Skip to main content

Enhanced Phosphorylation-Independent Arrestins and Gene Therapy

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Different systems of arrestin names are used in the field and in this book. We use systematic names of arrestin proteins: arrestin-1 (historic names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin; for unclear reasons its gene is called “arrestin 3” in the HUGO database).

References

  • Akhter SA, Eckhart AD, Rockman HA, Shotwell K, Lefkowitz RJ, Koch WJ (1999) In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function. Circulation 100:648–653

    CAS  PubMed  Google Scholar 

  • Apfelstedt-Sylla E, Kunisch M, Horn M, Ruther K, Gerding H, Gal A, Zrenner E (1993) Ocular findings in a family with autosomal dominant retinitis pigmentosa and a frameshift mutation altering the carboxyl terminal sequence of rhodopsin. Br J Ophthalmol 77:495–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    CAS  PubMed  Google Scholar 

  • Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    CAS  PubMed  Google Scholar 

  • Barak LS, Oakley RH, Laporte SA, Caron MG (2001) Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 98:93–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Luni K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    CAS  PubMed  Google Scholar 

  • Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8:335–344

    CAS  PubMed  Google Scholar 

  • Carter JM, Gurevich VV, Prossnitz ER, Engen JR (2005) Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. J Mol Biol 351:865–878

    CAS  PubMed  Google Scholar 

  • Celver J, Lowe J, Kovoor A, Gurevich VV, Chavkin C (2001) Threonine 180 is requred for G protein-coupled receptor kinase 3 and b-arrestin mediated desensitization of the m-opioid receptor in Xenopus oocytes. J Biol Chem 276:4894–4900

    CAS  PubMed  Google Scholar 

  • Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV (2002) Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 277:9043–9048

    CAS  PubMed  Google Scholar 

  • Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267:374–377

    CAS  PubMed  Google Scholar 

  • Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI (1999) Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 96:3718–3722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM, Flotte TR, Fishman GA, Heon E, Stone EM, Byrne BJ, Jacobson SG, Hauswirth WW (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 105:15112–15117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claus M, Maier J, Paschke R, Kujat C, Stumvoll M, Führer D (2005) Novel thyrotropin receptor germline mutation (Ile568Val) in a Saxonian family with hereditary nonautoimmune hyperthyroidism. Thyroid 15:1089–1094

    CAS  PubMed  Google Scholar 

  • Cleghorn WM, Tsakem EL, Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery. PLoS One 6:e22797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619

    CAS  PubMed  Google Scholar 

  • Dinculescu A, McDowell JH, Amici SA, Dugger DR, Richards N, Hargrave PA, Smith WC (2002) Insertional mutagenesis and immunochemical analysis of visual arrestin interaction with rhodopsin. J Biol Chem 277:11703–11708

    CAS  PubMed  Google Scholar 

  • Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV (2012a) Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 287:9028–9040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012b) Enhancing receptor specificity of non-visual arrestins by targeting receptor-discriminator residues. J Biol Chem 287(35):29495–29505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012c) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–29505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    CAS  PubMed  Google Scholar 

  • Gray-Keller MP, Detwiler PB, Benovic JL, Gurevich VV (1997) Arrestin with a single amino acid sustitution quenches light-activated rhodopsin in a phosphorylation-independent fasion. Biochemistry 36:7058–7063

    CAS  PubMed  Google Scholar 

  • Gross OP, Burns ME (2010) Control of rhodopsin’s active lifetime by arrestin-1 expression in mammalian rods. J Neurosci 30:3450–3457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recignition region of arrestin. J Biol Chem 270:6010–6016

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:59–112

    Google Scholar 

  • Gurevich EV, Gurevich VV (2006a) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2006b) The structural basis of arrestin-mediated regulation of G protein-coupled receptors. Pharmacol Ther 110:465–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Richardson RM, Kim CM, Hosey MM, Benovic JL (1993) Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem 268:16879–16882

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–731

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272:28849–28852

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutkind JS, Novotny EA, Brann MR, Robbins KC (1991) Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc Natl Acad Sci USA 88:4703–4707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880

    CAS  PubMed  Google Scholar 

  • Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006a) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–9772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006b) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007a) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:3125–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007b) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Dawson ES, Francis DJ, Van Eps N, Klug CS, Hubbell WL, Meiler J, Gurevich VV (2008) A model for the solution structure of the rod arrestin tetramer. Structure 16:924–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    CAS  PubMed  Google Scholar 

  • Hsieh C, Brown S, Derleth C, Mackie K (1999) Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem 73:493–501

    CAS  PubMed  Google Scholar 

  • Jackson TR, Blair LA, Marshall J, Goedert M, Hanley MR (1988) The mas oncogene encodes an angiotensin receptor. Nature 335:437–440

    CAS  PubMed  Google Scholar 

  • Julius D, Livelli TJ, Jessell TM, Axel R (1989) Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062

    CAS  PubMed  Google Scholar 

  • Khoo DH, Parma J, Rajasoorya C, Ho SC, Vassart G (1999) A germline mutation of the thyrotropin receptor gene associated with thyrotoxicosis and mitral valve prolapse in a Chinese family. J Clin Endocrinol Metab 84:1459–1462

    CAS  PubMed  Google Scholar 

  • Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277:30760–30768

    CAS  PubMed  Google Scholar 

  • Kim RY, al-Maghtheh M, Fitzke FW, Arden GB, Jay M, Bhattacharya SS, Bird AC (1993) Dominant retinitis pigmentosa associated with two rhodopsin gene mutations. Leu-40-Arg and an insertion disrupting the 5'-splice junction of exon 5. Arch Ophthalmol 111:1518–1524

    CAS  PubMed  Google Scholar 

  • Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV (2011) Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 50:2235–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–18412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    CAS  PubMed  Google Scholar 

  • Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent b-arrestin mutants with constitutive activity in cells. J Biol Chem 274:6831–6834

    CAS  PubMed  Google Scholar 

  • Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131

    CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–3717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macey TA, Lowe JD, Chavkin C (2006) Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J Biol Chem 281:34515–34524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, Pugh ENJ, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendez A, Burns ME, Roca A, Lem J, Wu LW, Simon MI, Baylor DA, Chen J (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153–164

    CAS  PubMed  Google Scholar 

  • Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci USA 110:9463–9468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrison KJ, Moore RH, Carsrud ND, Trial J, Millman EE, Tuvim M, Clark RB, Barber R, Dickey BF, Knoll BJ (1996) Repetitive endocytosis and recycling of the beta 2-adrenergic receptor during agonist-induced steady state redistribution. Mol Pharmacol 50:692–699

    CAS  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh ENJ, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohguro H, Palczewski K, Walsh KA, Johnson RS (1994) Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci 3:2428–2434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palczewski K, McDowell H, Jakes S, Ingebritsen TS, Hargrave PA (1989) Regulation of rhodopsin dephosphorylation by arrestin. J Biol Chem 264:15770–15773

    CAS  PubMed  Google Scholar 

  • Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP (1991) Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J Biol Chem 266:18649–18654

    CAS  PubMed  Google Scholar 

  • Pan L, Gurevich EV, Gurevich VV (2003) The nature of the arrestin x receptor complex determines the ultimate fate of the internalized receptor. J Biol Chem 278:11623–11632

    CAS  PubMed  Google Scholar 

  • Paschke R (1996) Constitutively activating TSH receptor mutations as the cause of toxic thyroid adenoma, multinodular toxic goiter and autosomal dominant non autoimmune hyperthyroidism. Exp Clin Endocrinol Diabetes 104:129–132

    CAS  PubMed  Google Scholar 

  • Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275:37679–37685

    CAS  PubMed  Google Scholar 

  • Restagno G, Maghtheh M, Bhattacharya S, Ferrone M, Garnerone S, Samuelly R, Carbonara A (1993) A large deletion at the 3' end of the rhodopsin gene in an Italian family with a diffuse form of autosomal dominant retinitis pigmentosa. Hum Mol Genet 2:207–208

    CAS  PubMed  Google Scholar 

  • Rim J, Oprian DD (1995) Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34:11938–11945

    CAS  PubMed  Google Scholar 

  • Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross JJ, Lefkowitz RJ, Koch WJ (1998a) Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 95:7000–7005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rockman HA, Choi DJ, Akhter SA, Jaber M, Giros B, Lefkowitz RJ, Caron MG, Koch WJ (1998b) Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 273:18180–18184

    CAS  PubMed  Google Scholar 

  • Schipani E, Kruse K, Jüppner H (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    CAS  PubMed  Google Scholar 

  • Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770–1775

    CAS  PubMed  Google Scholar 

  • Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104:173–206

    PubMed  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90-Asp mutation. Proc Natl Acad Sci USA 92:880–884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J (2013) Insights into congenital night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526

    CAS  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995

    PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Gross OP, Emelianoff K, Mendez A, Chen J, Gurevich EV, Burns ME, Gurevich VV (2009) Enhanced arrestin facilitates recovery and protects rod photoreceptors deficient in rhodopsin phosphorylation. Curr Biol 19:700–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, Hanson SM, Palazzo MC, Chen J, Hubbell WL, Gurevich EV, Gurevich VV (2013) Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 25:2613–2624

    Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153

    CAS  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3Å: evolution of receptor specificity. J Mol Biol 354:1069–1080

    CAS  PubMed  Google Scholar 

  • Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circulation 87:454–463

    CAS  PubMed  Google Scholar 

  • Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283:2949–2961

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Schubert C, Climaco GC, Gurevich YV, Velez MG, Gurevich VV (2000) An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation. J Biol Chem 275:41049–41057

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Raman D, Wei J, Kennedy MJ, Hurley JB, Gurevich VV (2007) Regulation of arrestin binding by rhodopsin phosphorylation level. J Biol Chem 282:32075–32083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Francis DJ, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395:42–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013a) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV (2013b) Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 288:11741–11750

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Ostermaierm MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J, Gurevich VV (2013c) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25(11):2155–2162

    CAS  PubMed  Google Scholar 

  • Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454

    CAS  PubMed  Google Scholar 

  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J (1997) Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389:505–509

    CAS  PubMed  Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TI, Gurevich VV, Hubbell WL (2013) Involvement of Distinct Arrestin-1 Elements in Binding to Different Functional Forms of Rhodopsin. Proc Natl Acad Sci USA 110:942–947

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurevich, V.V., Song, X., Vishnivetskiy, S.A., Gurevich, E.V. (2014). Enhanced Phosphorylation-Independent Arrestins and Gene Therapy. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_7

Download citation

Publish with us

Policies and ethics