Skip to main content

Further Explorations in SQC N = 1 SUGRA

  • Chapter
  • First Online:
Quantum Cosmology - The Supersymmetric Perspective - Vol. 2

Part of the book series: Lecture Notes in Physics ((LNP,volume 804))

  • 1113 Accesses

Abstract

In Chap. 5 of Vol. I, we discussed the basic framework and associated results from the methodology followed there (see [1] and also [2,3,4]). Recall that this uses the reduction of canonical quantum N = 1 SUGRA in four spacetime dimensions (see Sects. 4.1 and 4.2 of Vol. I) to a cosmological minisuperspace, with the essential feature that all momenta are represented by differential operators of the canonical conjugate variables [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Extrapolating to higher orders, this situation seems to go through without any formal modifications.

  2. 2.

    It was shown in [27] for the case of the gauge group SO(3) \(\sim\) SU(2) that invariance under homogeneity and isotropy as well as gauge transformations require all components of \(\phi\) to be zero. Only for SO(N), \(N>3\), can we have \(\phi\) = (0,0,0, \(\phi_1,\ldots, \phi_{N-3}\)).

  3. 3.

    \(X^a\) ia the Killing vector of the associated Kähler geometry.

  4. 4.

    It is interesting to note that, for the \(\chi,\overline \chi\) fields, no powers of h seem to be needed to establish the equations for the coefficients in \(\varPsi\).

References

  1. D’Eath, P.D.: The canonical quantization of supergravity. Phys. Rev. D 29, 2199 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  2. D’Eath, P.D.: Supersymmetric Quantum Cosmology, 252pp. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  3. Macias, A.: The ideas behind the different approaches to quantum cosmology. Gen. Rel. Grav. 31, 653–671 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Moniz, P.V.: A supersymmetric vista for quantum cosmology. Gen. Rel. Grav. 38, 577–592 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Casalbuoni, R.: On the quantization of systems with anticommuting variables. Nuovo Cim. A 33, 115 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  6. Casalbuoni, R.: The classical mechanics for Bose–Fermi systems. Nuovo Cim. A 33, 389 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. Moniz, P.V.: Supersymmetric quantum cosmology – shaken not stirred. Int. J. Mod. Phys. A 11, 4321–4382 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bailin, D., Love, A.: Supersymmetric Gauge Field Theory and String Theory. Graduate Student Series in Physics, 322pp. IOP, Bristol (1994)

    Book  Google Scholar 

  9. Muller-Kirsten, H.J.W., Wiedemann, A.: Supersymmetry: An introduction with conceptual and calculational details, pp. 1–586. World Scientific (1987). Print-86–0955 (Kaiserslautern) (1986)

    Google Scholar 

  10. Nilles, H.P.: Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  11. Sohnius, M.F.: Introducing supersymmetry. Phys. Rep. 128, 39–204 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  12. Donets, E.E., Pashnev, A., Rosales, J.J., Tsulaia, M.: Partial supersymmetry breaking in multidimensional N = 4 SUSY QM. hep-th/0001194 (1999)

    Google Scholar 

  13. Donets, E.E., Pashnev, A., Juan Rosales, J., Tsulaia, M.M.: N = 4 supersymmetric multidimensional quantum mechanics, partial SUSY breaking and superconformal quantum mechanics. Phys. Rev. D 61, 043512 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. Donets, E.E., Tentyukov, M.N., Tsulaia, M.M.: Towards N = 2 SUSY homogeneous quantum cosmology: Einstein–Yang–Mills systems. Phys. Rev. D 59, 023515 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  15. Obregon, O., Rosales, J.J., Socorro, J., Tkach, V.I.: The wave function of the universe and spontaneous breaking of supersymmetry. hep-th/9812156 (1998)

    Google Scholar 

  16. Alty, L.J., D’Eath, P.D., Dowker, H.F.: Quantum wormhole states and local supersymmetry. Phys. Rev. D 46, 4402–4412 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  17. D’Eath, P.D., Hughes, D.I.: Supersymmetric minisuperspace. Phys. Lett. B 214, 498–502 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  18. D’Eath, P.D., Hughes, D.I.: Minisuperspace with local supersymmetry. Nucl. Phys. B 378, 381–409 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  19. Ferrara, S., Gliozzi, F., Scherk, J., van Nieuwenhuizen, P.: Matter couplings in supergravity theory. Nucl. Phys. B 117, 333 (1976)

    Article  ADS  Google Scholar 

  20. Ferrara, S., Scherk, J., Zumino, B.: Algebraic properties of extended supergravity theories. Nucl. Phys. B 121, 393 (1977)

    Article  ADS  Google Scholar 

  21. Ferrara, S., Scherk, J., Zumino, B.: Supergravity and local extended supersymmetry. Phys. Lett. B 66, 35 (1977)

    Article  ADS  Google Scholar 

  22. Freedman, D.Z.: SO(3) invariant extended supergravity. Phys. Rev. Lett. 38, 105 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  23. Freedman, D.Z., Das, A.: Gauge internal symmetry in extended supergravity. Nucl. Phys. B 120, 221 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  24. Freedman, D.Z., Schwarz, J.H.: Unification of supergravity and Yang–Mills theory. Phys. Rev. D 15, 1007 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  25. Freedman, D.Z., Schwarz, J.H.: N = 4 supergravity theory with local SU(2) SU(2) invariance. Nucl. Phys. B 137, 333 (1978)

    Article  ADS  Google Scholar 

  26. Cheng, A.D.Y., D’Eath, P.D., Moniz, P.R.L.V.: Quantization of a Friedmann–Robertson–Walker model in N = 1 supergravity with gauged supermatter. Class. Quant. Grav. 12, 1343–1354 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  27. Moniz, P.V., Mourao, J.M.: Homogeneous and isotropic closed cosmologies with a gauge sector. Class. Quant. Grav. 8, 1815–1832 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  28. Cheng, A.D.Y., D’Eath, P.D., Moniz, P.R.L.V.: Quantization of a Friedmann–Robertson–Walker model in N = 1 supergravity with gauged supermatter. gr-qc/9503009 (1995)

    Google Scholar 

  29. Cheng, A.D.Y., D’Eath, P.D., Moniz, P.R.L.V.: Quantization of the Bianchi type IX model in supergravity with a cosmological constant. Phys. Rev. D 49, 5246–5251 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  30. D’Eath, P.D.: Quantization of the supersymmetric Bianchi I model with a cosmological constant. Phys. Lett. B 320, 12–15 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  31. Csordas, A., Graham, R.: Nontrivial fermion states in supersymmetric minisuperspace. gr-qc/9503054 (1994)

    Google Scholar 

  32. Csordas, A., Graham, R.: Supersymmetric minisuperspace with nonvanishing fermion number. Phys. Rev. Lett. 74, 4129–4132 (1995)

    Article  ADS  Google Scholar 

  33. Csordas, A., Graham, R.: Hartle–Hawking state in supersymmetric minisuperspace. Phys. Lett. B 373, 51–55 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  34. Graham, R., Csordas, A.: Quantum states on supersymmetric minisuperspace with a cosmological constant. Phys. Rev. D 52, 5653–5658 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  35. Cheng, A.D.Y., D’Eath, P.D.: Diagonal quantum Bianchi type IX models in N = 1 supergravity. Class. Quant. Grav. 13, 3151–3162 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Moniz, P.V.: Back to basics? … or how can supersymmetry be used in a simple quantum cosmological model. gr-qc/9505002 (1994)

    Google Scholar 

  37. Moniz, P.V.: Quantization of the Bianchi type IX model in N = 1 supergravity in the presence of supermatter. Int. J. Mod. Phys. A 11, 1763–1796 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Moniz, P.V.: FRW minisuperspace with local N = 4 supersymmetry and self-interacting scalar field. Annalen Phys. 12, 174–198 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189–398 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  40. Cheng, A.D.Y., Moniz, P.V.: Quantum Bianchi models in N = 2 supergravity with global O(2) internal symmetry. In: 6th Moscow Quantum Gravity, Moscow, Russia, 12–19 June 1995

    Google Scholar 

  41. Cheng, A.D.Y., Moniz, P.V.: Canonical quantization of Bianchi class A models in N = 2 supergravity. Mod. Phys. Lett. A 11, 227–246 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Moniz, P.V.. Why two is more attractive than one. … or Bianchi class A models and Reissner–Nordstroem black holes in quantum N = 2 supergravity. Nucl. Phys. Proc. Suppl. 57, 307–311 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Pimentel, L.O.: Anisotropic cosmological models in N = 2, D = 5 supergravity. Class. Quant. Grav. 9, 377–381 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  44. Pimentel, L.O., Socorro, J.: Bianchi V models in N = 2, D = 5 supergravity. In: 7th Marcel Grossmann Meeting on General Relativity (MG 7), Stanford, CA, 24–30 July 1994

    Google Scholar 

  45. Pimentel, L.O., Socorro, J.: Bianchi VI(0) models in N = 2, D = 5 supergravity. Gen. Rel. Grav. 25, 1159–1164 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  46. Pimentel, L.O., Socorro, J.: Bianchi V models in N = 2, D = 5 supergravity. Int. J. Theor. Phys. 34, 701–706 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  47. Van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189–398 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  48. Graham, R., Paternoga, R.: Physical states of Bianchi type IX quantum cosmologies described by the Chern–Simons functional. Phys. Rev. D 54, 2589–2604 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  49. Paternoga, R., Graham, R.: The Chern–Simons state for the non-diagonal Bianchi IX model. Phys. Rev. D 58, 083501 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  50. Mena Marugan, G.A.: Is the exponential of the Chern–Simons action a normalizable physical state? Class. Quant. Grav. 12, 435–442 (1995)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vargas Moniz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moniz, P.V. (2010). Further Explorations in SQC N = 1 SUGRA. In: Quantum Cosmology - The Supersymmetric Perspective - Vol. 2. Lecture Notes in Physics, vol 804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11570-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11570-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11569-1

  • Online ISBN: 978-3-642-11570-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics