Skip to main content

A Highly Scalable Matrix-Free Multigrid Solver for μFE Analysis Based on a Pointer-Less Octree

  • Conference paper
Large-Scale Scientific Computing (LSSC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7116))

Included in the following conference series:

Abstract

The state of the art method to predict bone stiffness is micro finite element (μFE) analysis based on high-resolution computed tomography (CT). Modern parallel solvers enable simulations with billions of degrees of freedom. In this paper we present a conjugate gradient solver that works directly on the CT image and exploits the geometric properties of the regular grid and the basic element shapes given by the 3D pixel. The data is stored in a pointer-less octree. The tree data structure provides different resolutions of the image that are used to construct a geometric multigrid preconditioner. It enables the use of matrix-free representation of all matrices on all levels. The new solver reduces the memory footprint by more than a factor of 10 compared to our previous solver ParFE. It allows to solve much bigger problems than before and scales excellently on a Cray XT-5 supercomputer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: polynomial versus Gauss–Seidel. J. Comput. Phys. 188(2), 593–610 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M.: A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Internat. J. Numer. Methods Engrg. 73(7), 927–947 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekas, C., Curioni, A., Arbenz, P., Flaig, C., van Lenthe, G., Müller, R., Wirth, A.: Extreme scalability challenges in micro-finite element simulations of human bone. Concurrency Computat.: Pract. Exper. 22(16), 2282–2296 (2010)

    Article  Google Scholar 

  4. Bielak, J., Ghattas, O., Kim, E.J.: Parallel octree-based finite element method for large-scale earthquake ground simulation. Comp. Model. in Eng. & Sci. 10(2), 99–112 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Braess, D.: Finite Elements: Theory, fast solvers and applications in solid mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. accepted for publication in SIAM J. Sci. Comput.

    Google Scholar 

  7. Castro, R., Lewiner, T., Lopes, H., Tavares, G., Bordignon, A.: Statistical optimization of octree searches. Computer Graphics Forum 27(6), 1557–1566 (2008)

    Article  MATH  Google Scholar 

  8. Swiss National Supercomputing Centre (CSCS), http://www.cscs.ch/

  9. Flaig, C., Arbenz, P.: A Scalable Memory Efficient Multigrid Solver for Micro-Finite Element Analyses Based on CT Images. Parallel Computing 37(12), 846–854 (2011)

    Article  Google Scholar 

  10. Margenov, S., Vutov, Y.: Comparative analysis of PCG solvers for voxel FEM systems. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 591–598 (2006)

    Google Scholar 

  11. The ParFE Project Home Page (2010), http://parfe.sourceforge.net/

  12. van Rietbergen, B., Weinans, H., Huiskes, R., Polman, B.J.W.: Computational strategies for iterative solutions of large FEM applications employing voxel data. Internat. J. Numer. Methods Engrg. 39(16), 2743–2767 (1996)

    Article  MATH  Google Scholar 

  13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  14. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16, 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  15. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press, London (2000)

    Google Scholar 

  17. Wirth, A., Mueller, T., Vereecken, W., Flaig, C., Arbenz, P., Müller, R., van Lenthe, G.H.: Mechanical competence of bone-implant systems can accurately be determined by image-based micro-finite element analyses. Arch. Appl. Mech. 80(5), 513–525 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flaig, C., Arbenz, P. (2012). A Highly Scalable Matrix-Free Multigrid Solver for μFE Analysis Based on a Pointer-Less Octree. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2011. Lecture Notes in Computer Science, vol 7116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29843-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29843-1_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29842-4

  • Online ISBN: 978-3-642-29843-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics