
Chapter 8

PIP-Spaces and Signal Processing

Contemporary signal processing makes an extensive use of function spaces,
always with the aim of getting a precise control on smoothness and decay
properties of functions. In this chapter, we will discuss several classes of such
function spaces that have found interesting applications, namely, mixed-norm
spaces, amalgam spaces, modulation spaces, or Besov spaces. It turns out
that all those spaces come in families indexed by one or more parameters,
that specify, for instance, the local behavior or the asymptotic properties.
In general, a single space, taken alone, does not have an intrinsic meaning,
it is the family as a whole that does, which brings us to the very topic of
this volume. In addition, several rigged Hilbert spaces (also called Gel’fand
triplets) have a particular interest, notably the one generated by the so-called
Feichtinger algebra. This too deserves a detailed discussion in the sequel.

Note that, unlike the previous chapter, we will treat each class with
the corresponding applications. Also, we will merely state the relevant re-
sults/propositions, referring the interested reader to the vast literature quoted
in the Notes.

8.1 Mixed-Norm Lebesgue Spaces

The first type of function space is the family of mixed-norm Lebesgue spaces,
already described briefly in Section 4.4, Example 4.4.5. For the commodity
of the reader, we repeat the general definition.

Let (X,μ) and (Y, ν) be two σ-finite measure spaces and 1 � p, q � ∞.
Then, a function f(x, y) measurable on the product space X × Y is said to
belong to L(p,q)(X × Y ) if the number obtained by taking successively the
p-norm in x and the q-norm in y, in that order, is finite. If p, q < ∞, the
norm is given in (4.19). The analogous norm for p or q = ∞ is obvious.

The case X = Y = R
d with Lebesgue measure is the important one

for signal processing. More generally, one can add a weight function m and
obtain the spaces Lp,qm (Rd) (we switch to a notation more suitable for the
applications):
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Lp,qm (R2) = {f Lebesgue measurable on R
2d : ‖f‖Lp,qm <∞}, 1 � p, q <∞,

where

‖f‖Lp,qm :=

(∫
Rd

(∫
Rd

|f(x, ω)|pm(x, ω)pdx
)q/p

dω

)1/q

.

Here m is a weight function, that is, a non-negative locally integrable func-
tion on R

2d. In addition, m is assumed to be v-moderate, i.e., m(z1 + z2) �
v(z1)m(z2), for all z1, z2 ∈ R

2d, with v a submultiplicative weight function,
that is, v(z1 + z2) � v(z1)v(z2), for all z1, z2 ∈ R

2d. The typical weights are
of polynomial growth: vs(z) = (1 + |z|)s, s � 0.

Once again, things simplify when p = q: Lp,pm (R2d) = Lpm(R2d), a weighted
Lp space.

The spaces Lp,qm (R2d) have the properties inherited from the general case
L(p,q), namely:

(i) Completeness: Lp,qm (R2d) is a Banach space for the norm ‖ · ‖Lp,qm .
(ii) Hölder’s inequality: If f ∈ Lp,qm (R2d) and h ∈ Lp,q1/m(R2d), with 1/p +

1/p = 1, 1/q + 1/q = 1, then f h ∈ L1(R2d) and

∣∣∣∣
∫

R2d
f(z)h(z) dz

∣∣∣∣ � ‖f‖Lp,qm ‖h‖Lp,q1/m
.

(iii) Duality: If p, q <∞, then (Lp,qm )× = Lp,q1/m .

(iv) Translation invariance: Lp,qm (R2d) is invariant under translations
(Tzg)(w) = g(w − z), z, w ∈ R

2d, if, and only if, m is v-moderate;
then one has

‖Tzf‖Lp,qm � Cv(z)‖f‖Lp,qm , for all f ∈ Lp,qm .

(v) Convolution: If m is v-moderate, f ∈ L1
v(R

2d), and g ∈ Lp,qm (R2d), then

‖f ∗ g‖Lp,qm � C‖f‖L1
v
‖g‖Lp,qm ,

that is , L1
v ∗Lp,qm ⊆ Lp,qm . This property generalizes the usual one of Lp

spaces, L1 ∗ Lp ⊆ Lp.

Concerning lattice properties of the family of Lp,qm spaces, we cannot ex-
pect more than for the Lp spaces. Two Lp,qm spaces are never comparable, even
for the same weight m, so one has to take the lattice generated by intersec-
tion and duality. Nevertheless, properties (iv) and (v) mean that translation
and convolution by L1

v are totally regular operators in whatever pip-space is
constructed out of the Lp,qm spaces.
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A different type of mixed-norm spaces is obtained if one takesX = Y = Z
d,

with the counting measure. Thus one gets the space � p,qm (Z2d), which consists
of all sequences a = (akn), k, n ∈ Z

d, for which the following norm is finite:

‖a‖�p,qm :=

( ∑
n∈Zd

( ∑
k∈Zd

|akn|pm(k, n)p
)q/p)1/q

.

Contrary to the continuous case, here we do have inclusion relations:

Lemma 8.1.1. If p1 � p2, q1 � q2 and m2 � Cm1, then � p1,q1m1
⊆ � p2,q2m2

.

Proof. First take m1 = m2 ≡ 1. Then the inclusion results from the obvious
inequality ‖a‖�p2,q2 � ‖a‖�p1,q1 . Then, if the weights satisfy m2 � Cm1, the
result follows from the relations

‖a‖�p2,q2m2
= ‖am2‖�p2,q2 � ‖am2‖�p1,q1 � C‖am1‖�p1,q1 = C‖a‖�p1,q1m1

.
��

As for the lattice properties, we have (for a fixed weight m)

�min(p1,p2),min(q1,q2)
m ⊂ � p1,q1m ∩ � p2,q2m ,

� p1,q1m + � p2,q2m ⊂ �max(p1,p2),max(q1,q2)
m ,

but we conjecture that the equality is not obtained in general. Thus the set
of spaces � p,qm , 1 � p, q �∞ is not a lattice, and one has to consider again the
lattice it generates. For fixed m, however, one gets chains by varying either
q or p, but not both.

Discrete mixed-norm spaces have been used extensively in functional anal-
ysis and signal processing. For instance, they are key to the proof that certain
operators are bounded between two given function spaces, such as modulation
spaces (see Section 8.3.1) or �p spaces. For instance, if {ψj,k, (j, k) ∈ I}, is a
wavelet basis or frame, mixed-norm spaces may be used to prove boundedness
of the analysis operator D : L2(R) → �2(I) given by Df =

(
〈ψj,k|f〉

)
(j,k)∈I .

In general, a mixed-norm space will prove useful whenever one has a signal
consisting of sequences labeled by two indices that play different roles. An
obvious example is time-frequency or time-scale analysis: a Gabor or wavelet
basis (or frame) is written as {ψj,k, j, k ∈ Z}, where j indexes the scale or
frequency and k the time. More generally, this applies whenever signals are
expanded with respect to a dictionary with two indices. An example is pro-
vided by multichannel signals, where a first index labels dictionary elements
and a second one labels channels. A variant is the case where indices are hier-
archized. Coefficients are split into independent groups and coefficients within
the same group are dependent. Thus one index labels groups and the other
one elements within a group, and of course, the two are not interchangeable.
Interesting applications of this procedure are found in the papers quoted in
the Notes.
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8.2 Amalgam Spaces

A situation intermediate between the mixed-norm spaces (for m ≡ 1)
Lp,q(R2d) and the spaces � p,q(Z2d) is that of the so-called amalgam spaces.
They were introduced specifically to overcome the inability of the Lp norms
to distinguish between the local and the global behavior of functions.

The simplest ones are the spaces W (Lp, �q) (sometimes denoted (Lp, �q)
or W (Lp, Lq)) consisting of functions on R which are locally in Lp and have
�q behavior at infinity, in the sense that the Lp norms over the intervals
(n, n + 1) form an �q sequence. For 1 � p, q <∞, the norm

‖f‖p,q =

( ∞∑
n=−∞

[∫ n+1

n

|f(x)|pdx
]q/p)1/q

makes W (Lp, �q) into a Banach space. The same is true for the obvious ex-
tensions to p and/or q equal to ∞. Notice that W (Lp, �p) = Lp. Also it is
easy to see that these spaces W (Lp, �q) are a particular case of the mixed-
norm spaces L(p,q)(X×Y ). Taking indeed X = [0, 1] with Lebesgue measure,
Y = Z with the counting measure, and g(x, n) = f(x+ n), one gets

‖g‖(p,q) =

( ∞∑
n=−∞

[∫ 1

0

|f(x + n)|pdx
]q/p)1/q

= ‖f‖p,q.

Actually, an equivalent definition of the space W (Lp, �q) is obtained if one
replaces the covering of R given by ∪∞

n=−∞[n, n+1] = R by a so-called bounded
uniform partition of unity (BUPU). This means a family of functions (ψi)i∈I ,
with I a countable index set, such that:

(1) 0 � ψi(x) � 1, for all i ∈ I;
(2) There is a compact neighborhood W of 0 and a countable set of points

(xi)i∈I such that supp ψi ⊆ xi + W for all i ∈ I;
(3) Every point x ∈ R belongs to a finite number of subsets xk + W ;
(4)

∑
i∈I ψi(x) ≡ 1, so that

⋃
i∈I(xi + W ) = R.

For instance, in R, one may take W = [0, 1], xi = i ∈ Z, and ψi = TiχW =
χi+W (which gives back the original partition)1 or Wα := [0, α] and ψi =
TαiχWα . Alternatively, one may replace χW by a nicer function with compact
support, such as a triangular (‘tent’) function or a spline function, satisfying
condition (4). Similar considerations apply, of course, to R

d.
The corresponding norm then reads as

‖f‖′p,q :=

(∑
i∈I

[∫
R

|f(x)ψi(x)|pdx
]q/p)1/q

,

1 As usual, χW is the characteristic function of the set W .
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and it is equivalent to the original one ‖ · ‖p,q, which we denote henceforth
by ‖ · ‖′p,q # ‖ · ‖p,q. It should be noted that the choice of a particular BUPU
is irrelevant: two different ones will give the same space W (Lp, �q), with
equivalent norms.

From condition (4) in the definition of a BUPU, we see that any function
f ∈ W (Lp, �q) may be written as f =

∑
i∈I fψi, where each component fψi

has a compact support centered on xi. This is the key step in the localization
of functions or distributions, a fundamental tool in signal processing.

The spaces W (Lp, �q) obey the following (immediate) inclusion relations,
with all embeddings continuous:

• If q1 � q2, then W (Lp, �q1) ↪→W (Lp, �q2).
• If p1 � p2, then W (Lp2 , �q) ↪→ W (Lp1 , �q).

From this it follows that the smallest space is W (L∞, �1) and the largest one
is W (L1, �∞), and therefore

• If p � q, then W (Lp, �q) ⊂ Lp ∩ Lq ⊂ Ls, ∀ q < s < p.
• If p � q, then W (Lp, �q) ⊃ Lp + Lq.

Once again, Hölder’s inequality is satisfied. Whenever f ∈ W (Lp, �q) and
g ∈W (Lp, �q), with 1/p+ 1/p = 1, 1/q + 1/q = 1, then fg ∈ L1 and one has

‖fg‖1 � ‖f‖p,q ‖g‖p,q.

Therefore, one has the expected duality relation:

W (Lp, �q)× = W (Lp, �q), for 1 � q, p <∞.

The interesting fact is that, for 1 � p, q � ∞, the set J of all amalgam spaces
{W (Lp, �q)} may be represented by the points (p, q) of the same unit square
J as in the example of the Lp spaces (Section 4.1.2), with the same order
structure. However, J is not a lattice with respect to the order (4.3). One
has indeed

W (Lp, �q) ∧W (Lp
′
, �q

′
) ⊃W (Lp∨p

′
, �q∧q

′
),

W (Lp, �q) ∨W (Lp
′
, �q

′
) ⊂W (Lp∧p

′
, �q∨q

′
),

where again ∧ means intersection with projective norm and ∨ means vec-
tor sum with inductive norm, but equality is not obtained. Thus, as in the
previous case, one gets chains by varying either p or q, but not both.

Standard properties hold here too.

(i) Convolution: If f ∈ W (Lp1 , �p2) and g ∈ W (Lq1 , �q2), where 1/pi +
1/qi � 1, i = 1, 2, then f ∗g ∈ W (Lr1 , �r2), where 1/ri = 1/pi+1/qi−1,
and

‖f ∗ g‖r1,r2 � C‖f‖p1,p2 ‖g‖q1,q2 .
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(ii) Fourier transform: If f ∈ W (Lp, �q), with 1 � p, q � 2, then Ff ∈
W (Lq, �p) and there is a constant Cp,q such that

‖Ff‖q,p � Cp,q ‖f‖p,q.

(iii) Multiplication: Let 1 � pi, qi � ∞ and 1/ri = max(0, 1/qi − 1/pi), i =
1, 2,. Then fg ∈ W (Lq1 , �q2) whenever g ∈ W (Lp1 , �p2) if, and only if,
f ∈W (Lr1 , �r2).

(iv) Translation invariance: W (Lp, �q) is invariant under translations Tx, x ∈
R
d, and one has

‖TxF‖p,q � Cpq‖F‖p,q, where Cpq = max{21/p−1/q, 21/q−1/p}.

Thus, here again, translation is a totally regular operator in any pip-space
constructed out of the W (Lp, �q) spaces.

The spaces W (Lp, �q) may be generalized considerably. The first obvi-
ous modification is to replace �q by a weighted space �qm, with a suitable
(v-moderate) weight m, thus getting the space W (Lp, �qm). Actually, there
is an alternative definition for that space. Let χQ denote the characteristic
function of Q := [0, 1] (or any compact interval). Then consider the following
norm:

‖f‖′′p,q = ‖‖f · TxχQ‖Lp‖Lqm

=

(∫
R

(∫
R

|f(t)|p χQ(t− x) dt
)q/p

m(x)q dx

)1/q

=

(∫
R

(∫
R

|f(t)|p χQ(t− x)m(x)p dt dx
)q/p)1/q

.

It turns out that this (‘continuous’) norm is equivalent to the (‘discrete’)
norm ‖ · ‖p,q, thus it defines the same space W (Lp, �qm) ≡ W (Lp, Lqm), but,
in addition, this definition justifies the latter notation.

In such a setting, the properties listed above generalize in an obvious way.
For instance, translation invariance of W (Lp, �qm)becomes

‖Txf‖W (Lp,�qm) � C v(x)‖F‖W (Lp,�qm), for all x ∈ R
d.

The next step consists in replacing the “local” space Lp by a suitable
Banach space B. Consider first the weighted spaces Lpm. First we note that
L1
m is a Banach algebra with respect to convolution (called the Beurling

algebra). Moreover, as mentioned already, L1
v acts on Lpm through convolution,

L1
v ∗ Lpm ⊆ Lpm.
Next, consider the space FL1

m of Fourier transforms of functions f ∈ L1
m,

with norm ‖Ff‖ = ‖f‖1m and a symmetric v-moderate weight, m(−x) =
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m(x). This guarantees that F−1L1
m = FL1

m. Applying a Fourier transform
yields FL1

v · FLpm = F(L1
v ∗Lpm) ⊆ FLpm. The space FL1

m possesses a BUPU
(ψi)i∈I , so that the construction above applies.

Let now (B, ‖ · ‖B) be a Banach space of functions (or distributions),
invariant under translations (Txg)(y) = g(y−x) and modulations (Mωg)(y) =
e2πiyωg(y), and such that S(R) ↪→ B ↪→ S×(R). In addition, assume that
FL1

m acts on B by pointwise multiplication. Then the (Wiener) generalized
amalgam space W (B, �qm) consists of all functions or distributions f ∈ Bloc

such that

‖f‖B,�qm :=

(∑
i∈I
‖fψi‖qBm(xi)q

)1/q

=
∥∥(‖fψi‖B)∥∥�qm <∞. (8.1)

Here we have introduced the space Bloc := {f ∈ S×(R) : hf ∈ B for any
h ∈ D(R)}. As usual, different BUPUs (ψi)i∈I and sets of points (xi)i∈I yield
equivalent norms, hence the same space. For B ≡ Lp, one recovers the usual
space W (Lp, �qm). An interesting case is B = FLpu, which indeed satisfies all
the conditions stated above, but many other spaces may be chosen, such as
Besov spaces, Bessel potential spaces, etc.

The spaces W (FLpu, �qm) have many interesting properties. Given submul-
tiplicative weights v and w, assume m is a v-moderate weight and u is a
w-moderate weight. For this case, there is also an equivalent, ‘continuous’
norm, namely,

‖f‖′W (FLpu,�qm) =
(∫

R

(
‖f · Txh‖FLpu

)q
m(x)q dx

)1/q

,

where h can be any nonzero element of W (FL1
ν , �

1
w). Then the following

holds:

(i) Completeness: W (FLpu, �qm) is a Banach space for the norm
‖ · ‖W (FLp

u,�
q
m).

(ii) Invariance: W (FLpu, �qm) is invariant under translation and modulation
and the corresponding operators are bounded.

(iii) Duality: W (FLpu, �qm)× = W (FLp1/u, �
q
1/m), with the usual notation.

(iv) Convolution, multiplication: one has, with all embeddings continuous,

L1
v ∗W (FLpu, �qm) ↪→W (FLpu, �qm),

FL1
w ·W (FLpu, �qm) ↪→W (FLpu, �qm).

(v) The Fourier transform F is an isomorphism between the spaces
W (FL1

w, �
1
v) and W (FL1

v, �
1
w). More generally, for weight functions

v, w at most of polynomial growth, and for given α, β ∈ R, F extends
to an isomorphism between the spaces W (FLpu, �pm) and W (FLpm, �pu),
where u := wα and m := vβ . For proving this, one starts from the case
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p = q = 1. Then, since v, w are assumed to be at most of polynomial
growth, one transposes the relation to the dual spaces W (FL∞

1/w, �
∞
1/v)

and W (FL∞
1/v, �

∞
1/w), and finally one gets the case (p, p) by interpolation.

(vi) Inclusion relations : the spaces W (FLpu, �qm) are ordered by inclusion as
follows. If 1 � p1 � p2 �∞ and 1 � q1 � q2 � ∞, then W (FLp1u , �q1m) ↪→
W (FLp2u , �q2m). Furthermore,

(a) if p1 < p2 and u2 � C u1, then W (FLp1u1
, �qm) ↪→W (FLp2u2

, �qm);
(b) if q1 < q2 and m2 � Cm1, then W (FLpu, �q1m1

) ↪→W (FLpu, �q2m2
); the

same result holds if q1 < q2 and m2/m1 ∈ Lr, for 1/r = 1/q1−1/q1.

The two statements (a) and (b) are proven essentially as in Lemma 8.1.1.
The second part of (b) follows from the Hölder inequality.

We proceed now with further generalizations. The first step is to replace
the global space �qm by a solid, translation invariant Banach space Y . By
this, we mean a Banach space of locally integrable functions, continuously
embedded in L1

loc, and such that f ∈ Y, g ∈ L1
loc and |g(x)| � |f(x)| (a.e.)

imply g ∈ Y and ‖g‖Y � ‖f‖Y . Translation invariance here means that
‖Txf‖Y � cwγ(x)‖f‖Y , where wγ(x) := (1 + |x|)γ . We also assume that
f ∗ g ∈ Y for f ∈ Y, g ∈ L1

wγ and ‖f ∗ g‖Y � ‖g‖L1
wγ
‖f‖Y . Typical examples

are the weighted spaces Lpws with 0 � |s| � γ.
Fixing a window function h ∈ D(R) (that is, a positive C∞ ‘bump’ function

with compact support), we consider the control function Fh(x) := ‖Txh ·f‖B.
Then, given B, Y as above, we define the generalized Wiener amalgam space

W (B, Y ) := {f ∈ Bloc : Fh ∈ Y }

with norm ‖f‖B,Y := ‖Fh‖Y . As usual, there is an equivalent (discrete)
formulation in terms of a BUPU {ψi, xi}, as in (8.1). Namely, considering
the function FW ∈ Y defined by

FW (x) :=
∑

i :x∈xi+W
‖fψi‖B · χxi+W (x),

the norm ‖FW ‖Y of the function FW in Y defines an equivalent norm on
W (B, Y ). If Y is a sequence space, this norm reads simply

‖f‖′B,Y =
∥∥(‖fψi‖B)∥∥Y .

Taking Y = �qm, we recover the previous class of amalgam spaces.
Among the (very general) results about these spaces (see the literature),

an interesting one concerns convolution between amalgam spaces. Assume
(B1, B2, B3) and (Y1, Y2, Y3) are Banach convolution triples, i.e., that

‖f ∗ g‖B3 � C1‖g‖B1 ‖f‖B2, for all g ∈ B1, f ∈ B2,
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and
‖F ·G‖Y3 � C2‖G‖Y1 ‖F‖Y2, for all G ∈ Y1, F ∈ Y2.

Then (W (B1, Y1),W (B2, Y2),W (B3, Y3)) is a Banach convolution triple, that
is, one has, for some constant C3 > 0,

‖f ∗ g‖B3,Y3 � C3‖g‖B1,Y1 ‖f‖B2,Y2 .

This is a far reaching generalization of Young’s identity.
The last step in the generalization process is to replace R

d by a locally
compact abelian group G with Haar measure dx and dual Ĝ (which consists
of all continuous unitary characters of G). In that case, the Fourier transform
becomes

Ff(χ) :=
∫
G

χ(x) f(x) dx,

where χ ∈ Ĝ is a unitary character of G. Hence, if Lp is a space of functions
on G, its Fourier transform FLp is a space of functions on Ĝ. Translations
are as usual, while modulation becomes multiplication by characters. With
these modifications, the whole theory goes through.

Summarizing, we see that mixed-norm spaces and amalgam spaces consist
of large families of (mostly) reflexive Banach spaces, indexed by one or sev-
eral real indices. Among these, one finds plenty of Banach chains and lattices
of Banach spaces. On the corresponding pip-space structures, operations like
translation and modulation may be seen as regular operators, Fourier trans-
form and convolution may also be reinterpreted, etc. Thus the whole theory
may be rewritten in pip-space language. It remains to be seen to what extent
this approach improves and/or simplifies it. We will see in the next sections
that the natural framework for Gabor or time-frequency analysis is the family
of so-called modulation spaces Mp,q

m , but it turns out that these may often
be replaced by amalgam spaces W (Lp, �qm). Thus, these too have a important
role in signal processing.

8.3 Modulation Spaces

Among the function spaces that play a central role in signal processing, sev-
eral classes are closely related to well-known integral transforms like the
Gabor and the wavelet transforms, namely, the modulation spaces and the
Besov spaces, respectively. We treat them successively.

8.3.1 General Modulation Spaces

Modulation spaces are closely linked to, and in fact defined in terms of, the
Short-Time Fourier (or Gabor) Transform.
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Given a C∞ window function g 	= 0, the Short-Time Fourier Transform
(STFT) of f ∈ L2(Rd) is defined by

(Vgf)(x, ω) = 〈MωTxg|f〉 :=
∫

Rd

g(y − x) f(y) e−2πiyω dy, x, ω ∈ R
d,

(8.2)
where, as usual, (Txg)(y) = g(y−x) (translation) and (Mωh)(y) = e2πiyωh(y)
(modulation).

Notice that an equivalent definition is often used, namely (Ṽgf)(x, ω) =
〈TxMωg|f〉, the connection between the two resulting from the identity

TxMω = e−2πixωMωTx.

Then, given a v-moderate weight function m(x, ω), the modulation space
Mp,q
m is defined in terms of a mixed-norm of a STFT:

Mp,q
m (Rd) = {f ∈ S×(Rd) : Vgf ∈ Lp,qm (R2d)}, 1 � p, q � ∞.

For p = q, one writes Mp
m ≡Mp,p

m . The space Mp,q
m is a Banach space for the

norm
‖f‖Mp,q

m
:= ‖Vgf‖Lp,qm

Actually, the original definition was slightly more restrictive, in that it used
the weight function ms(x, ω) = ws(ω) = (1 + |ω|)s, s � 0, (or, equivalently,
m̃s(x, ω) = (1 + |ω|2)s/2 ), so that the norm reads

‖f‖Mp,q
ws

=
(∫

Rd

(∫
Rd

|〈MωTxg|f〉|p dx
)q/p

(1 + |ω|)sq dω
)1/q

.

Equivalently, one may define the modulation spaces as the inverse Fourier
transform of a Wiener amalgam space:

Mp,q
ws = F−1(W (Lp, �qws)).

This space is independent of the choice of window g, in the sense that different
window functions define equivalent norms.

The class of modulation spaces Mp,q
ws contains several well-known spaces,

such as:

(i) The Bessel potential spaces or fractional Sobolev spaces Hs = M2
m̃s

:

Hs(Rd) = M2
m̃s(R

d) = {f ∈ S× :
∫

Rd

|f̂(t)|2 (1 + |t|2)s dt <∞}, s ∈ R.

(ii) L2(Rd) = M2(Rd).



8.3 Modulation Spaces 303

(iii) The Feichtinger algebra S0 = M1, that we shall describe in detail in
Section 8.3.2.

The main properties of the modulation spaces Mp,q
m (R2d) follow from the

similar ones of the spaces Lp,qm (R2d).

(i) Duality: if 1 � p, q <∞, then (Mp,q
m )× = Mp,q

1/m, with the usual notation.
(ii) Translation invariance: Mp,q

m is invariant under time-frequency shifts
and

‖TxMωf‖Mp,q
m

� Cv(x, ω)‖f‖Lp,qm
(m is assumed to be v-moderate).

(iii) Fourier transform: If p = q and m(ω,−x) � Cm(x, ω), then Mp
m is

invariant under the Fourier transform.
(iv) Density: If |m(z)| � (1 + |z|)N and 1 � p, q < ∞, then S(Rd) is dense

in Mp,q
m (Rd).

The lattice properties of the family {Mp,q
m , 1 � p, q � ∞} are, of course,

the same as those of the mixed-norm spaces Lp,qm . Here also, statements (ii)
and (iii) may be translated in pip-space language, in terms of totally regular
operators.

Similar inclusion relations hold:

Lemma 8.3.1. If p1 � p2, q1 � q2, and m2 � Cm1, for some constant
C > 0, then Mp1,q1

m1
⊆Mp2,q2

m2
.

In particular, one has

M1
v ⊆Mp,q

m ⊆M∞
1/v.

The proof follows immediately from Lemma 8.1.1.
By construction, modulation spaces are function spaces well-adapted to

Gabor analysis. A wealth of information about the spaces and their applica-
tion in Gabor analysis may be found in the monograph of Gröchenig [Grö01].
Here we just indicate a few relevant points.

Given a nonzero window function g ∈ L2(Rd) and lattice parameters
α, β > 0, the set of vectors

G(g, α, β) = {MnβTkαg, k, n ∈ Z
d}

is called a Gabor system. The system G(g, α, β) is a Gabor frame if there exist
two constants m > 0 and M <∞ such that

m‖f‖2 �
∑

k,n∈Zd

|〈MnβTkαg|f〉|2 � M‖f‖2, for all f ∈ L2(Rd).
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The associated Gabor frame operator Sg,g is given by

Sg,gf :=
∑

k,n∈Zd

〈MnβTkαg|f〉MnβTkαg. (8.3)

The main results of the Gabor time-frequency analysis stem from the follow-
ing proposition.

Proposition 8.3.2. If G(g, α, β) is a Gabor frame, there exists a dual win-
dow ğ = S−1g such that G(ğ, α, β) is a frame, called the dual frame. Then
one has, for every f ∈ L2(Rd),

f =
∑

k,n∈Zd

〈MnβTkαg|f〉MnβTkαğ (8.4)

=
∑

k,n∈Zd

〈MnβTkαğ|f〉MnβTkαg, (8.5)

with unconditional convergence in L2(Rd).

The two relations (8.4) and (8.5) mean that the function f may be recon-
structed from suitable samples of its STFT. But this raises a number of
questions:

(1) For which values of α, β is G(g, α, β) a frame? For which class of win-
dows g?

The answer is that G(g, α, β) is a frame if g ∈ W (L∞, �1) and α, β are suf-
ficiently small (for the technical meaning of ‘sufficiently small ’, see [Grö01,
Sec.6.5]). In particular, αβ � 1 is a necessary condition.

(2) Can one replace the regular lattice Z
d by an irregular set of points in R

d?

The answer is positive, but this is a difficult problem, related to irregular
sampling and number theory.

(3) Under which conditions are the operators associated to Gabor frames
(analysis, synthesis, frame operator) well-defined and bounded?

Here, the analysis operator Cg : L2(R2d) → �2(Z2d) is defined by
(Cgf)kn = 〈MnβTkαg|f〉 and the synthesis operator Dg : �2(Z2d) → L2(R2d)
by Dgc =

∑
k,n∈Zd

cknMnβTkαg. Then, one has C∗g = Dg. As a slight gener-
alization of (8.3), we still call Gabor frame operator the operator

Sg,ğf : = DğCg

=
∑

k,n∈Zd

〈MnβTkαg|f〉MnβTkαğ.
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This is where the modulation spaces Mp,q
m turn out to be the natural class

of function spaces. First, the optimal space for window functions is M1
v . Next

one has (in a somewhat abbreviated form):

(i) If g ∈ M1
v , then Cg is bounded from Mp,q

m into �p,qm̃ (Z2d), for all v-
moderate weights m, 1 � p, q � ∞ and all lattice constants α, β. Here
m̃(k, n) = m(kα, nβ).

(ii) If g ∈ M1
v , then Dg is bounded from �p,qm̃ (Z2d) into Mp,q

m , for all p, q. If
p, q <∞, the series expressing Dg converges unconditionally in Mp,q

m .
(iii) If g, ğ ∈ W (L∞, �1), then the Gabor frame operator Sg,ğ is bounded on

every Lp(R2d), 1 � p �∞.
(iv) If g, ğ ∈ M1

v , then Sg,ğ is bounded on Mp,q
m for all 1 � p, q � ∞, all

v-moderate weights m, and all α, β.
(v) If ğ is a dual window of g, that is, Sg,ğ = 1 on L2, then the two expansions

(8.4) and (8.5) converge unconditionally in Mp,q
m if p, q <∞.

(vi) If g ∈ S, then a tempered distribution f ∈ S×(Rd) belongs to Mp,q
m if,

and only if, Cgf ∈ �p,qm̃ .

Notice once again that statements (iii) and (iv) can be translated into
pip-space language, by saying that Sg,ğ is a totally regular operator in the
chain {Lp, 1 � p � ∞}, resp. any pip-space built from modulation spaces.

Most of these results are highly nontrivial and their proof requires deep
analysis. As for the result (v), it is a first example where membership of f in
the modulation space Mp,q

m is characterized by membership of the sequence
of its Gabor coefficients Cgf in �p,qm̃ . This type of result is quite strong and
in general valid only for the pair (L2 ↔ �2). Here, in fact, lies the power of
Gabor analysis, and of wavelet analysis as well, as we shall see below.

These results should suffice to convince the reader that the modulation
spaces Mp,q

m are the ‘natural’ spaces for Gabor analysis. Actually, most of this
remains true if one replaces modulation spaces by amalgam spaces W (Lp, �qm).
Second, it is obvious that most of the statements have a distinctly pip-space
flavor: it is not some individual space Mp,q

m or W (Lp, �qm) that counts, but the
whole family, with many operators being regular in the sense of pip-spaces.

