Skip to main content

Analysis of Recent Advances in Optical Flow Estimation Methods

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6927))

Included in the following conference series:

  • 1729 Accesses

Abstract

One of the key problems in computer vision is the estimation of motion in image sequences. The apparent displacement of the pixels through the image sequence is generally called optical flow. This is a low-level task that is the base for many other high-level applications, such us stereoscopic vision and 3D scene reconstruction, object tracking, ambient intelligence, video surveillance, medical image analysis, meteorological prediction and analysis, and so on. After many years of intense research, we may consider that the optical flow research field is not mature yet. The quality and amount of recent publications, with many important contributions, reflect that this is a very active field. It is attracting many researchers in computer vision that make evolve the field in a steady way. In this paper we examine the last contributions and most important ideas about optical flow that have appeared during the last years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Deriche, R., Papadopoulo, T., Sánchez, J.: Symmetrical dense optical flow estimation with occlusions detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 721–735. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Álvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A pde model for computing the optical flow. In: XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (1999)

    Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  4. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 292–302 (June 1991)

    Google Scholar 

  5. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE PAMI 99(PrePrints) (2010)

    Google Scholar 

  7. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)

    Article  Google Scholar 

  8. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 168–172 (1994)

    Google Scholar 

  9. Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE Transactions on Medical Imaging 20(7), 568–582 (2001)

    Article  Google Scholar 

  10. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  11. Li, Y., Huttenlocher, D.: Learning for optical flow using stochastic optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 379–391. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157. IEEE Computer Society Press, Washington, DC, USA (1999)

    Google Scholar 

  13. Memin, E., Perez, P.: Dense Estimation and Object-Based Segmentation of the Optical-Flow with Robust Techniques. IEEE Transactions on Image Processing 7(5), 703–719 (1998)

    Article  Google Scholar 

  14. Nagel, H.H.: Extending the ‘oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 139–148. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  15. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transanctions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)

    Article  Google Scholar 

  16. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly Accurate Optic Flow Computation with Theoretically Justified Warping. International Journal of Computer Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  17. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salgado, A., Sánchez, J.: A temporal regularizer for large optical flow estimation. In: International Conference on Image Processing (ICIP), pp. 1233–1236 (2006)

    Google Scholar 

  19. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles, pp. 2432–2439. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  20. Sun, D., Sudderth, E., Black, M.: Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 2226–2234 (2010)

    Google Scholar 

  21. Weickert, J., Schnörr, C.: Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint. Journal of Mathematical Imaging and Vision 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  22. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2010)

    Google Scholar 

  23. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic huber-l1 optical flow. In: Proceedings of the British Machine Vision Conference (BMVC), London, UK (September 2009)

    Google Scholar 

  24. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1293–1300 (June 2010)

    Google Scholar 

  25. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. International Journal of Computer Vision 93, 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sánchez, J. (2012). Analysis of Recent Advances in Optical Flow Estimation Methods. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27549-4_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27548-7

  • Online ISBN: 978-3-642-27549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics