity and the test statistics are independent when neither 
misspecification is present. For example, the heteroscedasticity hypothesis of 
interest in the context of testing for structural change is given by 

(3.5) 
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where f.; - N(O, aT h), i = 1,2, with aT # a~ and T1, T2> k. The null hypothesis is 
chosen as Ro : aT = a~ and the appropriate test is the Variance Ratio (VR) test based 
on 

F - RSS2/(T2 - k) 
1 - RSS1/(T1 - k) 

i'i'2/(T2 - k) 

i'liJ/(Tl - k) 
(3.6) 

where RSS; = iii; is the residual sum of squares from a regression carried out on the 
corresponding T; observations, i = 1,2. Note that no reordering of the observations 
is involved and under Ro, Fl ~ F(T2 - k, Tl - k). 

To find an appropriate test for the serial correlation hypothesis that the 
disturbances are generated by the first order autoregressive process 

ur=PUr-l+f.r, Ipl<l, t=1,2, ... ,T. 

we shall consider the statistics 

"A' 
d .= f.; ;f.; 

r '," i = 1,2. 
f.;f.; 

(3.7) 

When P = 0, d1 and d2 are each distributed as a Durbin-Watson ratio test and their 
distributions do not depend on the aT, i = 1,2. In addition they are both distributed 
independently of the VR statistic under the overall null hypothesis, i.e. when 
neither misspecification is present. 

It follows, therefore, that we can find a sequential test procedure having the 
desired characteristics provided that the test for serial correlation is performed first 
and is based on the d;, i = 1,2. One possibility is to pool the results of the separate 
tests and reject the hypothesis of no serial correlation if either test rejects. If this 
procedure is followed and each test is carried out at the 21 h % level, the overall test 
size is controlled at 5 %. An alternative approach which yields a more powerful test, 
is to base the test on the LM type statistic 

(3.8) 

The null distribution of d3 is unknown but it can be approximated by the 
distribution of a f3 variate with the same mean and variance so that a test based on d3 

may be close to being exact. To examine this a set of Monte Carlo experiments was 
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carried out and a simple version of (3.5) was simulated which included one 
regressor variable and a constant term. The regressor variable data was generated 
lognormally and T was chosen as 30 with Tl = T2 = 15. The experiments are 
discussed in section 5 but it is appropriate to note now that in several independent 
runs of 1,000 replications, the estimated rejection probability for a serial 
correlation test based on (3.8) was always close to the nominal significance level. 
Thus for the Monte Carlo experiments we may treat the test as being, essentially, 
exact. 

It is of interest that a test of the structural change hypothesis 

(3.9) 

based upon the AOC test, may be added to the sequential testing procedure. 
The distributions of (3.6) and (3.8) are not affected by the structural change 

hypothesis and, furthermore, the three test statistics are mutually independent 
under the overall null hypothesis. A proof of this independence is given in the 
Appendix. 

The sequence of nested hypotheses then takes the form 

Note that when the individual tests are based on (3.6), (3.8) and the AOC test in 
(3.4), the distribution of the statistic for testing any hypothesis in the ordered 
sequence against the less restricted hypothesis immediately preceding it, does not 
depend on the validity of more restricted hypotheses. The hypotheses are tested in 
turn until one either accepts Hi, i = 1,2,3, or one rejects all hypotheses and arrives 
at Ho. If Hi, i = 1,2,3, is accepted, it is assumed that a misspecification has been 
found and the procedure stops. As a consequence, if H2 is accepted, the structural 
change hypothesis regarding P is, essentially, untested. However, if aT#a~ is 
regarded as an alternative hypothesis which is of intrinsic rather than merely 
instrumental interest, the structural change hypothesis could be tested using a Wald 
test, assuming that at # a~. 
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4 Non-Sequential Testing for Structural Change 

In this section we consider the traditional non-sequential approach to testing for 
structural change. We suppose that, as in the case discussed in Section 3, tests for 
serial correlation and heteroscedasticity will also be carried out. The approach is to 
choose an optimal test for the particular case of interest. Thus the test for serial 
correlation is based upon the Durbi~-Watson statistic using the residuals from the 
full regression in (3.1) i.e. e = y - XfJ. The test statistic used is 

VNR= e'Ae 
e'e 

(4.1) 

where A is a TX Ttridiagonal matrix of well-known form. The distribution ofVNR 
is approximated by a fJ-distribution with the same mean and variance. 

A test for heteroscedasticity is based upon the LM statistic proposed by 
Harrison and McCabe (1977). For the particular type of heteroscedasticity 
hypothesis under consideration their test is locally best invariant. The test statistic 
used is: 

H= e'Be 
e'e 

(4.2) 

where B is an appropriate selector matrix of order TX T with T2 ones and T J zeros 
on its principal diagonal, and zeros elsewhere. Notice that H is a ratio of the last T2 
squared residuals to the sum of squared residuals. Again the fJ-approximation to 
the distribution of H is used to determine its critical values. 

Finally, a test for changes in the regression coefficients will be based upon the 
Analysis of Covariance (AOC) test. This is the test which is widely used in practice. 

Our non-sequential testing procedure is to conduct all three tests at a nominal 
1. 7% level. Although the three test statistics are not mutually independent under 
the overall null i.e. when neither problem is present, the overall test size is close to 
5 %. In 1,000 replications of a Monte-Carlo experiment discussed in Section 5 the 
estimated size was 4.7%. 



96 G. D. A. Phillips and B. P. M. McCabe 

5 Sequential and Non-Sequential Testing for Structural Change: 
Some Monte Carlo Results 

In this section we consider the results of a set of Monte Carlo experiments designed 
to compare a sequential approach to testing for structural change with the 
traditional non-sequential approach. 

A simple linear regression model of the form 

y/=a+f3x/+[;/, t=I,2, ... ,T, 

was simulated where data for the explanatory variable x/ was generated lognormal
Iy from a distribution in which exp x ~ N( 1, 1.31), and, in addition, [;/ ~ N(O, I). For 
simplicity, the parameters were chosen as a = f3 = O. Serial correlation was 
introduced into the disturbance term by forming [;/ = P[;/- I + u/ where p was chosen 
as 0.3, 0.5 or 0.8. Heteroscedasticy was created by choosing E([;;) = 1, t= 1, ... ,15, 
and E([;;) = 2, t = 16, ... ,30. Finally, structural change in the regression parameter 
was introduced by puttingf3=O, t= 1, ... , 15, andf3= 1, t= 16, ... ,30. 

One thousand replications were employed in each experiment and used to 
estimate the probability of rejecting the model in the presence of different 
combinations of misspecifications, for both sequential and nonsequential test 
procedures. 

The results of the study are given in Table 1 in four sections. However, the 
reader should note some difficulty in comparing these results. The sequential test 
procedure stops whenever a significant test result is obtained since a respecification 
of the model is indicated. To continue would involve testing in the presence of a 
misspecification other than the one to be tested for. Because of this, not all possible 
misspecifications are tested. The data shown for sequential tests indicate the 
estimated probability that a rejection will occur at a particular stage of the 
sequential procedure and the estimated probability that the specification will be 
rejected at some stage is obtained by lateral summation to yield the column headed 
Pr(R). Notice that, by its nature, the sequential procedure cannot detect more than 
one mispecification. On the other hand, with the nonsequential approach, all the 
mispecification tests are carried out and the estimated probabilities shown refer to 
individual tests which, in nearly all cases, are conducted in the context of more than 
one misspecification as indicated by the first three columns. The probability that a 
specification is rejected following a significant result in at least one of the tests, is 
given in the final column headed Pr(R). This is not obtained as the lateral 
summation of the rejection probabilities for the individual tests, however. 

Each individual test was carried out at a nominal 1. 7 % significance level. In the 
case of the sequential procedure, where the test statistics are independent under the 
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Table 1. Estimated Probabilities of Rejection in Sequential and Non-sequential Tests: T= 30 

Nominal significance level is 1.7% for each test 

Tl = T2 = 15 Sequential Tests Non-sequential Tests 

1000 replications d3 - VR - AOC 

1 

2 

3 

4 

p t.a2 t.s d3 VR AOe Pr(R) VNR H Aoe Pr(R) 

0.0 0 0 .016 .014 .017 .047 .016 .014 .017 .047 
0.3 0 0 .171 .014 .081 .266 .245 .016 .092 .287 
0.5 0 0 .510 .011 .115 .636 .626 .022 .217 .650 
0.8 0 0 .808 .003 .127 .938 .940 .032 .551 .947 

0.0 0 1 .011 .019 .833 .863 .344 .001 .857 .868 
0.3 0 1 .208 .012 .702 .922 .747 .004 .901 .928 
0.5 0 1 .504 .012 .469 .985 .929 .008 .946 .978 
0.8 0 1 .802 .005 .193 1.00 .998 .010 1.000 1.000 

0.0 1 0 .025 .461 .Oll .503 .022 .580 .016 .596 
0.3 1 0 .230 .344 .057 .631 .278 .551 .100 .676 
0.5 1 0 .495 .203 .074 .772 .598 .488 .197 .801 
0.8 1 0 .796 .063 .088 .947 .Cj34 .386 .512 .958 

0.0 1 1 .034 .455 .237 .726 .'139 .302 .397 .647 
0.3 1 1 .230 .348 .240 .818 .486 .281 .520 .783 
0.5 1 1 .478 .201 .255 .934 .774 .223 .691 .905 
0.8 1 1 .769 .072 .158 .999 .986 .089 .964 .998 

NOles 

I. p is the serial correlation parameter which isJixedfor each experiment. da2 is the incremental change 
in the disturbance variance over the last T2 observations. In fact da2 = I means that the disturbance 
variance doubles. dP is the incremental change in the parameter P over the last T2 observations. 

2. d) refers to a test for serial correlation based on (3.8) where its distribution is approximated by a P 
variate with the same mean and variance. VNR is the DW test again employing the P approximation. 
VR and AOC refer to the Variance Ratio and Analysis of Covariance tests, respectively, while His 
the Harrison-McCabe LM test for heteroscedasticity. 

3. Pr(R) is the probability of rejecting the specification. In the case of non-sequential tests, this is the 
probability that at least one of the tests rejects. 

4. For the sequential tests, the probabilities shown refer to the rejection at that stage of the sequential 
test procedure. The procedure terminates once a rejection occurs. 

5. The nominal overall Type I error probability is 1- (0.983)) = 0.05. This holds to a close 
approximation in both procedures. 

overall null, the Type I error probability is I - (0.98W = 0.05. In the non
sequential case, the test statistic used to test for serial correlation will not be 
independent of the Hand AOC test statistics under the overall null but the 
dependence appears to be weak. Consequently, the overall Type I error probability 
of th.e non-sequential test procedure closely approximates that of the sequential 
procedure and, for practical purposes, we may assume that they are equal. 
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The Monte Carlo results are presented in Table 1. The four experiments are 
intended to examine the robustness or otherwise of individual tests to the presence 
of more than one misspecification, and to provide some indication of the 
comparative performance of the sequential and non-sequential test procedures. 

The VNR and H tests are known to be more powerful than their counterparts in 
the sequential procedures, d3 and VR, and this is demonstrated in experiments I 
and 3. The H test is seen to be non-robust to serial correlation in experiment 3 
and to structural change in experiment 4 - compare the first rows of experiments 3 
and 4. 

In experiments 1 and 2 it seen that the VNR test is very non-robust to structural 
change. Indeed the VNR test has size 0.344 in the presence of structural change and 
the AOC test has size 0.551 when p = 0.8. However the rejection probabilities of 
both the VNR test in the context of structural change and the AOC test in the 
presence of serial correlation, are greatly increased. 

The problems of distinguishing between serial correlation and structural 
change are largely avoided in the sequential approach. When serial correlation is 
the problem and not structural change, or when structural change is the problem 
and not serial correlation, there is a relatively high probability of detecting the 
misspecification. 

A further problem of non-robustness of the AOC test is seen when heterosce
dasticity also occurs - compare the first rows of experiments 2 and 4 where it is seen 
that the AOC test power falls sharply when heteroscedasticity is introduced. 

The overall rejection probabilities for the sequential and non-sequential 
approaches are interesting. If either serial correlation is the sole misspecification or 
it occurs with structural change, there is little difference between the rejection 
probabilities in the two procedures. If serial correlation occurs with heteroscedasti
city and not structural change, the non-sequential approach has the higher 
rejection probabilities. However, when both heteroscedasticity and structural 
change occur, with and without serial correlation, it is seen in experiment 4 that the 
sequential approach yields the highest rejection probabilities. 

It seems therefore that when tests are structured to take account of more than 
one misspecification, there may be a gain in overall power if those misspecifications 
occur but if allowed for misspecifications fare not all present, this may lead to some 
loss of overall power. 

Perhaps the single most important finding in this study is the support given 
to the sequential approach when testing for serial correlation and structural 
change. 
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Appendix 

The Independence of the Test Statistics 

Our proof is rather more general than required and we shall first show the mutual 

. G'IA IGI G2A2G2, , 
mdependence of --, -,--, - GIGI and G2G2 where Al and A2 are arbitrary con-

GIGI G2G2 

formable matrices and Gi-N(O,(J2h-k), i= 1,2. 
I 

The joint characteristic function of these statistics is 

where GI - N(O, (J2Ir\ - k) and G2 - N(O, (J2Ir2 - k) are independent. 
Making the substitutions 

we have 

(T,-k) (T,-k) 
cf>(tl, t2, t3, t4) = (1 - 2t3) - -2- (1 - 2t4) - -2-

T\-k T2 

- ~ (y'IYI + Y2J2) D dYil jl] dY;2· 
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Obviously 

and so cP(t" 12, 13, 3(4) is simply a product of the characteristic functions. Hence 

GIA IGI G2A2G2 . 
--, -, -,--, G'IGI and G2G2 are mutually mdependent. 

GIGI G2G2 

An immediate consequence of this result is the mutual independence of the 

G'IAiGi . 1 2 d f . f' d' I dd·· .. 11 k 
-,-, [= , ,an any unctlOn 0 GIGI an G2G2. n a 1tlOn, It IS we - nown 

GiGi 

G2G2 + . dIS" 11 h h GiAiGi that -, - and GIGI G2G2 are mdepen ent. t 10 ows t at t e -,-, i = 1,2, 
GIGI GiGi 

G2G2 . -,- and G'IEI +G2G2 are mutually mdependent. 
GIGI 

It is of interest that the statistics in (3.6) and (3.8) can be written in terms of 
recursive residuals which have the same properties as the Gi, i = 1,2, which appear in 
the foregoing analysis. Thus (3.6) and (3.8) may be written respectively as 

and d3=I.!. GIArGI + T2 G2AiG2 
T G'IGI T G2G2 

where the Gi, i = 1, 2, are vectors of recursive residuals and the Ai" i = 1, 2, are 
suitably chosen conformable matrices. 

Finally we need the following result which is, essentially, proved in Harvey and 
Phillips (1977). 

Lemma: The analysis of covariance test statistic given in (3.4) can be written in the 
form 

where the Gi, i = 1,2,3 are mutually independent normal random vectors of 
recursive residuals with zero means and common scalar covariance matrices. 
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• • [;'/A/*[;/· 0' 0 

Now It IS clear that the --- i = l, 2, ~, [;'lcI + [;1[;2 and [;)[;3 are all mu-
c;[;j CI[;I 

tually independent. It follows, trivially, that FI , d3 and F are mutually independent 
also. 
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Statistical Analysis of "Structural Change": 
An Annotated Bibliography 

By P. Hackl' and A. H. Westlund2 

1 Introduction 

The typical "structural change" situation is - from the point of view of a statistician 
- as follows: To cope with a particular economic phenomenon a model is specified, 
and it is suspected that for different periods of time, or for different spatial regions, 
different sets of parameter values are needed in order to describe the reality 
adequately; the "change point" which separates these periods, or regions, is 
unknown. Questions that arise in this context include: Is it necessary to assume that 
the parameters are changing? When, or where, does a change occur or - if it takes 
place over a certain period of time - what is its onset and duration? How much do 
parameters before and after the change differ? What type of model is appropriate in 
a particular situation (e.g., two-phase regression, stochastic parameter models)? 

Non-constancy of the parameters is an essential element of "structural 
change". This nonconstancy of the parameters can appear as an inadequacy of the 
model which is specified to represent the phenomenon in question; diagnostic 
checking methods can be applied to identify such nonconstancies. On the other 
hand, parameter variability can be incorporated in the model. 

References included in this bibliography concentrate on two topics: 

I. Detection of non-constancy of parameters in regression and time-series 
models. 

2. Statistical analysis of models with time-varying parameters. 

I Professor Dr. Peter Hackl, Department of Statistics, University of Economics, Vienna, Austria, in 

1988/89 Visiting Professor at the Department of Statistics and Actuarial Science, The University of 

Iowa, Iowa City, USA. 
, Professor Dr. Anders H. Westlund, Department of Economic Statistics, Stockholm School of 

Economics, Stockholm, Sweden. 
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The first group of references deals with the change point problem in the context of 
regression models. Constancy of a sequence of random variables is related to the 
analysis of residuals which might be performed in order to detect non-constancy of 
the regression parameters; therefore, papers are also included which discuss the 
analysis of parameter constancy of (time-ordered) sequences of random variables. 
Several papers discuss the analysis of constancy of parameters of time series 
models. 

The second group of references is concerned with estimation procedures for 
regression models with time-varying parameters. These papers are of interest 
because time-varying parameter models might be appropriate for model specifica
tion in the presence of non-constancy. Also, such parameterizations can be used to 
detect instability in the coefficients. Some papers are included which discuss 
forecasting problems in the situation on non-constant parameters. No or nearly no 
weight is given to some topics which are related to those mentioned above, viz., 
continuous sampling inspection, heteroscedasticity, analysis of non-constancy of 
time-series parameters in the frequency domain, and disequilibrium models. The 
reason for these limitations lie partly in the subjects, partly in the fact that our 
efforts had to be restricted. 

The close connection of questions of model stability with economic problems 
leads us to discuss briefly what is known under "structural change" among 
economists. In economics this notion is not clearly defined. However, a notion 
related to "structural change" which, in the context of a linear dynamic model, is 
clearly defined, is the concept of stability. It refers to the dominant root of the 
characteristic equation of the system: The system is stable if the dominant root lies 
within the unit circle (cf. Theil and Boot 1962; Oberhofer and Kmenta 1973). This 
concept, however, is of little help for defining "structural change" if it is accepted 
that structural change implies non-constant relations between elements (variables) 
of the system. Economists speak about structural change not only in this rather 
concrete sense but also if there are substantial changes in certain characteristics, 
e.g., the mean, of the endogenous variables of the system. Consequently, the 
borderline between structural change and stability is not strict, the notion 
"structural change" is not well-defined, and questions concerning the theoretical 
motivation of structural change, its measurability, and others, cannot be discussed 
properly. We hope that this bibliography contributes to a more commonly 
accepted use of the notion "structural change". 

This paper resulted as a part of the activities of a IIASA (International Institute 
for Applied Systems Analysis, Laxenburgj Austria) Working Group on "Statistical 
Analysis and Forecasting of Economic Structural Change", a group of statisticians 
and econometricians which held meetings in 1985 and 1986. At that time no 
comprehensive basis in book-form was available on this subject, but four 
bibliographies: Hinkley et al. (1980), Johnson (1977,1980), and Shaban (1980). A 
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unified and updated compilation based on these papers (Hackl and Westlund 1985) 
is a forerunner of the bibliography in hand. 

In the meanwhile, two books, viz. Broemeling and Tsurumi (1987) and Schulze 
(1987), appeared which treat the regression aspects of the subject from a Bayesian's 
and a frequentist's point of view, respectively. Furthermore, a number of recent 
monographies include special chapters related to the subject: Chow (1984), Judge 
et al. (1985), Nicholls and Pagan (1985). In a few months, Hackl (1988) will present 
results of the above-mentioned IIASA Working Group, including some specially 
invited papers, in form of a multi-author volume: Both surveying articles and 
specialized research papers give a comprehensive view of the subject, of related 
statistical and mathematical methods and problems, and of future directions. 

Most references included in this bibliography were published in methodologi
cal (statistical and econometric) journals. Our work is partially based on the four 
above mentioned bibliographies which delivered about 50% of the references cited 
here. Most of the remaining papers appeared after these bibliographies were 
published, a fact that indicates the still growing interest in this subject. Papers 
which mainly deal with applications were not incorporated, except papers which 
were published in methodological journals. Of course, we do not claim that this 
bibliography is complete. 

2 The Subject-Matter Codes 

The entries in the list of papers (Chapter 3) are annotated according to their subject
matter. The corresponding codes consist of two digits which are separated by a 
period, indicating the following areas of statistical methodology: 

O. General 
0.1 Bibliography, survey. 

I. Analysis of Constancy in a Sequence of Random Variables Ordered by Time 
1.1 Tests for a change in the expectation. The change can be sudden or can 

continue over a certain period of time; the variance can be known or unknown. 
1.2 Sequential test procedures for nonconstancy. 
1.3 Tests for a change of parameters other than the mean or for a change of the 

whole distribution. 
1.4 Estimation concerning the change point; estimation of the distribution 

parameters; sample theoretic approach. 
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1.5 Bayesian inference concerning the change point and/or the distribution 
parameters. 

1.6 Estimation procedures concerning other parameters than the expectation in 
the presence of nonconstancy. 

2. Analysis of Constany in Regression Models 
2.1 Test procedures for nonconstancy of regression coefficients oflinear regression 

models. The disturbance variance can be constant or can change in time. 
2.2 Sequential test procedures for the detection of nonconstancy. 
2.3 Inference concerning the linear regression model in the presence of non

constancy; sample theoretic approach. Methods for estimating the unknown 
change point, distributional properties of such an estimate, and inference on 
the regression model parameters may be treated. 

2.4 Bayesian inference in linear regression models in the presence of non
constancy. 

2.5 Special switching mechanisms. 
2.6 Regression models with time-varying parameters. The mechanism of variation 

is assumed to be in action during the whole time of observation and may be 
deterministic or stochastic. 

2.7 Inference concerning nonconstancy of non-linear regression models. 
2.8 Methods of inference for models based on spline functions. 
2.9 Forecasting under nonconstancy. 

3. Estimation of Regression Models with Time-Varying Parameters 
3.1 Ordinary least-squares estimation. 
3.2 Generalized least-squares estimation, including the Hildreth-Houck and 

Swamy procedures. 
3.3 Filtering and smoothing procedures. 
3.4 Maximum likelihood estimation. 
3.5 The varying parameter (VPR) procedure. 
3.6 Bayesian estimation. 
3.7 Adaptive estimation (AEP) procedures. 
3.8 Other procedures. 
3.9 Forecasting procedures in the presence of nonconstant parameters. 

4. Analysis of Constancy in Time Series Models 
4.1 Test procedures for nonconstancy of the mean and/or variance in ARIMA 

models. 
4.2 Sequential test procedures for the detection of nonconstancy of an ARIMA 

model. 
4.3 Test procedures for nonconstancy of parameters different from mean and 

variance in ARIMA models. 
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4.4 Estimation of parameters of an ARIMA model in the presence of non
constancy; sample theoretic approach. 

4.5 Bayesian inference concerning the parameters of an ARIMA model in the 
presence of nonconstancy. 

4.6 Inference for models different from ARIMA models. 
4.7 Forecasting under nonconstancy. 
4.8 Inference concerning time dependence of (partially) known structure. Test and 

parameter estimation procedures; the nonconstancy is assumed to have a 
known onset and/or form (cf. intervention analysis). 

In addition, the following code letters are used to qualify the subject-matter in more 
detail: 

A Asymptotic Properties 
B Bayesian Methods 
C Comparison of Procedures 
E Examples, Numerical Illustrations 
M Multivariate Procedures 
N Non-Parametric Methods 
P Parametric Methods 
R Robustness 
S (Monte Carlo) Simulation Results 
T Tables, Charts 
U Univariate Procedures 
V Computational Methods 
X Non-Bayesian Methods 
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Software Release Announcement 
lAS-SYSTEM & lAS/PC Level IAS-J.7 
Econometric and Modelling Software 

- lAS/PC Level IAS-3.7 is available now (requires DOS 2.11 or 
higher and arithmetic coprocessor) 

lAS-SYSTEM Level IAS-3.7 is available on selected main 
frames and minis (UNIX-machines) and will be implemented on 
all main stream hardware by April 1989. 

- Users with need for a main frame and microcomputer version 
of the system are pleased that the command structure, fea
tures and data file organizations are the same in both systems. 
lAS/PC can be used independently of the main frame version. 

- Features include 
o Data base management 
o Arithmetic and logical processing 
o Estimation of econometric models (some 20 different esti-

mators) 
o Seasonal adjustment 
o Estimation of time series models 
o Model solution, simulation and forecasting 
o Report generation and data display 
o Econometric tests and diagnostic checks (more than 40) 
o Detailed HELP procedure 
o Log files of user input and system output 

F or more information contact: 

Institute for Advanced Studies 
Project lAS-SYSTEM 
Attn.: Klaus Plasser 

Stumpergasse 56 
A-1060 Wien, Austria 
EUROPE 

Tel. +43-1-599-91-126 

In North America contact: 

GLIMPSE Econometrics 
Project lAS-SYSTEM 
Attn.: Warren Glimpse 

1101 King Street 
Suite 601 
Alexandria, VA 22314 
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Tel. (703) 892-8801 
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• In 
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Theory and Applications 

of Economic Indices 

Edited by 
Wolfgang Eichhorn 

In Cooperation with 

1988. 44 figures. XII, 
831 pages. Hard cover DM 148,- . 
ISBN 3-7908-0387-1 

W. Erwin Diewert, Susanne Fuchs·Seliger, Helmut Funke, Wilhelm 
Gehrig, Andreas Pfingsten, Klaus Spremann, Frank Stehling, Joachim 
Voeller 

This book describes the state-of-the-art in measurement in economics. 
It offers an overview of significant new results on the subject. In 51 
reviewed contributions, 62 authors present a broad range of topics on 
the subject. 

The book is divided into nine parts with the headings: Methodology 
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Quality (2), Inequality (6), Taxation (6), Aggregation (6), and Economet
rics (6). The topics range from the 'equation of measurement', a func
tional equation which plays an important role in the subject, through 
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measurement to resu lts on consistency, efficiency and separability in 
aggregation, productivity measurement, cost functions, allocation inef
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econometrics. There are applications to the economies of the U.S.A., 
Japan and Germany. It contains also papers which deal with prefer
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