Skip to main content

Variable Neighborhood and Greedy Randomized Adaptive Search for Capacitated Connected Facility Location

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6927))

Included in the following conference series:

Abstract

The Connected Facility Location problem combining facility location and Steiner trees has recently gained stronger scientific interest as it can be used to model the extension of last mile communication networks in so-called fiber-to-the-curb scenarios. We consider a generalization of this problem which considers capacity constraints on potential facilities and aims at maximizing the resulting profit by potentially supplying only a subset of all customers. In this work, we discuss two metaheuristic approaches for this problem based on variable neighborhood search and greedy randomized adaptive search. Computational results show that both approaches allow for computing high quality solutions in relatively short time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scaparra, M.P., Scutella, M.G.: A multi-exchange heuristic for the single-source capacitated facility location problem. Management Science 50(6), 749–760 (2004)

    Article  MATH  Google Scholar 

  2. Ahuja, R.K., Orlin, J.B., Sharma, D.: Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem. Mathematical Programming 91(1), 71–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardossy, M.G., Raghavan, S.: Dual-based local search for the connected facility location and related problems. INFORMS Journal on Computing 22(4), 584–602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Contreras, I.A., Diaz, J.A.: Scatter search for the single source capacitated facility location problem. Annals of Operations Research 157(1), 73–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp. 119–171. Wiley, Chichester (1990)

    Google Scholar 

  6. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. Journal of Computer and System Sciences 76(8), 709–726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6(2), 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gollowitzer, S., Ljubić, I.: MIP models for connected facility location: A theoretical and computational study. Computers & Operations Research 38(2), 435–449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multicommodity flow. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 389–398 (2001)

    Google Scholar 

  10. Hansen, P., Mladenovic, N.: An introduction to variable neighborhood search. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics, Advances and trends in local search paradigms for optimization, pp. 433–458. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  11. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hasan, M.K., Jung, H., Chwa, K.: Approximation algorithms for connected facility location problems. Journal of Combinatorial Optimization 16(2), 155–172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 613–623. IEEE Computer Society, Los Alamitos (2000)

    Chapter  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Leitner, M., Raidl, G.R.: Variable neighborhood search for a prize collecting capacity constrained connected facility location problem. In: Proceedings of the 2008 International Symposium on Applications and the Internet, pp. 233–236. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  16. Leitner, M., Raidl, G.R.: A Lagrangian decomposition based heuristic for capacitated connected facility location. In: Voß, S., Caserta, M. (eds.) Proceedings of the 8th Metaheuristic International Conference (MIC 2009), Hamburg, Germany (2009)

    Google Scholar 

  17. Leitner, M., Raidl, G.R.: Branch-and-cut-and-price for capacitated connected facility location. Journal of Mathematical Modelling and Algorithms (2011), http://dx.doi.org/10.1007/s10852-011-9153-5

  18. Leitner, M., Raidl, G.R.: Combining Lagrangian decomposition with very large scale neighborhoood search for capacitated connected facility location. In: Post-Conference Book of the Eight Metaheuristics International Conference – MIC (2009) (to appear)

    Google Scholar 

  19. Ljubić, I.: A hybrid VNS for connected facility location. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 157–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Ljubić, I., Gollowitzer, S.: Hop constrained connected facility location. Tech. Rep. 2009–09, University of Vienna (2009)

    Google Scholar 

  21. Ljubić, I., Gollowitzer, S.: Layered graph approaches to the hop constrained connected facility location problem. Tech. Rep. 2010-08, University of Vienna (2010) (submitted)

    Google Scholar 

  22. Ljubić, I., Gollowitzer, S.: Modelling the hop constrained connected facility location problem on layered graphs. In: International Symposium on Combinatorial Optimization (ISCO 2010), Hammamet, Tunisia. Electronic Notes in Discrete Mathematics, vol. 36, pp. 207–214 (2010)

    Google Scholar 

  23. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Management Science 45(3), 414–424 (1999)

    Article  MATH  Google Scholar 

  24. Raghavan, S., Bardossy, M.G.: Dual based heuristics for the connected facility location problem. In: Scutellà, M.G., et al. (eds.) Proceedings of the International Network Optimization Conference 2009 (2009)

    Google Scholar 

  25. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thompson, P.M., Orlin, J.B.: The theory of cyclic transfers. Tech. Rep. OR 200-89, Massachusetts Institute of Technology, Operations Research Center (1989)

    Google Scholar 

  27. Tomazic, A., Ljubić, I.: A GRASP algorithm for the connected facility location problem. In: Proceedings of the 2008 International Symposium on Applications and the Internet, pp. 257–260. IEEE Computer Society Press, Los Alamitos (2008)

    Chapter  Google Scholar 

  28. Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Applied Mathematics 40, 45–72 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leitner, M., Raidl, G.R. (2012). Variable Neighborhood and Greedy Randomized Adaptive Search for Capacitated Connected Facility Location. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6927. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27549-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27549-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27548-7

  • Online ISBN: 978-3-642-27549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics