Skip to main content

Connections and Loops Within SQC

  • Chapter
  • First Online:
Quantum Cosmology - The Supersymmetric Perspective - Vol. 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 804))

  • 1099 Accesses

Abstract

This is an area of SQC where there exists a wide range of possibilities for exploration. Some progress has been made, in which cosmological models were investigated either through a reduction of SUGRA formulated in terms of connections (or loops) [1–19] or through a (hidden) N = 2 SUSY framework based upon Bianchi models described ab initio with connections [20,21]. Further motivation will surely arise from recent developments in loop quantum cosmology [22–43], inheriting some of the main features and principles from loop quantum gravity [44–66]. In this chapter, we explain why the outlook is so promising in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The constraint \(\mathcal{J}^{AB}\) enforces SL(2,\(\mathbb{C}\)) covariance (see Appendix A) and generalizes the Gauss constraint of vacuum general relativity.

  2. 2.

    It is possible to proceed differently. We have to resort to a description in Euclidean terms, where all the Ashtekar variables become real. But non-polynomial expressions resurface, although there are claims that a satisfactory quantization is possible [3].

  3. 3.

    The (scientifically subversive) reader may nevertheless question the use of ‘reality conditions’, and rightly so. There are several works on this possibility (either in general relativity or N = 1 SUGRA). The innovative setting known as the Barbero–Sawaguchi canonical transformation uses real Ashtekar variables, but at a price. One loses the polynomiality of the Hamiltonian constraint and has to deal with a more complicated form of Dirac brackets (although these can nevertheless be made simpler by switching to new variables) [15].

  4. 4.

    Here \(\mathcal{D}_{i}\) is the covariant derivative with connection \({{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{iA}{}^{B}\) and curvature

    $$\tilde{{\mathcal{R}}}_{ijA}{}^{B}\equiv 2\partial_{[i}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{j]A}{}^{B} +2{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{[i|A}{}^{C}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{j]C}{}^{B}\;.$$
  5. 5.

    For higher N SUGRA, see [5, 9, 10, 13, 16, 18, 19].

  6. 6.

    The action is nevertheless not complex, due to the fact that \(R_{[\lambda \mu \nu ]\rho }=0\). In addition, the imaginary part of the Lagrangian becomes a total derivative when the \({{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{ABi}\) equation is satisfied.

  7. 7.

    This means that we will employ Poisson variables instead of having to resort to the Dirac brackets, since we will have no second-class constraints of the type discussed in Chap. 4 of Vol. I.

  8. 8.

    Or almost polynomial, as the h −1 term indicates in some expressions. Nonetheless, suitable redefinitions of the Lagrange multipliers can bring the full set of constraints into the desired polynomial form. In summary, we have to use

    $$\psi _{A0}^{(1)} \equiv h^{-1/2}n_{A}{}^{A^{\prime }}{\overline \psi}{}_{A^\prime 0}\;,$$
    ((6.32))
    $${\overline {\mathcal{S}}}{}^{A^{\prime }} \longrightarrow \mathcal{S}^{(1)A}\equiv \left( {{\relax\ifmmode\mathsf{E}\else\textsf{E}\fi}}^{j}{{\relax\ifmmode\mathsf{E}\else\textsf{E}\fi}}^{k}\mathcal{D}_{[j}\psi _{k]}\right) ^{A}\;,$$
    ((6.33))
    $$\mathcal{H}^{(1)AB} \equiv \mathcal{H}^{AB}+\left( 2h^{-1}{{\relax\ifmmode\mathsf{E}\else\textsf{E}\fi}}_{C}{}^{A}{}_i\pi ^{Bi}\right) \mathcal{S}^{(1)C}\;,$$
    ((6.33))

    to get a full polynomial set of constraints in N = 1 SUGRA.

  9. 9.

    We recall that, in N = 1 SUGRA, only a zero or negative cosmological constant is allowed [70]. Note the different use signs and constants with regard to [4, 8, 13, 14].

  10. 10.

    In general terms,

    $$S_\textrm{CS}\sim \frac{1}{\varUpsilon^{2}}\int \varepsilon ^{ijk}\left( {{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{i}{}^{AB}\partial _{j}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{kAB}+\frac{2}{3}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{i}{}^{AB}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{jB}^{\;C}{{\relax\ifmmode\mathsf{A}\else\textsf{A}\fi}}_{kCA}+2\varUpsilon\psi _{i}^{A}\mathcal{D}_{j}\psi _{kA}\right)\;.$$
  11. 11.

    The reader will recall that only even powers appear because of the SL(2,\(\mathbb{C}\)) invariance. There is no mixing of fermionic number (in this case), so the quantum constraints (6.69), (6.70), and (6.71) can be solved order by order.

References

  1. Capovilla, R., Guven, J.: Superminisuperspace and new variables. Class. Quant. Grav. 11, 1961–1970 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. Capovilla, R., Obregon, O.: No quantum superminisuperspace with Λ = 0. Phys. Rev. D 49, 6562–6565 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  3. Cheng, A.D.Y., D’Eath, P.D.: Relation between the Chern–Simons functional and the no boundary proposal. Phys. Lett. B 398, 277–280 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  4. D’Eath, P.D.: Supersymmetric Quantum Cosmology, 252pp. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  5. Ezawa, K.: Ashtekar’s formulation for N = 1, 2 supergravities as ‘constrained’ BF theories. Prog. Theor. Phys. 95, 863–882 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Gambini, R., Obregon, O., Pullin, J.: Towards a loop representation for quantum canonical supergravity. Nucl. Phys. B 460, 615–631 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gorobey, N.N., Lukyanenko, A.S.: The Ashtekar complex canonical transformation for supergravity. Class. Quant. Grav. 7, 67–71 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. Jacobson, T.: New variables for canonical supergravity. Class. Quant. Grav. 5, 923 (1988)

    Article  ADS  MATH  Google Scholar 

  9. Kadoyoshi, T., Nojiri, S.: N = 3 and N = 4 two-form supergravities. Mod. Phys. Lett. A 12, 1165–1174 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Kunitomo, H., Sano, T.: The Ashtekar formulation for canonical N = 2 supergravity. Int. J. Mod. Phys. D 1, 559–570 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  11. Macias, A.: Chiral (N = 1) supergravity. Class. Quant. Grav. 13, 3163–3174 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Matschull, H.-J.: About loop states in supergravity. Class. Quant. Grav. 11, 2395–2410 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. Sano, T.: The Ashtekar formalism and WKB wave functions of N = 1, N = 2 supergravities. hep-th/9211103 (1992)

    Google Scholar 

  14. Sano, T., Shiraishi, J.: The nonperturbative canonical quantization of the N = 1 supergravity. Nucl. Phys. B 410, 423–450 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Sawaguchi, M.: Canonical formalism of N = 1 supergravity with the real Ashtekar variables. Class. Quant. Grav. 18, 1179–1186 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Tsuda, M.: N = 3 chiral supergravity compatible with the reality condition and higher N chiral Lagrangian density. Phys. Rev. D 63, 104021 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  17. Tsuda, M., Shirafuji, T.: Supersymmetry algebra in N = 1 chiral supergravity. Phys. Rev. D 54, 2960–2963 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  18. Tsuda, M., Shirafuji, T.: Construction of N = 2 chiral supergravity compatible with the reality condition. Class. Quant. Grav. 16, 69–77 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Tsuda, M., Shirafuji, T.: The canonical formulation of N = 2 supergravity in terms of the Ashtekar variable. Phys. Rev. D 62, 064020 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. Graham, R.: Supersymmetric general Bianchi type IX cosmology with a cosmological term. Phys. Lett. B 277, 393–397 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  21. Obregon, O., Pullin, J., Ryan, M.P.: Bianchi cosmologies: New variables and a hidden supersymmetry. Phys. Rev. D 48, 5642–5647 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  22. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003)

    MathSciNet  Google Scholar 

  23. Bojowald, M.: Loop quantum cosmology. I: Kinematics. Class. Quant. Grav. 17, 1489–1508 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bojowald, M.: Dynamical initial conditions in quantum cosmology. Phys. Rev. Lett. 87, 121301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  25. Bojowald, M.: The inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bojowald, M.: The semiclassical limit of loop quantum cosmology. Class. Quant. Grav. 18, L109–L116 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Bojowald, M.: Isotropic loop quantum cosmology. Class. Quant. Grav. 19, 2717–2742 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Bojowald, M.: Quantization ambiguities in isotropic quantum geometry. Class. Quant. Grav. 19, 5113–5230 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quant. Grav. 20, 2595–2615 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 8, 11 (2005)

    Google Scholar 

  31. Bojowald, M., Lidsey, J.E., Mulryne, D.J., Singh, P., Tavakol, R.: Inflationary cosmology and quantization ambiguities in semi-classical loop quantum gravity. Phys. Rev. D 70, 043530 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  32. Bojowald, M., Maartens, R., Singh, P.: Loop quantum gravity and the cyclic universe. Phys. Rev. D 70, 083517 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  33. Bojowald, M., Morales-Tecotl, H.A.: Cosmological applications of loop quantum gravity. Lect. Notes Phys. 646, 421–462 (2004)

    Article  ADS  Google Scholar 

  34. Bojowald, M., Vandersloot, K.: Loop quantum cosmology, boundary proposals, and inflation. Phys. Rev. D 67, 124023 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  35. Henriques, A.B.: Loop quantum cosmology and the Wheeler–DeWitt equation. Gen. Rel. Grav. 38, 1645–1659 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Lidsey, J.E.: Early universe dynamics in semi-classical loop quantum cosmology. J. Cosmol. Astropart Phys. 0412, 007 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  37. Lidsey, J.E., Mulryne, D.J., Nunes, N.J., Tavakol, R.: Oscillatory universes in loop quantum cosmology and initial conditions for inflation. Phys. Rev. D 70, 063521 (2004)

    Article  ADS  Google Scholar 

  38. Mulryne, D.J., Tavakol, R., Lidsey, J.E., Ellis, G.F.R.: An emergent universe from a loop. Phys. Rev. D 71, 123512 (2005)

    Article  ADS  Google Scholar 

  39. Nunes, N.J.: Inflation: A graceful entrance from loop quantum cosmology. Phys. Rev. D 72, 103510 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  40. Tsujikawa, S., Singh, P., Maartens, R.: Loop quantum gravity effects on inflation and the CMB. Class. Quant. Grav. 21, 5767–5775 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Velhinho, J.M.: Comments on the kinematical structure of loop quantum cosmology. Class. Quant. Grav. 21, L109 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Velhinho, J.M.: The quantum configuration space of loop quantum cosmology. Class. Quant. Grav. 24, 3745–3758 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Vereshchagin, G.V.: Qualitative approach to semi-classical loop quantum cosmology. J. Cosmol. Astropart. Phys. 0407, 013 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  44. Ashtekar, A.: Lectures on Nonperturbative Canonical Gravity. Advanced Series in Astrophysics and Cosmology 6, 334pp. World Scientific, Singapore (1991)

    Google Scholar 

  45. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244–2247 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  46. Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1602 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  47. Ashtekar, A.: Quantum geometry and gravity: Recent advances. gr-qc/0112038 (2001)

    Google Scholar 

  48. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: A status report. Class. Quant. Grav. 21, R53 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Ashtekar, A., Lewandowski, J., Marolf, D., Mourao, J., Thiemann, T.: Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 36, 6456–6493 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Ashtekar, A., Romano, J.D., Tate, R.S.: New variables for gravity: Inclusion of matter. Phys. Rev. D 40, 2572 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  51. Barbero, J.F.: Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D 51, 5507–5510 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  52. Capovilla, R., Jacobson, T., Dell, J., Mason, L.: Self-dual two-forms and gravity. Class. Quant. Grav. 8, 41–57 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Corichi, A., Hauser, A.: Bibliography of publications related to classical self-dual variables and loop quantum gravity. gr-qc/0509039 (2005)

    Google Scholar 

  54. Immirzi, G.: Real and complex connections for canonical gravity. Class. Quant. Grav. 14, L177–L181 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  55. Jacobson, T., Smolin, L.: Nonperturbative quantum geometries. Nucl. Phys. B 299, 295 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  56. Kodama, H.: Holomorphic wave function of the universe. Phys. Rev. D 42, 2548–2565 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  57. Manojlovic, N., Mikovic, A.: Canonical analysis of the Bianchi models in the Ashtekar formulation. Class. Quant. Grav. 10, 559–574 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  58. Marolf, D., Mourao, J.M.: On the support of the Ashtekar–Lewandowski measure. Commun. Math. Phys. 170, 583–606 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Morales-Tecotl, H.A., Urrutia, L.F., Vergara, J.D.: Reality conditions for Ashtekar variables as Dirac constraints. Class. Quant. Grav. 13, 2933–2940 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: An outside view. Class. Quant. Grav. 22, R193 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Perez, A.: Introduction to loop quantum gravity and spin foams. gr-qc/0409061 (2004)

    Google Scholar 

  62. Rovelli, C.: Quantum Gravity, p. 455. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  63. Rovelli, C.: Loop quantum gravity. Living Rev. Rel. 1, 1 (1998)

    MathSciNet  Google Scholar 

  64. Rovelli, C., Smolin, L.. Loop space representation of quantum general relativity. Nucl. Phys. B 331, 80 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  65. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593–622 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Thiemann, T.: Introduction to modern canonical quantum general relativity. gr-qc/0110034 (2001)

    Google Scholar 

  67. Kodama, H.: Specialization of Ashtekar’s formalism to Bianchi cosmology. Prog. Theor. Phys. 80, 1024 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  68. Louko, J.: Chern–Simons functional and the no-boundary proposal in Bianchi IX quantum cosmology. Phys. Rev. D 51, 586–590 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  69. Mena Marugan, G.A.: Is the exponential of the Chern–Simons action a normalizable physical state? Class. Quant. Grav. 12, 435–442 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  70. Townsend, P.K.: Cosmological constant in supergravity. Phys. Rev. D 15, 2802–2804 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  71. D’Eath, P.D.: Quantization of the Bianchi IX model in supergravity. Phys. Rev. D 48, 713–718 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  72. Cheng, A.D.Y., D’Eath, P.D.: Diagonal quantum Bianchi type IX models in N = 1 supergravity. Class. Quant. Grav. 13, 3151–3162 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Csordas, A., Graham, R.: Supersymmetric minisuperspace with nonvanishing fermion number. Phys. Rev. Lett. 74, 4129–4132 (1995)

    Article  ADS  Google Scholar 

  74. Cheng, A.D.Y., D’Eath, P.D., Moniz, P.R.L.V.: Quantization of the Bianchi type IX model in supergravity with a cosmological constant. Phys. Rev. D 49, 5246–5251 (1994)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vargas Moniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moniz, P.V. (2010). Connections and Loops Within SQC . In: Quantum Cosmology - The Supersymmetric Perspective - Vol. 2. Lecture Notes in Physics, vol 804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11570-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11570-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11569-1

  • Online ISBN: 978-3-642-11570-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics