Skip to main content

From Lyapunov-Krasovskii Functionals for Delay-Independent Stability to LMI Conditions for µ-Analysis

  • Conference paper
Advances in Time-Delay Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 38))

Abstract

Our scope in this note is to give a unified view on different approaches for studying stabilit y of delay systems and parameter-dependent systems, and on estimation methods for some structured singular values. The classical approaches arc exposed in Scnions 1 to 3. A new result which links them together is given in Section 4, Elements of proof are gathered in Section 5. Comments are provided in Section 6. Finally, Section 7 proposes some open problems. For sake of space, exposure is kept to minimum, the reader is refered to the cited literature for more details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asai, S. Hara, T. Iwasaki (1996). Simultaneous modeling and synthesis for robust control by LFT scaling. Proc. IFAC World COngress part G, 309–314

    Google Scholar 

  2. P.-A. Bijman (2002). Lyapunov equation for the stability of linear delay systems of retarded and neutral type, IEEE TrailS. Automat. Control 47no 2, 327-335

    Article  Google Scholar 

  3. P.-A. Bliman (2002). Nonconservative LMI approach 10 robust stability for systems with uncertain scalar parameters, Proc. oJ 41th IEEE CDC, Las Vegas (Nevada), December 2002

    Google Scholar 

  4. P.-A. Bliman (2003). An existence result for polynomial solutions of parameter-dependent LMIs Report research no 4798, INRIA. Available online at http://www.inria.fr/rrrt/rr-4798.html

    Google Scholar 

  5. P.-A. Bliman (2003, to appear). A convex approach to robust stability for linear systems with uncertain scalar parameters, SIAM J. on Control and Optimization

    Google Scholar 

  6. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan (1994). Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics vol. 15, SIAM Philadelphia

    Google Scholar 

  7. J. Chen, H.A. Latchman (1995). Frequency sweeping tests for stability independent of delay, IEEE Trans. Automat. Control 40no 9, 1640–1645

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Deltori, C.W. Scherer (1998). Robust stability analysis for parameter dependent systems using full block S-procedure, Proc. of 37th IEEE CDC, Tampa (Florida), 2798–2799

    Google Scholar 

  9. M. Dellori, C.W. Scherer (2000). New robust stability and pcrfonnance conditions based on parameter dependent multipliers, Proc. oJ 39th IEEE CDC, Sydney (Australia)

    Google Scholar 

  10. J.C. Doyle (1982). Analysis of feedback systems with structured uncertainties, IEE Proc. Part D 129no 6, 242~Z50

    MathSciNet  Google Scholar 

  11. E. Feron, P. Apkarian, P. Gahinet (1996). Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions, IEEE Trans. Automat. Control 41no 7, 1041–1046

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Fu, N.E. Barabanov (1997). Improved upper bounds for the mixed structured singular value, IEEE Trans. Automat. Control 42no 10, 1447–1452

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Fu, S. Oasgupta (2000). Parametric Lyapunov functions for uncertain systems: the multiplier approach, in Advances in Linear Matrix Inequality Methods in Control (L. El Ghaoui S.-I. Niculeseu eds.), SIAM Philadelphia, 95–108

    Chapter  Google Scholar 

  14. P. Gahinet, P. Apkarian, M. Chilali (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Trans. Automat. Control 41no 3, 436–442

    Article  MathSciNet  MATH  Google Scholar 

  15. J.K. Hale (1977). Theory of Functional differential equations, Applied Mathematical Sciences 3, Springer Verlag New York

    Google Scholar 

  16. J.K. Hale. E.F. Infante, F.S.P. Tsen (l985). Stability in linear delay equations. J. Math. Anal. Appl. 115, 533–555

    Article  MathSciNet  Google Scholar 

  17. D. Hertz, E.I. Jury, E. Zeheb (1984). Stability independent and dependent of delay for delay differential systems, J. Franklin Institute 318no 3, 143–150

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Iwasaki (1998). LPV system anal ysis with quadratic separator, Proc. of 37th IEEE CDC, Tampa Florida)

    Google Scholar 

  19. T. Iwasaki, S. Hara (1998). Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations. IEEE TrailS. Automat. Control 43no 5, 619–630

    Article  MathSciNet  MATH  Google Scholar 

  20. E. W. Kamen (1982). Linear systems with commensurate time delays: stability and stabilization independent of delay, IEEE TranS. Automat. Control 27no 2, 367–375

    Article  MathSciNet  MATH  Google Scholar 

  21. E. W. Kamen (1983). Correction to “Linear systems with commensurate time delays: stability and stabilization independent of delay”. IEEE Trans. Automat. Control 28no 2, 248–249

    Article  MathSciNet  Google Scholar 

  22. N.N. Krasovskii (1963). Stability of motion. Applications of LyapUnOv’s secOnd method to differential systems and equations with delay, Stanford University Press Stanford

    MATH  Google Scholar 

  23. S.-I. Niculescu. J.-M. Dion, L. Dugard, H. Li (1996). Asymptotic stability sets for linear systems with commensurable delays: a matrix pencil approach, IEEE/IMACS CESA’ 96, Lille France

    Google Scholar 

  24. D.C.W. Ramos, P.L.D. Peres (2001). An LMI approach 10 compute robust stability domains for uncertain linear systems, Proc. American Contr. Conf., Arlington (Virginia), 4073–4078

    Google Scholar 

  25. A. Rantzer (1996). On the Kalman-Yakubovich-Popov lemma, Syst. Contr. Lett. 28no 1, 7–10

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Szegö, R.E. Kalman (1963). Sur la stabilité absolue d’un système d’équations aux différences finies, Camp. Rend. Acad. Sci. 257no 2, 338–390

    Google Scholar 

  27. O. Toker, H. Özbay (1996). Complexity issues in robust stability of linear delay-differential systems, Math. Control Signals Systems 9no 4, 386–400

    Article  MathSciNet  MATH  Google Scholar 

  28. O. Toker, H. Özbay (1998). On the complexity of purely complex µ computation and related problems in multidimensional systems, IEEE TranS. AutOmat. Control 43no 3, 409–414

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Trofino (1999). Parameter dependent Lyapunov functions for a class of uncertain linear systems: a LMI approach, Proc. of 38th IEEE CDC, Phoenix (Arizona), 2341–2346

    Google Scholar 

  30. A. Trofino, C.E. de Souza (1999). Bi-quadratic stability of uncertain linear systems, Proc. of 38th IEEE CDC, Phoenix (Arizona)

    Google Scholar 

  31. V.A. Yakubovich (1962). Solution of certain matrix inequalities in the stability theory of nonlinear control systems, Dokl. Akad. Nauk. SSSR 143, 1304–1307 (English translation in Soviet Math. Oakl. 3, 620–623 (1962))

    MathSciNet  Google Scholar 

  32. J. Zhang, C.R. Knospe, P. Tsiotras (2001). Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions. IEEE TrailS. Automat. Control 46no 3 482–486

    Article  MATH  Google Scholar 

  33. X. Zhang, P. Tsiotras, T. Iwasaki (2003, Submitted). Stability analysis of linear parametrically-dependent systems. 42nd IEEE COnfernce on Decision and Control, Maui (Hawaii)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bliman, PA. (2004). From Lyapunov-Krasovskii Functionals for Delay-Independent Stability to LMI Conditions for µ-Analysis. In: Niculescu, SI., Gu, K. (eds) Advances in Time-Delay Systems. Lecture Notes in Computational Science and Engineering, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18482-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18482-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20890-7

  • Online ISBN: 978-3-642-18482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics