Skip to main content

Cardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7085))

  • 1364 Accesses

Abstract

Quantification of cardiac function is important for the assessment of abnormalities and response to therapy. We present a method to reconstruct dense cardiac motion from sparse features in tagging MRI, decomposed into solenoidal and irrotational parts using multi-scale Helmholtz decomposition. Reconstruction is based on energy minimization using covariant derivatives exploiting prior knowledge about the motion field. The method is tested on cardiac motion images. Experiments on phantom data show that both covariant derivatives and multi-scale Helmholtz decomposition improve motion field reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B.K.P., Shunck, B.G.: Determining optical flow. AI 17, 185–203 (1981)

    Google Scholar 

  2. Lucas, B., Kanade, T.: An iterative image registration technique with application to stereo vision. In: DARPA, Image Process, vol. 21, pp. 85–117 (1981)

    Google Scholar 

  3. Florack, L., van Assen, H.: Dense multiscale motion extraction from cardiac cine MR tagging using HARP technology. In: ICCV Workshop on MMBIA (2007)

    Google Scholar 

  4. Thirion, J.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Imag. Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  5. Janssen, B., Florack, L., Duits, R., ter Haar Romeny, B.: Optic Flow from Multi-scale Dynamic Anchor Point Attributes. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 767–779. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kohlberger, T., Mémin, E., Schnörr, C.: Variational Dense Motion Estimation Using the Helmholtz Decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  MATH  Google Scholar 

  8. Cuzol, A., Hellier, P., Mémin, E.: A low dimensional fluid motion estimator. IJCV 75, 329–349 (2007), doi:10.1007/s11263-007-0037-0

    Article  Google Scholar 

  9. Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues. IJCV 92(1), 92–111 (2011)

    Article  Google Scholar 

  10. von Helmholtz, H.: Üeber integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Crelles J. 55(25) (1858)

    Google Scholar 

  11. Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)

    Article  Google Scholar 

  12. Prince, J.L., McVeigh, E.R.: Motion estimation from tagged MR image sequences. IEEE Trans. Med. Imaging 11(2), 238–249 (1992)

    Article  Google Scholar 

  13. Gupta, S.N., Prince, J.L.: On Variable Brightness Optical Flow for Tagged MRI. In: Proc. of 14th Int. Conf., IPMI 1995. Kluwer, Dordrecht (1995)

    Google Scholar 

  14. Young, A.A.: Model tags: direct three–dimensional tracking of heart wall motion from tagged magnetic resonance images. Med. Image Anal. 3(4), 361–372 (1999)

    Article  Google Scholar 

  15. Chandrashekara, R., Mohiaddin, R., Rueckert, D.: Analysis of myocardial motion in tagged mr images using nonrigid image registration. In: Proc. of SPIE, vol. 4684, pp. 1168–1179 (2002)

    Google Scholar 

  16. Amini, A., Chen, Y., Elayyadi, M., Radeva, P.: Tag surface reconstruction and tracking of myocardial beads from spamm-mri with parametric b-spline surfaces. IEEE Trans. Med. Imaging 20(2), 94–103 (2001)

    Article  Google Scholar 

  17. Axel, L., Chen, T., Manglik, T.: Dense Myocardium Deformation Estimation for 2D Tagged MRI. In: Frangi, A.F., Radeva, P., Santos, A., Hernandez, M. (eds.) FIMH 2005. LNCS, vol. 3504, pp. 446–456. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Osman, N.F., Kerwin, W.S., McVeigh, E.R., Prince, J.L.: Cardiac motion tracking using CINE harmonic phase (HARP). Magnetic Resonance Imaging, MRM 42(6), 1048–1060 (1999)

    Article  Google Scholar 

  19. Pan, L., Prince, J.L., Lima, J.A.C., Osman, N.F.: Fast tracking of cardiac motion using 3D–HARP. IEEE Trans. Biomed. Eng. 52(8), 1425–1435 (2005)

    Article  Google Scholar 

  20. Arts, T., Prinzen, F.W., Delhaas, T., Milles, J.R., Rossi, A.C., Clarysse, P.: Mapping displacement and deformation of the heart with local sine-wave modeling. IEEE Trans. Med. Imaging 29(5), 1114–1123 (2010)

    Article  Google Scholar 

  21. Chen, T., Wang, X., Chung, S., Metaxas, D., Axel, L.: Automated 3d motion tracking using gabor filter bank, robust point matching, and deformable models. IEEE Trans. Med. Imaging 29(1), 1–11 (2010)

    Article  Google Scholar 

  22. Ozturk, C., Derbyshire, J.A., McVeigh, E.R.: Estimating motion from MRI data. Proc. of the IEEE 91(10), 1627–1648 (2003)

    Article  Google Scholar 

  23. Gabor, D.: Theory of communication. J. IEE 93(26), 429–457 (1946)

    Google Scholar 

  24. Florack, L., Kuijper, A.: The topological structure of scale-space images. JMIV 12(1), 65–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dassios, G., Lindell, I.: Uniqueness and reconstruction for the anisotropic Helmholtz decomposition. J. Phys. Math. Gen. 35, 5139–5146 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Duits, R., Janssen, B.J., Becciu, A., van Assen, H.C.: A variational approach to cardiac motion estimation based on covariant derivatives and multi-scale helmholtz decomposition. Quarterly of Applied Mathematics (accepted)

    Google Scholar 

  27. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

  28. Young, A.A., Axel, L., Dougherty, L., Bogen, D.K., Parenteau, C.S.: Validation of tagging with mr imaging to estimate material deformation. Radiology 188(1), 101–108 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becciu, A., Duits, R., Janssen, B.J., Florack, L.M.J., van Assen, H.C. (2012). Cardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2011. Lecture Notes in Computer Science, vol 7085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28326-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28326-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28325-3

  • Online ISBN: 978-3-642-28326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics