Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7085))

Abstract

Heart is an electromechanical coupled organ, thus it is important to integrate electrical and mechanical functions when building a computational model of the heart. The existing models either treat electrical and mechanical functions separately, or follow a so-called ”one-way” electromechanical coupling. However, electrical and mechanical functions of the heart are depended on each other, and realistic simulation results can only be achieved when such coupled relationship is considered. In this paper, we propose a generic model to simulate electromechanics of the heart that takes both electromechanical coupling and mechanoelectrical feedback into account. The model contains four components: cardiac electrophysiological model, electromechanical coupling, cardiac mechanics model and mechanoelectrical feedback. We report numerical simulations of a cube to provide an insight of the electromechanical coupled behavior of our model. Experiments have also been performed on a biventricular heart which present physiological plausible values, such as transmembrane potential (TMP) maps and strain maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nash, M., Panfilov, A.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progress in Biophysics and Molecular Biology 85, 501–522 (2004)

    Article  Google Scholar 

  2. Goktepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Computational Mechanics 45, 227–243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Traynova, N., Constantino, J., Gurev, V.: Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology 43, 479–485 (2010)

    Article  Google Scholar 

  4. Kerckhoffs, R., Healy, S., Usyk, T., Mcculloch, A.: Computational methods for cardiac electromechanics. Proceedings of IEEE 94, 769–783 (2006)

    Article  Google Scholar 

  5. Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Transaction on Biomedical Engineering 57, 296–315 (2010)

    Article  Google Scholar 

  6. Plank, G., Romero, D., Sebastian, R., Wong, K.C.L., Zhang, H., Ayache, N., Frangi, A.F., Shi, P., Smith, N.P., Camara, G.A.W.O., Sermesant, M., Lamata, P., Wang, L., Pop, M., Relan, J., Craene, M.D., Delingette, H., Liu, H., Niederer, S., Pashaei, A.: Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology. Progress in Biophysics and Molecular Biology (accepted, 2011)

    Google Scholar 

  7. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25, 612–625 (2006)

    Article  Google Scholar 

  8. Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical Simulation of the Electromechanical Activity of the Heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Wong, K.C.L., Wang, L., Zhang, H., Shi, P.: Physiological Fusion of Functional and Structural Data for Cardiac Deformation Recovery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 159–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Aliev, R., Panfilov, A.: A simple two-variable model of cardiac excitation. Chaos, Solitions Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  11. Niederer, S., Smith, N.: An improved numerical method for strong coupling of excitation and contraction models in the heart. Progress in Biophysics and Molecular Biology 96, 90–111 (2008)

    Article  Google Scholar 

  12. Rudy, Y., Ackerman, M., Bers, D., Clancy, C., Houser, S., London, B., McCulloch, A., Przywara, D., Rasmusson, R., Solaro, R., Trayanova, N., Wagoner, D., Varro, A., Weiss, J., Lathrop, D.: Systems approach to understanding electromechanical activity in the human heart: a national heart, lung, and blood institute workshop summary. Circulation 118, 1202–1211 (2008)

    Article  Google Scholar 

  13. Bathe, K.: Finite element procedures. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  14. Dolbow, J., Belytschko, T.: An tntroduction to programming the meshless element free galerkin method. Archives of Computational Methods in Engineering 5(3), 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  15. Smith, N., Buist, M., Pullan, A.: Altered t wave dynamics in a contracting cardiac model. The Journal of Cardiovascular Electrophysiology 14, 203–209 (2003)

    Article  Google Scholar 

  16. Physionet/computers in cardiology challenge 2007: electrocardiographic imaging of myocardial infarction, vol.2 (2007), http://www.physionet.org/challenge/2007

  17. Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical model, vol.2, Ph.D dissertation, University of Auckland

    Google Scholar 

  18. Cerqueira, M., Weissman, N., Dilsizian, V., Jacobs, A., Kaul, S., Laskey, W., Pennell, D., Rumbergen, J., Ryan, T., Verani, M.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statment for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mao, H., Wang, L., Wong, K.C.L., Liu, H., Shi, P. (2012). Volumetric Modeling Electromechanics of the Heart. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2011. Lecture Notes in Computer Science, vol 7085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28326-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28326-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28325-3

  • Online ISBN: 978-3-642-28326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics