Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 804))

  • 1111 Accesses

Abstract

In this chapter we will report on another direction of investigation for SQC, which has received some attention. Instead of using a differential operator representation for the fermionic momenta (see Chap. 5 of either volume), a matrix representation is employed. The ground-breaking importance of the matrix representation approach should not be ignored. Since it was introduced to the SQC community in the late 1980s, this line of research has indeed provided many routes for study. In addition, there are still some unresolved issues to explore, and these deserve due consideration. In this chapter, we thus present this research programme [1–10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are referring to those products of the fermionic components where the indices are all contracted, possibly with the assistance of other variables, e.g., the tetrad (see Sect. 5.2.3 of Vol. I).

  2. 2.

    Recall that the Lorentz constraints act (classically as generators) on the flat (tangent space) indices present in the, e.g., vierbein and the Rarita–Schwinger variables (denoted by the latin letters a, b, … throughout this book).

  3. 3.

    Compare results in Exercise 7.1 with what we retrieve here in Sect. 7.2.1.

  4. 4.

    See Sects. 3.4.3 and 4.1.2 of Vol. I and Sect. 7.2.1 of Vol. II. The reader may recall in particular that assigning a spin structure to a theory (of a point particle, string, or membrane, or general relativity) amounts to introducing SUSY properties [1219].

  5. 5.

    The index 1 in \({\mathcal S}_1\) is the spinor index associated with \(\overline{{\check{\psi}}}{}^{[a]}_0\), [a] = 1.

  6. 6.

    Generically, they will satisfy a Clifford algebra via a matrix representation of the algebras, taking \({\check{\psi}}_{i[a]}\) to contain all Grassmann dependence (and constituting a classical limit of Dirac matrices).

  7. 7.

    Each quantum constraint is written \( \mathcal{S}_{[a]} \varPsi_{[a]} = 0\), where each \( \mathcal{S}_{[a]}\) represents a separate square root for the Hamiltonian constraint \( \mathcal{H}_\bot\), and the \( \mathcal{S}_{[a]}\) are matrices of the smallest possible rank that produces the appropriate algebra for \( \mathcal{S}_{[a]}\) and the \({\check{\psi}}_{i{[a]}}\).

  8. 8.

    Chapter 5 of Vol. I focused on constructing inequivalent Lorentz invariants, i.e., providing scalar wave functions as fermionic and bosonic power series expansions that automatically fulfill the Lorentz condition.

References

  1. Macias, A.: The ideas behind the different approaches to quantum cosmology. Gen. Rel. Grav. 31, 653–671 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Macias, A., Mielke, E.W., Socorro, J.: Supersymmetric quantum cosmology: The Lorentz constraint.In: 8th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 8), Jerusalem, Israel, 22–27 June 1997

    Google Scholar 

  3. Macias, A., Obregon, O., Ryan, M.P.: Quantum cosmology: The supersymmetric square root. Class. Quant. Grav. 4, 1477–1486 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  4. Macias, A., Obregon, O., Socorro, J.: Supersymmetric quantum cosmology. Int. J. Mod. Phys. A 8, 4291–4317 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Macias, A., Ryan, M.P.: Quantum cosmology for the Bianchi type IX models. In: 7th Marcel Grossmann Meeting on General Relativity (MG 7), Stanford, CA, 24–30 July 1994 127

    Google Scholar 

  6. Macias, A., Mielke, E.W., Socorro, J.: Supersymmetric quantum cosmology: The physical states. Phys. Rev. D 57, 1027–1033 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Obregon, O.: Conserved current and the possibility of a positive definite probability density in quantum cosmology. In: 8th Jorge Andre Swieca Summer School: Particles and Fields, Rio de Janeiro, Brazil, 5–18 February 1995

    Google Scholar 

  8. Obregon, O., Ramirez, C.: SUSY quantum cosmology with matrix representation for fermions. In: 5th Mexican Workshop of Particles and Fields, Puebla, Mexico, 30 October–3 November 1995

    Google Scholar 

  9. Obregon, O., Ramirez, C.: Dirac-like formulation of quantum supersymmetric cosmology. Phys. Rev. D 57, 1015–1026 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Socorro, J., Obregon, O., Macias, A.: Supersymmetric microsuperspace quantization for the Taub model. Phys. Rev. D 45, 2026–2032 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ryan, M.P., Shepley, L.C.: Homogeneous Relativistic Cosmologies. Princeton Series in Physics, 320pp. Princeton University Press, Princeton, NJ (1975)

    Google Scholar 

  12. Casalbuoni, R.: The classical mechanics for Bose–Fermi systems. Nuovo Cim. A 33, 389 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  13. Pilati, M.: The canonical formulation of supergravity. Nucl. Phys. B 132, 138 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  14. Tabensky, R., Teitelboim, C.: The square root of general relativity. Phys. Lett. B 69, 453 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  15. Teitelboim, C.: Supergravity and square roots of constraints. Phys. Rev. Lett. 38, 1106–1110 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  16. Teitelboim, C.: Surface integrals as symmetry generators in supergravity theory. Phys. Lett. B 69, 240–244 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  17. Teitelboim, C.: Spin, supersymmetry, and square roots of constraints. In: Proceedings of Current Trends in Theory of Fields, Tallahassee, FL, 6–7 April 1978

    Google Scholar 

  18. Teitelboim, C.: The Hamiltonian structure of space-time (1978)

    Google Scholar 

  19. Teitelboim, C.: How commutators of constraints reflect the space-time structure. Ann. Phys. 79, 542–557 (1973)

    Article  ADS  Google Scholar 

  20. Galvao, C.A.P., Teitelboim, C.: Classical supersymmetric particles. J. Math. Phys. 21, 1863 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  21. Finkelstein, R.J., Kim, J.: Solutions of the equations of supergravity. J. Math. Phys. 22, 2228 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Moncrief, V., Ryan, M.P.: Amplitude real phase exact solutions for quantum mixmaster universes. Phys. Rev. D 44, 2375–2379 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  23. Macias, A., Mielke, E.W., Socorro, J.: Supersymmetric quantum cosmology for Bianchi class A models. Int. J. Mod. Phys. D 7, 701–712 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Macias, A., Quevedo, H., Sanchez, A.: Gowdy T3 cosmological models in N = 1 supergravity. gr-qc/0505013 (2005)

    Google Scholar 

  25. Macias, A., Camacho, A., Kunz, J., Laemmerzahl, C.: Midisuperspace supersymmetric quantum cosmology. Phys. Rev. D 77, 064009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vargas Moniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moniz, P.V. (2010). SQC Matrix Representation. In: Quantum Cosmology - The Supersymmetric Perspective - Vol. 2. Lecture Notes in Physics, vol 804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11570-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11570-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11569-1

  • Online ISBN: 978-3-642-11570-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics