Skip to main content

Ehrenfest-Time Effects in Mesoscopic Systems

  • Chapter
  • First Online:
Semiclassical Approach to Mesoscopic Systems

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 245))

  • 839 Accesses

Abstract

This chapter is devoted to the most prominent universal effect in ballistic systems beyond RMT that can be accessed by semiclassical methods: the effect of a non-zero Ehrenfest-time. The Ehrenfest-time provides a separation between the timescales when the dynamics of an initially spatially localised wave packet can be described by classical mechanics on the one hand and when it is dominated by wave interference on the other hand, for an illustration of this transition see Fig. 1.1. For an estimate we consider two points inside the wave packet a distance \(\lambda_F\) apart and calculate the time until they feel the effect of the boundary, i.e. until they are a distance of the order of the system size \({\mathcal L}\) apart taking into account the possible exponential separation of neighbouring trajectories in chaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will often refer to this calculation as field-theoretical approach to describe Ehrenfest-time effects.

  2. 2.

    Using the estimate that \(1/\lambda\) is of the order of the free flight time, \(\lambda\approx p/(m{\mathcal L}),\) we obtain \(2m\lambda\hbar/p^2\approx\lambda_F/{\mathcal L}\) and by this consistency with Eq. (4.1).

  3. 3.

    The reason for the special choice of c in Eq. (4.3) can be best seen within the configuration-space approach introduced in Chap. 2. One therefore needs the monodromy matrix element \(M_{12}\approx(m\lambda)^{-1}\exp(\lambda t/2)\) determining the position difference of two orbits at time t, given by W, as a function of the initial angle difference \(\epsilon\) and the approximation \(\lambda\approx p/(m{\mathcal L}).\) This yields \(t_{\rm enc}\approx2/\lambda\ln\left[W/({\mathcal L}\epsilon)\right]\) in the configuration-space approach. For a detailed derivation see [13]. Comparing then the constants c in the configuration and in the phase-space approach one finally arrives at Eq. (4.3).

  4. 4.

    This condition for the minimal loop duration is equivalent to the one in the last section. Note here that setting \(W={\mathcal L}\) in \(t_{\rm enc}\approx2/\lambda\ln\left[W/({\mathcal L}\epsilon)\right]\) obtained in the last footnote yields the same expression for \(t_{\rm enc}\) as setting \(c=1\) in Eq. (2.45) as done in the last section.

  5. 5.

    As the calculation in [12] shows, this contribution is actually only non-zero due to taking into account the encounter fringes shown in Fig. 4.10.

  6. 6.

    For a detailed explanation how such contributions increasing with increasing Ehrenfest-time arise see Sect. 4.5.2.

References

  1. Chirikov, B.V., Izrailev, F.M., Shepelyansky, D.L.: Sov. Sci. Rev. Sect. C 2, 209 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Aleiner, I.L., Larkin, A.I.: Phys. Rev. B 54, 14423 (1996)

    Article  ADS  Google Scholar 

  3. Adagideli,  I.: Phys. Rev. B 68, 233308 (2003)

    Article  ADS  Google Scholar 

  4. Brouwer, P.W., Rahav, S., Tian, C.: Phys. Rev. E 74, 066208 (2006)

    Article  ADS  Google Scholar 

  5. Tian, C., Larkin, A.I.: Phys. Rev. B 70, 035305 (2004)

    Article  ADS  Google Scholar 

  6. Waltner, D., Gutiérrez, M., Goussev, A., Richter, K.: Phys. Rev. Lett. 101, 174101 (2008)

    Article  ADS  Google Scholar 

  7. Gutkin, B., Waltner, D., Gutiérrez, M., Kuipers, J., Richter, K.: Phys. Rev. E 81, 036222 (2010)

    Article  ADS  Google Scholar 

  8. Kuipers, J., Waltner, D., Petitjean, C., Berkolaiko, G., Richter, K.: Phys. Rev. Lett. 104, 027001 (2011)

    Article  ADS  Google Scholar 

  9. Waltner, D., Kuipers, J.: Phys. Rev. E 82, 066205 (2010)

    Article  ADS  Google Scholar 

  10. Waltner, D., Kuipers, J., Richter, K.: Phys. Rev. B 83, 195315 (2011)

    Article  ADS  Google Scholar 

  11. Kuipers, J., Engl, T., Berkolaiko, G., Petitjean, C., Waltner, D., Richter, K.: Phys. Rev. B 83, 195316 (2011)

    Article  ADS  Google Scholar 

  12. Brouwer, P.W., Rahav, S.: Phys. Rev. B 74, 075322 (2006)

    Article  ADS  Google Scholar 

  13. Jacquod, P., Whitney, R.S.: Phys. Rev. B 73, 195115 (2006)

    Article  ADS  Google Scholar 

  14. Rahav, S., Brouwer, P.W.: Phys. Rev. Lett. 96, 196804 (2006)

    Article  ADS  Google Scholar 

  15. Rahav, S., Brouwer, P.W.: Phys. Rev. Lett. 95, 056806 (2005)

    Article  ADS  Google Scholar 

  16. Yevtushenko, O., Lütjering, G., Weiss, D., Richter, K.: Phys. Rev. Lett. 84, 542 (2000)

    Article  ADS  Google Scholar 

  17. Schomerus, H., Tworzydło, J.: Phys. Rev. Lett. 93, 154102 (2004)

    Article  ADS  Google Scholar 

  18. Schomerus, H., Jacquod, P.: J. Phys. A 38, 10663 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Goussev, A., Richter, K.: Phys. Rev. E 75, 015201(R) (2007)

    Article  ADS  Google Scholar 

  20. Goussev, A., Waltner, D., Richter, K., Jalabert, R.A.: New J. Phys. 10, 093010 (2008)

    Article  ADS  Google Scholar 

  21. Beenakker, C.W.J.: Rev. Mod. Phys. 69, 731 (1997)

    Article  ADS  Google Scholar 

  22. Müller, S., Heusler, S., Braun, P., Haake, F.: New J. Phys. 9, 12 (2007)

    Article  Google Scholar 

  23. Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. Lett. 93, 014103 (2004)

    Article  ADS  Google Scholar 

  24. Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. E 72, 046207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Müller, S.: Periodic-orbit approach to universality in quantum chaos. Ph.D. thesis, Universität Duisburg, Essen (2005)

    Google Scholar 

  26. Brouwer, P.W., Rahav, S.: Phys. Rev. B 74, 085313 (2006)

    Article  ADS  Google Scholar 

  27. Whitney, R.S.: Phys. Rev. B 75, 235404 (2007)

    Article  ADS  Google Scholar 

  28. Waltner, D., Kuipers, J., Jacquod, P., Richter, K.: arXiv: 1108.5091, unpublished (2011)

    Google Scholar 

  29. Heusler, S., Müller, S., Braun, P., Haake, F.: Phys. Rev. Lett. 96, 066804 (2006)

    Article  ADS  Google Scholar 

  30. Kuipers, J., Sieber, M.: Phys. Rev. E 77, 046219 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Büttiker, M., Prêtre, A., Thomas, H.: Phys. Rev. Lett. 70, 4114 (1993)

    Article  ADS  Google Scholar 

  32. Büttiker, M.: . J. Phys.: Condens. Matter 5, 9361 (1993)

    Article  ADS  Google Scholar 

  33. Petitjean, C., Waltner, D., Kuipers, J., Adagideli,  I., Richter, K.: Phys. Rev. B 80, 115310 (2009)

    Article  ADS  Google Scholar 

  34. Brouwer, P.W., Büttiker, M.: Europhys. Lett. 37, 441 (1997)

    Article  ADS  Google Scholar 

  35. Wigner, E.P.: Phys. Rev. 98, 145 (1955)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Smith, F.T.: Phys. Rev. 118, 349 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  37. Friedel, J.: Phil. Mag. 43, 153 (1952)

    MATH  Google Scholar 

  38. Sieber, M., Richter, K.: Phys. Scr. T. 90, 128 (2001)

    Article  ADS  Google Scholar 

  39. Sieber, M.: J. Phys. A 35, L613 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Silvestrov, P.G., Goorden, M.C., Beenakker, C.W.J.: Phys. Rev. Lett. 90, 116801 (2003)

    Article  ADS  Google Scholar 

  41. Whitney, R.S., Jacquod, P.: Phys. Rev. Lett. 94, 116801 (2005)

    Article  ADS  Google Scholar 

  42. Agam, O., Aleiner, I., Larkin, A.: Phys. Rev. Lett. 85, 3153 (2000)

    Article  ADS  Google Scholar 

  43. Silvestrov, P.G., Goorden, M.C., Beenakker, C.W.J.: Phys. Rev. B 67, 241301(R) (2003)

    Article  ADS  Google Scholar 

  44. Tworzydło, J., Tajic, A., Schomerus, H., Beenakker, C.W.J.: Phys. Rev. B 68, 115313 (2003)

    Article  ADS  Google Scholar 

  45. Whitney, R.S., Jacquod, P.: Phys. Rev. Lett. 96, 206804 (2006)

    Article  ADS  Google Scholar 

  46. Goorden, M.C., Jacquod, P., Beenakker, C.W.J.: Phys. Rev. B 72, 064526 (2005)

    Article  ADS  Google Scholar 

  47. Beenakker, C.W.J.: Lect. Notes Phys. 667, 131 (2005)

    Article  ADS  Google Scholar 

  48. Berkolaiko, G., Kuipers, J.: J. Phys. A 43, 035101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  49. Andreev, A.F.: Sov. Phys. JETP 19, 1228 (1964)

    Google Scholar 

  50. Kosztin, I., Maslov, D.L., Goldbart, P.M.: Phys. Rev. Lett. 75, 1735 (1995)

    Article  ADS  Google Scholar 

  51. Morpurgo, A.F., Holl, S., van Wees, B.J., Klapwijk, T.M., Borghs, G.: Phys. Rev. Lett. 78, 2636 (1997)

    Article  ADS  Google Scholar 

  52. Jakob, M., Stahl, H., Knoch, J., Appenzeller, J., Lengeler, B., Hardtdegen, H., Lüth, H.: Appl. Phys. Lett. 76, 1152 (2000)

    Article  ADS  Google Scholar 

  53. Melsen, J.A., Brouwer, P.W., Frahm, K.M., Beenakker, C.W.J.: Europhys. Lett. 35, 7 (1996)

    Article  ADS  Google Scholar 

  54. Lodder, A., Nazarov, Y.V.: Phys. Rev. B 58, 5783 (1998)

    Article  ADS  Google Scholar 

  55. Schomerus, H., Beenakker, C.W.J.: Phys. Rev. Lett. 82, 2951 (1999)

    Article  ADS  Google Scholar 

  56. Ihra, W., Leadbeater, M., Vega, J.L., Richter, K.: Eur. Phys. J. B 21, 425 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  57. Taras-Semchuk, D., Altland, A.: Phys. Rev. B 64, 014512 (2001)

    Article  ADS  Google Scholar 

  58. Adagideli,  I., Beenakker, C.W.J.: Phys. Rev. Lett. 89, 237002 (2002)

    Article  ADS  Google Scholar 

  59. Vavilov, M.G., Larkin, A.I.: Phys. Rev. B 67, 115335 (2003)

    Article  ADS  Google Scholar 

  60. Micklitz, T., Altland, A.: Phys. Rev. Lett. 103, 080403 (2009)

    Article  ADS  Google Scholar 

  61. Beenakker, C.W.J.: Phys. Rev. Lett. 67, 3836 (1991)

    Article  ADS  Google Scholar 

  62. Berkolaiko, G., Harrison, J.M., Novaes, M.: J. Phys. A 41, 365102 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Waltner .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waltner, D. (2012). Ehrenfest-Time Effects in Mesoscopic Systems. In: Semiclassical Approach to Mesoscopic Systems. Springer Tracts in Modern Physics, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24528-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24528-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24527-5

  • Online ISBN: 978-3-642-24528-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics