
Chapter 12

Milnor Number and Milnor Classes

Abstract Both Schwartz–MacPherson and Fulton–Johnson classes generalize
Chern classes to the case of singular varieties. It is known that for local com-
plete intersections with isolated singularities, the 0-degree SM and FJ classes
differ by the local Milnor numbers [149] and all other classes coincide [155].
As we explain in the sequel, if V has nonisolated singularities, the difference
cSMi (V ) − cFJi (V ) of the SM and FJ classes is, for each i, a homology class
with support in the homology H2i(Sing(V )) of the singular set of V . That is
the reason for which their difference was called in [30,31] the Milnor class of
degree i. These classes have been also considered, from different viewpoints,
by other authors, most notably by P. Aluffi, T. Ohmoto, A. Parusiński, P.
Pragacz, J. Schürmann, S. Yokura.

In this chapter we introduce the Milnor classes of a local complete inter-
section V of dimension n ≥ 1 in a complex manifold M , defined by a regular
section s of a holomorphic bundle N over M . The aim of this chapter is
to show that, as mentioned above, the Milnor classes are localized at the
connected components of the singular set of V : If S is such a component
then one has Milnor classes μi(V, S) of V at S in degrees i = 0, · · · , dimS.
The 0-degree class coincides with the generalized Milnor number of V at S,
introduced by Parusiński in [127] (if V is a hypersurface in M). The sum
of all the Milnor classes over the connected components of Sing(V ) gives
the global Milnor classes studied in [8, 126, 131, 169]. See [28] for another
presentation.

The method we use for constructing the localized Milnor classes comes
from [31] and uses Chern–Weil theory. The idea is to use stratified frames
to localize at the singular set the Schwartz–MacPherson and the Fulton–
Johnson classes, in such a way that the difference of these localizations is
canonical.
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12.1 Milnor Classes

For most authors, Milnor classes are globally defined as elements in H∗(V, Z),
on the other hand in [31], these classes are localized at the singular set of
V from the beginning. We explain this in a moment, first we introduce the
global classes; there is one such class in each degree:

Definition 12.1.1. For each r = 0, 1, · · · , n−1, the r-th Milnor class μr(V )
of V is:

μr(V ) = (−1)n+1
(
cSM
r (V ) − cFJ

r (V )
)

in H2r(V, Z).

The difference class

μ∗(V ) = (−1)n−1(cSM
∗ (V )− cFJ

∗ (V ))

is called the (total) Milnor class of V .

In fact, FJ-classes and SM-classes coincide with the usual Chern classes in
the regular part of V . Thus Milnor classes ought to be concentrated in the
singular set Sing(V ). The results of [31,129] prove that this is indeed the case.
Since the results of [149, 155] prove that in the case of isolated singularities
this contribution corresponds to the local Milnor number at each singular
point, and this is a local invariant of the singularity (not a global one), we
considered in [31] Milnor classes localized at the connected components of
the singular set of V . For each connected component S of Sing(V ), the r-th
Milnor class μr(V, S) of V at S is a homology class in H2r(S, Z) . There is one
such class for each r = 0, 1, · · · , s, where s is the dimension of the component
S. The inclusion S ↪→ V maps the homology of S into that of V , and adding
up the contributions in each dimension of all the connected components of
Sing(V ) we get the corresponding global Milnor classes.

For hypersurfaces, the 0-degree localized Milnor class μ0(V, S) ∈ H0(S)

 Z coincides with the generalized Milnor number of Parusiński [127], that we
will discuss in Sect. 12.4. Thus μ0(V, S) can be also considered as a generalized
Milnor number for complete intersections.

Each connected component S has a contribution μr(V, S) to the global
Milnor class μr(V ) up to the dimension of S. Therefore, if Sing(V ) has di-
mension 0, then all Milnor classes vanish in dimensions r > 0, i.e., the SM
and FJ classes coincide for all r > 0. If some component has dimension 1,
then we have corresponding Milnor classes in dimensions 0, 1, and so on.

Since for isolated singularities the “Milnor classes” are just the Milnor
numbers, which can be regarded as the number of vanishing cycles in the
local Milnor fibers, it was natural to ask in [31] whether Milnor classes are
related to the vanishing homology. Answers were given in [31] in particular
cases, one of them is the Lefschetz type Theorem 12.3.1.
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12.2 Localization of Milnor Classes

Let V be a local complete intersection of dimension n defined by a section
of a vector bundle N over the ambient complex manifold M of dimension
m = n + k, as in the previous section. We introduce the Milnor classes of V
at a connected component S of Sing(V ). For r ≥ 1, let v(r) be an r-frame on
(U \ S) ∩D(2q), where U is a neighborhood of S in V such that U \ S ⊂ V0

and q = m− r + 1.

Definition 12.2.1. The (r − 1)-st Milnor class μr−1(V, S) of V at S is de-
fined by

μr−1(V, S) = (−1)n+1
(
Sch(v(r), S)−Vir(v(r), S)

)
in H2r−2(S),

which is independent of the choice of v(r) by (10.5.1) and (11.4.3).

We call μ∗(V, S) =
∑

r≥0 μr(V, S) ∈ H∗(S) the total Milnor class of V
at S. Note that μr(V, S) = 0 for r > dimC S. Since there exist always frames
as in Theorems 10.5.2 and 11.4.4, we have:

Theorem 12.2.1. For a subvariety V of a complex manifold M as above,

c∗(V ) = cFJ
∗ (V ) + (−1)n+1

∑

S

i∗μ∗(V, S) in H∗(V ),

where the sum is taken over the connected components S of Sing(V ).

In particular, if the singularities of V are isolated points, then the Milnor
classes are zero, except in degree 0 where they coincide with the usual Milnor
numbers of [79,116,121]. Hence, in this case the SM classes and the FJ classes
of V coincide in all dimensions, except in degree 0, where their difference is
given by the sum of the usual Milnor numbers, recovering the formula in
[149,155].

Remark 12.2.1. 1. The classes PH(v(r), S), Sch(v(r), S) and Vir(v(r), S) may
be defined for an r-frame v(r) on the intersection of a neighborhood of ∂T
(in V ) and D(2q), where T = T̂ ∩ V with T̂ a cellular tube around S.
2. If r = 1, i.e., v(1) = (v), PH(v, S), Sch(v, S) and Vir(v, S) are called and
denoted, respectively, the Poincaré–Hopf index IndPH(v, S), the Schwartz
index IndSch(v, S) and the virtual index IndVir(v, S) of the vector field v
[71,111,148,149]. The corresponding Milnor class μ0(V, S) is a number which
will be discussed in Sect. 12.4.
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12.3 Differential Geometric Point of View

In this section, we give a Lefschetz type formula for the Milnor classes at
a nonsingular connected component S of the singular set of V under the
assumption that V satisfies the Whitney condition along S. For the detailed
proof, we refer to [31].

Let Û be a tubular neighborhood of S in M with C∞ projection ρ̂ : Û → S.
We set U = Û ∩ V and U0 = U \ S and denote by ρ and ρ0, respectively,
the restrictions of ρ̂ to U and U0. From the Whitney condition, we see that
the fibers of ρ are transverse to V and that S is a deformation retract of
U with retraction ρ. We identify ρ∗0(N |S) with NU0 , and ρ̂∗(N |S) with N |Û .
The bundle T ρ̂ of vectors in T Û tangent to the fibers of ρ̂ admits a complex
structure, since it is C∞ isomorphic with the normal bundle of the complex
submanifold S in V . Let T̂ be a (D)-cellular tube around S in Û and R̂ a
(D′)-cellular tube in T̂ as in Sect. 10.5.2. We set T = T̂ ∩ V and R = R̂ ∩ V
as before.

Let s denote the complex dimension of S and let v(r−1) be an (r−1)-frame
on the 2(s−r+1)-skeleton S∩D(2q) of S. In what follows, we set � = s−r+1.
By the Schwartz construction, there exists a radial r-field v

(r)
0 = (v(r−1)

0 , v0)
on T̂ ∩ D(2q) such that v

(r−1)
0 extends v(r−1). The radial vector field v0 is

tangent to U0 and possibly has singularities in the barycenters of 2�-cells in
S ∩D(2q). We may assume that v0 is tangent to the fibers of ρ̂ near ∂R̂.

Let v be a vector field on U0 ∩D(2q) which is nonsingular and tangent to
the fibers of ρ in a neighborhood U ′

0 of ∂R so that v(r) = (v(r−1)
0 , v) is an

r-frame on U ′
0 ∩D(2q). For example, the above v0 has these properties.

For a point x in S ∩ D(2q), let Ûx denote the fiber of ρ̂ at x and set
Ux = Ûx ∩ V , which is the fiber of ρ at x. We also set Rx = R ∩ Ux. The
restriction of v to Ux determines the Schwartz index IndSch(v, S) and the
virtual index IndVir(v, S) on Ux. By the Whitney condition, these indices do
not depend on x.

Recall that we have the difference dS(v(r)
0 , v(r)) in H2r−2(S). We also have

the difference d(v0, v), which is an integer, of v0 and v as vector fields on Ux.

Lemma 12.3.1. We have

dS(v(r)
0 , v(r)) = d(v0, v) · cr−1(S).

Proof. We consider the exact sequence of vector bundles on U0:

0 −→ Tρ0 −→ TU0 −→ ρ∗0TS −→ 0,

where Tρ0 denotes the bundle of vectors in TU0 tangent to the fibers of ρ0. We
may assume that v

(r)
0 and v(r) are r-frames on a neighborhood W of U ′

0∩D(2q).
Let ∇ρ1 and ∇ρ2 be, respectively, v0-trivial and v-trivial connections for Tρ0
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on W . Also let ∇S be a v
(r−1)
0 -trivial connection for TS on a neighborhood

of S∩D(2q). We take connections ∇1 and ∇2 for TU0 so that (∇ρ1,∇1, ρ
∗
0∇S)

and (∇ρ2,∇2, ρ
∗
0∇S) are both compatible with the above sequence. Thus ∇1

is v
(r)
0 -trivial and ∇2 is v(r)-trivial on W . By Lemma 10.5.1, the homology

class dS(v(r)
0 , v(r)) is determined by

cp(∇1,∇2) =
∑

i+j=p

ci(∇ρ1,∇
ρ
2) · ρ∗0cj(∇S). (12.3.1)

We recall the commutative diagram

H2q(Û , Û \ S) ∼−−−−→
ρ̂∗

H2�(S)

�
⏐
⏐
�AM �

⏐
⏐
�

H2r−2(S) =−−−−→ H2r−2(S),

(12.3.2)

where the first row is the inverse of the Thom isomorphism, given by inte-
gration along the fibers of ρ̂, and the second column is Poincaré duality. The
dual of the first row in (12.3.2) gives an isomorphism

H2q(Û , Û \ S) ∼←− H2�(S),

which shows that every relative 2q-cycle γ (is homologous to a cycle which)
fibers over a 2�-cycle ζ of S. By the projection formula, we get from (12.3.1)
(note that the rank of the bundle Tρ0 is n− s):

∫

γ∩∂R
cp(∇1,∇2) =

∫

∂Rx

cn−s(∇ρ1,∇
ρ
2) ·
∫

ζ

c�(∇S),

where x is a point in ζ. Noting that the first factor in the right hand side is
d(v0, v), we proved the lemma, in view of (12.3.2).

Since IndSch(v(r)
0 , S) = cr−1(S) and IndSch(v0, x) = 1, from Lemma 12.3.1,

we have the following:

Theorem 12.3.3. Let S be a nonsingular component of Sing(V ) such that
V satisfies the Whitney condition along S, then,

Sch(v(r), S) = IndSch(v, x) · cr−1(S).

Now we wish to obtain a formula for the virtual class analogous to the one
in Theorem 12.3.3. First, we consider the exact sequence of vector bundles
on U0:

0 −→ Tρ0 −→ T ρ̂|U0 −→ NU0 −→ 0. (12.3.4)
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We compute the Chern classes cj(τρ) of the virtual bundle τρ = (T ρ̂−N)|U
on U and will see that there is a canonical lifting cjS(τρ) in H2j(U,U \ S),
for j > n − s = rank Tρ0, of cj(τρ) ∈ H2j(U). For this, we consider the
covering U of Û consisting of U itself and a tubular neighborhood Û0 of U0

and represent cj(τρM ), τρM = T ρ̂−N , as a Čech-de Rham cocycle on U (cf.
[102, 156], here we use the notation in [156, Ch.II]).

Let ∇ρ0 be a connection for Tρ0. Let ∇N be a connection for N |S and
take a connection ∇ρ̂0 for T ρ̂|U0 so that (∇ρ0,∇

ρ̂
0, ρ

∗
0∇N ) is compatible with

(12.3.4). Let ∇̂ρ̂ be a connection for T ρ̂ on Û . We set ∇ρ̂• = (∇̂ρ̂, ρ̂∗∇N )
and ∇ρ̂•0 = (∇ρ̂0, ρ∗0∇N ). Then cj(τρ̂) is represented by a cocycle in A2j(U) =
A2j(Û0)⊕A2j(Û)⊕A2j−1(Û0), where A∗( ) denotes the space of differential
forms on the relevant open set, given by

cj(∇•
�) = (cj(∇ρ̂•0 ), cj(∇ρ̂•), cj(∇ρ̂•0 ,∇ρ̂•)).

Note that, since Û0 retracts to U0, it suffices to give forms on U0. Since the
family (∇ρ0,∇

ρ̂
0, ρ

∗
0∇N ) is compatible with (12.3.4), we have

cj(∇ρ̂•0 ) = cj(∇ρ0),

which vanishes for j > n−s by the rank reason. Thus, for j > n−s, the cocycle
cj(∇•

�) is in A2j(U , Û0) = {0} ⊕ A2j(Û) ⊕ A2j−1(Û0). Since the cohomology
of A∗(U , Û0) is canonically isomorphic with H∗(U,U \S) [156, Ch.VI, 4], this
cocycle defines a class, denoted cjS(τρ), in H2j(U,U \S), which is mapped to
cj(τρ) by the canonical homomorphism H2j(U,U \ S) → H2j(U). The class
cjS(τρ) does not depend on the choices of various connections. It should be also
noted that it does not depend on the frames we discussed earlier. Denoting
by A2i(S) the space of 2i-forms on S, we have the integration along the fibers
of ρ [156, Ch.II, 5] ρ∗ : A2(n−s+i)(U , Û0) → A2i(S), which commutes with
the differentials and induces a map on the cohomology level :

ρ∗ : H2(n−s+i)(U,U \ S) −→ H2i(S).

On the cocycle level, ρ∗ assigns to cn−s+i(∇•
�), i > 0, the 2i-form αi on S

given by

αi = ρ∗c
n−s+i(∇ρ̂•M ) + (∂ρ)∗cn−s+i(∇ρ̂•M ,∇ρ̂•0 ), (12.3.5)

where ρ∗ and (∂ρ)∗ denote the integration along the fibers of ρ|R and ρ|∂R.
We note that, in the following formulas, the classes ρ∗c

n−s+i
S (τρ) for i =

1, . . . , k − 1 are involved and they do not appear if k = 1 ( i.e., V is a
hypersurface). We denote by [ ]i the component of degree 2i of the relevant
cohomology class.
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Theorem 12.3.6. With the hypotheses of Theorem 12.3.3, we have

Vir(v(r), S) =
[(

IndVir(v, x) · (c∗(N)− ck(N)) + IndSch(v, x) · ck(N)

+
k−1∑

j=1

j∑

i=1

cj−i(N) · ρ∗cn−s+iS (τρ)
)

· c∗(N)−1 · c∗(S)
]�

� [S].

From Theorems 12.3.3 and 12.3.6, we get the following Lefschetz type
formula for the Milnor class.

Corollary 12.3.1. Let S be a nonsingular connected component of Sing(V )
such that V satisfies the Whitney condition along S. Then

μ∗(V, S) =
(

(−1)sμ(V ∩H,x) · (c∗(N)− ck(N))

+(−1)n
k−1∑

j=1

j∑

i=1

cj−i(N) · ρ∗cn−s+iS (τρ)
)

· c∗(N)−1 · c∗(S) � [S],

where H denotes an (m − s)-dimensional plane transverse to S in M . In
particular, if k = 1,

μ∗(V, S) = (−1)sμ(V ∩H,x) · c∗(N)−1 · c∗(S) � [S].

Also, for arbitrary k,

μs(V, S) = (−1)sμ(V ∩H,x) · [S].

Remark 12.3.1. 1. In [131], the Milnor class of a hypersurface V is defined
by μ∗(V ) = (−1)n

(
c∗(V ) − c∗(τV ) " [V ]

)
and a formula for this is given

as a sum of the contributions from the strata of a stratification of V . This
result was obtained earlier for the Milnor number μ0(V ) in [130] and, for
the Milnor class, it was conjectured in [169]. If the stratum is a nonsingular
component of Sing(V ), its contribution coincides with the one given in the
second formula above.
2. In fact, the formulas in Corollary 12.3.1 hold under an assumption weaker
than the Whitney condition. Namely, we only need that there is a Whitney
stratification of M compatible with V and S such that the 2(�−r)-skeleton S∩
D2(q−1) of S is in the top dimensional stratum of S. Accordingly, under this
assumption, we have a formula for μr(V, S) taking the terms of corresponding
dimension in the above formulas (see [31]).
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12.4 Generalized Milnor Number

As in the previous sections, let V ⊂ M be defined by a holomorphic section
of a vector bundle of rank k and let S be a connected component of Sing(V ).

Definition 12.4.1. The generalized Milnor number μ(V, S) of V at S is de-
fined as

μ(V, S) = (−1)n+1
(
IndSch(v, S)− IndVir(v, S)

)
,

where v is a vector field on a neighborhood U of S in V , nonsingular on U \S.

This definition does not depend on the choice of the vector field v and
is equal to μ0(V, S) in Definition 12.2.1. If (V, a) is an isolated complete
intersection singularity germ, for a radial vector field v0, IndSch(v0, a) = 1
and IndVir(v0, a) = χ(F), where F denotes the Milnor fiber. Thus the above
Milnor number coincides with the usual one in [79, 116,121].

We recall that the classical Milnor number of an isolated singular point
[121] has been generalized to the case of nonisolated hypersurface singularities
by A. Parusiński [127] in the following way. Recall that a hypersurface V in
M is always defined by a holomorphic section s of a line bundle N over
M . There is a canonical vector bundle homomorphism π : TM |V → N |V
which extends the one in (11.4.1). Note that Sing(V ) coincides with the set
of points in V where π fails to be surjective. Now let ∇′ be a connection for
N of type (1, 0). This means that in the decomposition ∇′ = ∇(1,0) +∇(0,1)

of ∇′ into the (1, 0) and (0, 1) components, we have ∇(0,1) = ∂̄. Since s is
holomorphic, we have ∇′s = ∇(1,0)s, which is a C∞ section t of T ∗M ⊗ N .
Write π̃ : TM → N the corresponding bundle homomorphism. Let S be a
compact component of Sing(V ) and Û a neighborhood of S in M disjoint from
the other components. It is shown in [127] that S coincides with a connected
component of the zero set of t. Then Parusiński defines the Milnor number
μS(V ) to be the intersection number in Û of the section t of T ∗M ⊗N with
the zero section. We refer to [31] for the proof of the following

Theorem 12.4.1. For a hypersurface V , we have

μS(V ) = μ(V, S).




