Skip to main content

Pseudorandom Generator to Strengthen Cooperation in VANETs

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6928))

Included in the following conference series:

Abstract

A new secure communication system is here presented for spontaneous and self-managed vehicular ad-hoc networks without any infrastructure on the road or vehicles. Our proposal prevents passive behavior of users who try to take advantage of the network without cooperating in its operation. In this paper we propose the use of encrypted exchange of data as a method to strengthen cooperation in VANETs. In particular, we describe a new pseudorandom generator based on a linear feedback shift register for encrypting sent information through a stream cipher, and analyze its output statistically.

Research supported by the Spanish Ministry of Education and Science and the European FEDER Fund under TIN2008-02236/TSI Project and FPI scholarship BES-2009-016774, and by the Agencia Canaria de Investigación, Innovación y Sociedad de la Información under PI2007/005 Project and FPI scholarship BOC Number 60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bluetooth, Specifications of the Bluetooth system, v4.0, http://www.bluetooth.com/

  2. Caballero-Gil, P., Fúster-Sabater, A.: Improvement of the edit distance attack to clock-controlled LFSR-based stream ciphers. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 355–364. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream/index.htm

  5. Geffe, P.: How to protect data with ciphers that are really hard to break. Electronics 46(1), 99–101 (1973)

    Google Scholar 

  6. Gollmann, D., Chambers, W.: Clock-controlled shift registers: A review. IEEE J. Selected Areas Comm. 7(4), 525–533 (1989)

    Article  Google Scholar 

  7. Golomb, S.W.: Shift Register Sequences, revised edn. Aegean Park Press, Laguna Hills (1982)

    MATH  Google Scholar 

  8. Hu, Y., Xiao, G.: Generalized Self-Shrinking Generator. IEEE Trans. Inform. Theory 50, 714–719 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jain, U.: Online Authentication with Encryption and Anonymous Authentication in Vehicular Adhoc Networks. PhD Thesis. Indian Institute of Technology (2008)

    Google Scholar 

  10. Mantin, I.: Analysis of the stream cipher RC4. Master’s thesis. Weizmann Institute of Science, Rehovot (2001)

    Google Scholar 

  11. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory IT-15, 122–127 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meier, W., Staffelbach, O.: The Self-shrinking Generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Mihaljevic, M.J.: A Faster Cryptanalysis of the Self-Shrinking Generator. In: Pieprzyk, J.P., Seberry, J. (eds.) ACISP 1996. LNCS, vol. 1172, pp. 182–2189. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. NESSIE: New european schemes for signatures, integrity, and encryption, http://www.cosic.esat.kuleuven.be/nessie/

  15. NIST, Random Number Generation Technical Working Group, http://csrc.nist.gov/rng/

  16. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1–18. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zenner, E., Krause, M., Lucks, S.: Improved cryptanalysis of the self-shrinking generator. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 21–35. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno-Díaz Franz Pichler Alexis Quesada-Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molina-Gil, J., Caballero-Gil, P., Fúster-Sabater, A., Caballero-Gil, C. (2012). Pseudorandom Generator to Strengthen Cooperation in VANETs. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27579-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27579-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27578-4

  • Online ISBN: 978-3-642-27579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics