Skip to main content

Invertebrates

  • Chapter
  • First Online:
Antarctic Terrestrial Microbiology

Abstract

Terrestrial invertebrates are the largest permanent residents for much of the Antarctic continent with body lengths < 2 mm for most. The fauna consists of the arthropod taxa Collembola (springtails) and Acari (mites) as well as the microinvertebrates Nematoda, Tardigrada and Rotifera. Diversity in continental Antarctica is lower compared with warmer regions such as the Antarctic Peninsula and the subantarctic islands and several taxa such as the arthropods have considerably restricted distributions. The highest diversity of invertebrates is found along the Transantarctic Mountains of the Ross Sea Region and taxa are likely to be relicts from a warmer past that have survived in glacial refugia. Dispersal among the extremely fragmented Antarctic landscape is likely to be limited to transport via fresh- or salt-waters, particularly for the arthropod taxa, although long-distance wind dispersal is also possible for the microinvertebrates. Invertebrates possess several adaptations to low moisture levels and extreme cold temperatures in Antarctica. For example, nematodes and tardigrades avoid extreme dry and cold temperatures by entering a desiccation-resistant anhydrobiotic state. In contrast, arthropods do not have such a resistant state and freezing is lethal. Adaptations for the arthropod taxa include freeze avoidance and the production of intracellular, antifreeze proteins. Climate changes in Antarctica are likely to pose significant challenges for the invertebrate fauna. Changes in temperature, soil moisture and associated shifts in taxon distributions as well as the potential for non-indigenous species introductions are all likely to have considerable impacts on the Antarctic fauna. From a conservation perspective, there is a pressing need for terrestrial observation networks to record the present state of Antarctic terrestrial ecosystems as well as to monitor impending changes. Biosecurity measures which minimize species introductions or transfers of organisms within Antarctica will be essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BJ, Wall DH, Gozel U, Dillman AR, Chaston JM, Hogg ID (2007) The southernmost worm, Scottnema lindsayae (Nematoda): diversity, dispersal and ecological stability. Polar Biol 30:809–815

    Article  Google Scholar 

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg I, Newsham K, O’Donnell A, Russell N, Seppelt R, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc London B267:739–745

    Article  Google Scholar 

  • Adhikari BN, Wall DH, Adams BJ (2010) Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. J Exp Biol 213:1803–1812

    Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Morphol Syst 1:107–186

    Google Scholar 

  • Andrássy I (2008) Eudorylaimus species (Nematoda: Dorylaimida) of continental Antarctica. J Nematode Morphol Syst 11:49–66

    Google Scholar 

  • Andrássy I, Gibson JAE (2007) Nematodes from saline and freshwater lakes of the Vestfold Hills, East Antarctica, including the description of Hypodontolaimus antarcticus sp. Polar Biol 30:669–678

    Article  Google Scholar 

  • Ashworth AC, Cantrill DJ (2004) Neogene vegetation of the Meyer Desert formation (Sirius Group) Transantarctic Mountains, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 213:65–82

    Article  Google Scholar 

  • Bale JS (2002) Insects and low temperatures: from molecular biology to distributions and abundance. Philos Trans R Soc Lond B Biol Sci 357:849–861

    Article  CAS  Google Scholar 

  • Block W (1984) Terrestrial microbiology, invertebrates and ecosystems. Antarct Ecol 1:163–236

    Google Scholar 

  • Block W (1985) Ecological and physiological studies of terrestrial arthropods in the Ross Dependency 1984–1985. British Antarct Surv Bull 68:115–122

    Google Scholar 

  • Block W (1990) Cold tolerance of insects and other arthropods. Philos Trans R Soc London 326B:613–633

    Article  Google Scholar 

  • Block W, Tilbrook PJ (1975) Respiration studies on the Antarctic collembolan Cryptopygus antarcticus. Oikos 26:15–25

    Article  Google Scholar 

  • Block W, Tilbrook PJ (1978) Oxygen uptake by Cryptopygus antarcticus (Collembola) at South Georgia. Oikos 30:61–67

    Article  Google Scholar 

  • Block W, Lewis Smith RI, Kennedy AD (2009) Strategies of survival and resource exploitation in the Antarctic fellfield ecosystem. Biol Rev 84:449–484

    Article  CAS  PubMed  Google Scholar 

  • Bunt JS (1954) The soil inhabiting nematodes of Macquarie Island. Aust J Zool 2:264–274

    Article  Google Scholar 

  • Brundin L (1970) Antarctic land faunas and their history. Antarct Ecol 1:41–53

    Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77

    Article  Google Scholar 

  • Carpenter G (1902) Aptera: Collembola, Insecta, chap 9. The report on the collections of natural history made in the Antarctic regions during the voyage of the Southern Cross. British Museum (Natural History), London, pp 221–223

    Google Scholar 

  • Carpenter GH (1908) Insecta Aptera: National Antarctic Expedition 1901–1904. Nat Hist IV Zool, p 5

    Google Scholar 

  • Caruso T, Hogg ID, Carapelli A, Frati F, Bargagli R (2009) Large-scale spatial patterns in the distribution of Collembola (Hexapoda) species in Antarctic terrestrial ecosystems. J Biogeogr 36:879–886

    Article  Google Scholar 

  • Chown SL, Convey P (2007) Spatial and temporal variability across life’s hierarchies in the terrestrial Antarctic. Trans R Soc Lond B Biol Sci 362:2307–2331

    Article  Google Scholar 

  • Chown SL, Huiskes AH, Gremmen NJ, Lee JE, Terauds A, Crosbie K, Frenot Y, Hughes KA, Imura S, Kiefer K, Lebouvier M, Raymond B, Tsujimotoi M, Ware C, Van de Vijver B, Bergstrom DM (2012) Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc Natl Acad Sci 109:4938–4943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman DC, Elliott ET, Blair JM, Wall DW (1999) Soil Invertebrates. In: Robertson GP, Coleman DC, Bledsoe CS, Phillips S (eds) Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York, pp 349–377

    Google Scholar 

  • Convey P (1996) Overwintering strategies of terrestrial invertebrates in Antarctica-the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–506

    Google Scholar 

  • Convey P (1997) How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J Ther Biol 22:429–440

    Article  Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    Article  CAS  PubMed  Google Scholar 

  • Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Hillenbrand CD, Clarke A, Pugh PJA, Smellie JL, Cary SC (2009) Antarctic terrestrial life—ancient evolutionary persistence or recent colonisation? Q Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Convey P, McInnes SJ (2005) Exceptional, tardigrade dominated ecosystems in Ellsworth Land, Antarctica. Ecol 86:519–527

    Article  Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17

    Article  Google Scholar 

  • Czechowski P, Sands CJ, Adams BJ, D’Haese CA, Gibson JAE, Stevens MI (2012) Antarctic Tardigrada: a first step in understanding MOTUs and biogeography of cryptic meiofauna. Invertebr Syst 26:526–538

    Article  Google Scholar 

  • Dartnall HJG (1983) Rotifers of the Antarctic and sub-Antarctic. Hydrobiologia 104:57–60

    Article  Google Scholar 

  • Dastych H (1984) The Tardigrada from the Antarctic with descriptions of several new species. Acta Zool Cracoviensia 27:377–436

    Google Scholar 

  • Davidson MM, Broady PA (1996) Analysis of gut contents of Gomphiocephalus hodgsoni Carpenter (Collembola: Hypogastruridae) at Cape Geology, Antarctica. Polar Biol 16:463–467

    Article  Google Scholar 

  • Demetras NJ, Hogg ID, Banks JC, Adams BJ (2010) Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: Prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarct Sci 22:749–756

    Article  Google Scholar 

  • Fitzsimons JM (1971a) On the food habits of certain Antarctic arthropods from coastal Victoria Land and adjacent islands. Pacific Insect Monogr 25:121–125

    Google Scholar 

  • Fitzsimons JM (1971b) Temperature and three species of Antarctic arthropods. Pac Insect Monogr 25:127–135

    Google Scholar 

  • Gressitt JL, Leech RE, Wise KAJ (1963) Entomological investigations in Antarctica. Pac Insect 5:287–304

    Google Scholar 

  • Gressitt JL, Fearon CE, Rennell K (1964) Antarctic mite populations and negative arthropod surveys. Pac Insect 6:531–540

    Google Scholar 

  • Gressitt JL, Shoup J (1967) Ecological notes on free-living mites in North Victoria Land. Antarct Res Ser 10:307–320

    Google Scholar 

  • Hawes TC, Worland MR, Bale JS, Convey P (2008) Rafting in Antarctic Collembola. J Zool 274:44–50

    Google Scholar 

  • Hawes TC (2011) Rafting in the Antarctic springtail, Gomphiocephalus hodgsoni. Antarct Sci 23:456–460

    Google Scholar 

  • Hawes TC, Torricelli G, Stevens MI (2010) Haplotype diversity in the Antarctic springtail Gressittacantha terranova at fine spatial scales-a Holocene twist to a Pliocene tale. Antarct Sci 22:766

    Article  Google Scholar 

  • Hogg ID, Stevens MI (2002) Soil fauna of Antarctic coastal landscapes. Geoecol Antarct Ice-Free Coast Landscape: Ecol Stud Anal Synth 154:265–280

    Article  CAS  Google Scholar 

  • Hogg ID, Craig Cary S, Convey P, Newsham KK, O’Donnell AG, Adams BJ, Aislabie J, Frati F, Stevens MI, Wall DH (2006) Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biol Biochem 38:3035–3040

    Article  CAS  Google Scholar 

  • Hogg ID, Wall DH (2011) Global change and Antarctic terrestrial biodiversity. Polar Biol 34:1625–1627

    Article  Google Scholar 

  • Hogg ID, Wall DH (2012) Extreme habitats: polar deserts. In Bell EM (ed) Life at extremes: environments, organisms and strategies for survival. Cambridge International, Cambridge, UK, pp 176–195

    Google Scholar 

  • Hopkin SP (1997) Biol Springtails: (Insecta: Collembola). Oxford University Press, Oxford, p 340

    Google Scholar 

  • Janetschek H (1963) On the terrestrial fauna of the Ross Sea area, Antarctica. Pac Insect 5:305–311

    Google Scholar 

  • Janetschek H (1967a) Arthropod ecology of south Victoria Land. Antarct Res Ser 10:205–293

    Google Scholar 

  • Janetschek H (1967b) Growth and maturity of the springtail, Gomphiocephalus hodgsoni Carpenter, from South Victoria Land and Ross Island. Antarct Res Ser 10:295–305

    Google Scholar 

  • Jennings PG (1976) Tardigrada from the Antarctic Peninsula and Scotia Ridge Region. British Antarct Surv Bull 44:77–95

    Google Scholar 

  • Leasi F, Pennati R, Ricci C (2009) First description of the serotonergic nervous system in a bdelloid rotifer: Macrotrachela quadricornifera Milne 1886 (Philodinidae). Zool Anz 248:47–55

    Google Scholar 

  • McGaughran A, Torricelli G, Carapelli A, Frati F, Stevens MI, Convey P, Hogg ID (2009) Contrasting phylogeographical patterns for springtails reflect different evolutionary histories between the Antarctic Peninsula and continental Antarctica. J Biogeogr 37:103–119

    Article  Google Scholar 

  • McGaughran A, Convey P, Redding GP, Stevens MI (2010) Temporal and spatial metabolic rate variation in the Antarctic springtail Gomphiocephalus hodgsoni. J Insect Physiol 56:57–64

    Article  CAS  PubMed  Google Scholar 

  • McGaughran A, Stevens MI, Hogg ID, Carapelli A (2011) Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insect 2:62–82

    Article  Google Scholar 

  • McInnes SJ (2010) Echiniscus corrugicaudatus (Heterotardigrada; Echiniscidae) a new species from Ellsworth Land, Antarctica. Polar Biol 33:59–70

    Article  Google Scholar 

  • Magalhães C, Stevens MI, Cary SC, Ball BA, Storey BC, Wall DH, Türk R, Ruprecht U (2012) At the limits of life: multidisciplinary insights reveals environmental constraints on biotic diversity in continental Antarctica. PLoS ONE 7(9):e44578

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller JD, Horne P, Heatwole H, Miller WR, Bridges L (1988) A survey of the terrestrial Tardigrada of the Vestfold Hills, Antarctica. Hydrobiologia 165:197–208

    Article  Google Scholar 

  • Mouratov S, Lahav I, Barness G, Steinberger Y (2001) Preliminary study of the soil nematode community at Machu Picchu Station, King George Island, Antarctica. Polar Biol 24:545–548

    Article  Google Scholar 

  • Nielsen UN, Wall DH, Adams BJ, Virginia RA, Ball BA, Gooseff MN, McKnight DM (2012) The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere 3:17

    Article  Google Scholar 

  • Nielsen UN, Wall DH, Adams BJ, Virginia RA (2011) Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol 34:1701–1711

    Article  Google Scholar 

  • Nkem J, Virginia R, Barrett J, Wall D, Li G (2006a) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651

    Article  Google Scholar 

  • Nkem J, Wall D, Virginia R, Barrett J, Broos E, Porazinska D, Adams B (2006b) Wind dispersal of soil invertebrates in the McMurdo Dry valleys, Antarctica. Polar Biol 29:346–352

    Article  Google Scholar 

  • Ohyama Y, Hiruta SI (1995) The terrestrial arthropods of Sør Rondane in eastern Dronning Maud Land, Antarctica, with biogeographical notes. Polar Biol 15:341–347

    Article  Google Scholar 

  • Peterson AJ (1971) Population studies on the Antarctic Collembolan Gomphiocephalus hodgsoni Carpenter. Pacific Insect Monogr 25:75–98

    Google Scholar 

  • Porazinska DL, Wall DH, Virginia RA (2002) Invertebrates in ornithogenic soils on Ross Island, Antarctica. Polar Biol 25:569–574

    Google Scholar 

  • Pryor ME (1962) Some environmental features of Hallett Station, Antarctica, with special reference to soil arthropods. Pac Insect 4:681–728

    Google Scholar 

  • Ricci C, Melone G, Santo N, Caprioli M (2003) Morphological response of a bdelloid rotifer to desiccation. J Morphol 257:246–253

    Google Scholar 

  • Shishida Y, Ohyama Y (1986) A note on the terrestrial nematodes around Syowa Station, Antarctica. Mem Natl Inst Polar Res Spec Issue 44:259–260

    Google Scholar 

  • Shishida Y, Ohyama Y (1989) A note on the terrestrial nematodes around Palmer Station, Antarctica. Proc NIPR Symp Polar Biol 2:223–224

    Google Scholar 

  • Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Terrestrial mesofauna in above- and below-ground habitats: Taylor Valley, Antarctica. Polar Biol 32:1549–1558

    Article  Google Scholar 

  • Sinclair BJ (1999) Insect cold tolerance: how many kinds of frozen? Eur J Entomol 96:157–164

    Google Scholar 

  • Sinclair BJ (2001) On the distribution of terrestrial invertebrates at Cape Bird, Ross Island, Antarctica. Polar Biol 24:394–400

    Article  Google Scholar 

  • Sinclair BJ, Sjursen H (2001a) Cold tolerance of the Antarctic springtail Gomphiocephalus hodgsoni (Collembola, Hypogastruridae). Antarct Sci 13:271–279

    Article  Google Scholar 

  • Sinclair BJ, Sjursen H (2001b) Terrestrial invertebrate abundance across a habitat transect in Keble Valley, Ross Island, Antarctica. Pedobiologia 45:134–145

    Article  Google Scholar 

  • Sinclair BJ, Stevens MI (2006) Terrestrial microarthropods of Victoria Land and Queen Maud Mountains, Antarctica: implications of climate change. Soil Biol Biochem 38:3158–3170

    Article  CAS  Google Scholar 

  • Sinclair BJ, Vernon P, Klok CJ, Chown SL (2003a) Insects at low temperatures: an ecological perspective. Trends Ecol Evol 18:257–262

    Article  Google Scholar 

  • Sinclair BJ, Klok CJ, Scott MB, Terblanche JS, Chown SL (2003b) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J Insect Physiol 49:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Sjursen H, Sinclair BJ (2002) On the cold hardiness of Stereotydeus mollis (Acari: Prostigmata) from Ross Island, Antarctica. Pedobiologia 46:188–195

    Article  Google Scholar 

  • Sohlenius B, Boström S (2009) Distribution and population structure of two bacterial feeding nematodes in ice-free areas in East Antarctica. Nematol 11:189–201

    Article  Google Scholar 

  • Sohlenius B, Bostrom S, Hirschfelder A (1995) Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biol 15:51–56

    Article  Google Scholar 

  • Sømme L (1978) Cold-hardiness of Cryptopygus antarcticus (Collembola) from Bouvetøya. Oikos 31:94–97

    Article  Google Scholar 

  • Sømme L, Block W (1982) Cold hardiness of Collembolan at Signy Island, Maritime, Antarctica. Oikos 38:168–176

    Article  Google Scholar 

  • Sømme L (1986) Ecology of Cryptopygus sverdrupi (Insecta: Collembola) from Dronning Maud Land, Antarctica. Polar Biol 6:179–184

    Article  Google Scholar 

  • Sømme L (1999) The physiology of cold hardiness in terrestrial arthropods. Eur J Entomol 96:1–10

    Google Scholar 

  • Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369

    Article  CAS  PubMed  Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  CAS  PubMed  Google Scholar 

  • Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia 46:485–495

    Article  Google Scholar 

  • Stevens MI, Hogg ID (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation and life history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180

    Article  CAS  Google Scholar 

  • Stevens MI, Frati F, McGaughran A, Spinsanti G, Hogg ID (2007) Phylogeographic structure suggests multiple glacial refugia in northern Victoria Land for the endemic Antarctic springtail Desoria klovstadi (Collembola, Isotomidae). Zool Scr 36:201–212

    Article  Google Scholar 

  • Stevens MI, Porco D, D’Haese CA, Deharveng L (2011) Comment on “Taxonomy and the DNA barcoding enterprise” by Ebach (2011). Zootaxa 2838:85–88

    Google Scholar 

  • Strandtmann RW (1967) Terrestrial Prostigmata (trombidiform mites). Antarct Res Ser 10:51–95

    Google Scholar 

  • Timm RW (1971) Antarctic soil and freshwater nematodes from the Mc Murdo Sound Region. Proc Helminthol Soc Wash 38:42–52

    Google Scholar 

  • Torricelli G, Frati F, Convey P, Telford M, Carapelli A (2010) Population structure of Friesea grisea (Collembola, Neanuridae) in the Antarctic Peninsula and Victoria Land: evidence for local genetic differentiation of pre-Pleistocene origin. Antarct Sci 22:757–765

    Article  Google Scholar 

  • Voituron Y, Mouquet N, de Mazancourt C, Clobert J (2002) To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. Am Nat 160:255–270

    Article  PubMed  Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: lessons from extreme environments. Appl Soil Ecol 13:127–150

    Article  Google Scholar 

  • Wall DH (2005) Biodiversity and ecosystem functioning in terrestrial habitats of Antarctica. Antarct Sci 17:523–531

    Article  Google Scholar 

  • Wall DH (2007) Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B: Biol Sci 362:2291–2306

    Article  Google Scholar 

  • Wall DH (2012) Global change in a low diversity terrestrial ecosystem: the McMurdo Dry Valleys. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A (eds) Antarctic ecosystems: an extreme environment in a changing world. Wiley-Blackwell, West Sussex, UK, pp 44–63

    Google Scholar 

  • Wallwork JA (1973) Zoogeography of some terrestrial micro-Arthropoda in Antarctica. Biol Rev 48:233–259

    Article  Google Scholar 

  • Wharton DA, Brown IM (1989) A survey of terrestrial nematodes from the McMurdo Sound region, Antarctica. NZ J Zool 16:467–470

    Article  Google Scholar 

  • Wharton DA (2003) The environmental physiology of Antarctic terrestrial nematodes: a review. J Comp Physiol B: Biochem Syst Environ Physiol 173:621–628

    Article  CAS  Google Scholar 

  • Wise KAJ, Fearon CE, Wilkes OR (1964) Entomological investigations in Antarctica, 1962–1963 season. Pac Inst 6:541–570

    Google Scholar 

  • Wise KAJ (1967) Collembola (springtails). Antarct Res Ser 10:123–148

    Google Scholar 

  • Wise KAJ (1971) The Collembola of Antarctica. Pacific Insect Monogr 25:57–74

    Google Scholar 

  • Womersley H, Strandtmann RW (1963) On some free living prostigmatic mites of Antarctica. Pac Insect 5:451–472

    Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524

    Article  Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades? Zool Anz 240:563–582

    Google Scholar 

  • Yeates GW (1970) Terrrestrial nematodes from the Bunger Hills and Gaussberg, Antarctica. NZ J Zool 6:41–643

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Hogg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hogg, I.D., Stevens, M.I., Wall, D.H. (2014). Invertebrates. In: Cowan, D. (eds) Antarctic Terrestrial Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45213-0_4

Download citation

Publish with us

Policies and ethics