8.3.2 The Feichtinger Algebra

A particularly interesting case of modulation space is the space M1, the
smallest of them, which consists of all functions with integrable Gabor trans-
form. This space is also known as the Feichtinger algebra, denoted by S0(Rd),
and it plays an important role in abstract harmonic analysis. As for general
modulation spaces, S0 may also be defined as an amalgam space, namely
S0 = W (FL1, �1).
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By definition, f ∈ S0 if Vg0f is integrable, where g0 is the Gaussian (which
could be replaced by any function in S). The space S0 has many interesting
properties, for instance:

(i) S0 is a Banach space for the norm ‖f‖S0 = ‖Vg0f‖1, and S ↪→ S0 ↪→ L2,
with all embeddings continuous with dense range.

(ii) S0 is a Banach algebra with respect to pointwise multiplication and
convolution.

(iii) Time-frequency shifts TxMω are isometric on S0 : ‖TxMωf‖S0 = ‖f‖S0.
S0 is continuously embedded in any Banach space with the same prop-
erty and containing g0, thus it is the smallest Banach space with this
property.

(iv) The Fourier transform is an isometry on S0 : ‖Ff‖S0 = ‖f‖S0.

Next we turn to the (conjugate) dual S×
0 of S0. Since S0 = M1, we have

S×
0 = M∞, a Banach space with norm ‖f‖S×

0
= ‖Vgf‖∞. The space S×

0

contains both the δ function and the pure frequency χω(x) = e−2πixω.
In virtue of (i) above, we have

S ↪→ S0 ↪→ L2 ↪→ S×
0 ↪→ S×, (8.6)

where all embeddings are continuous and have dense range. In the terminol-
ogy of Section 5.2.1, S0 and S×

0 , are interspaces for the RHS S ↪→ L2 ↪→ S×.
In the quintuplet of spaces (8.6), the central triplet

S0(Rd) ↪→ L2(Rd) ↪→ S×
0 (Rd) (8.7)

is the prototype of a Banach Gel’fand triple, that is a RHS (or LBS) in
which the extreme spaces are (nonreflexive) Banach spaces. By (iii) and (iv)
above, both time-frequency shifts and Fourier transform are isomorphisms of
S×

0 (Rd), and indeed of the three spaces of the triple (8.7), and the Parseval
formula holds:

〈f |g〉 = 〈Ff |Fg〉, for all (f, g) ∈ S0(Rd)× S×
0 (Rd).

Things becomes even more interesting in the discrete case. First there is
the following striking result.

Theorem 8.3.3. Let G(g, α, β) be a Gabor frame with g ∈ S0(Rd). Then the
dual window ğ = S−1

g,ğg, where Sg,ğ is the Gabor frame operator, belongs to
S0(Rd) as well.

Next, one can characterize membership of a function f in S0 or S×
0 (Rd) in

terms of its Gabor coefficients. For simplicity, we put α = β = 1 (so that we
are in the so-called critical case αβ = 1).
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Proposition 8.3.4. Let G(g, 1, 1) be a Gabor frame with g ∈ S0(Rd).
Then f belongs to S0(Rd) if and only if the sequence of Gabor coefficients
(〈MnTkg|f〉)k,n∈Zd belongs to �1(Zd). In addition, one has the equivalence of
norms:

C1‖f‖S0 �
∑

k,n∈Zd

|〈MnTkg|f〉| � C2‖f‖S0, for all f ∈ S0(Rd).

Similarly, f ∈ S×
0 (Rd) if and only if the sequence of Gabor coefficients

(〈MnTkg|f〉)k,n∈Zd belongs to �∞(Zd).

This result can be formalized in terms of the so-called localization operators.
Let g be a window function and σ a bounded non-negative function on R

2d.
Then the localization operator associated to the symbol σ is the operator Hσ

defined by

Hσf :=
∫

R2d
σ(x, ω)Vgf(x, ω)MωTxg dx dω.

If σ ≡ 1 and ‖g‖2 = 1, then Hσ = 1 and the relation above is nothing but
the inversion formula of the STFT. If σ has compact support Ω ⊂ R

2d, then,
intuitively, Hσf represents the part of f that lives in Ω, hence the name. This
statement can be made precise as follows. Given a time-frequency shift Tj , j ∈
Z

2d, consider the collection of localization operators {Hj := HTjσ, j ∈ Z
2d}.

Then the map f �→ {Hjf} can be interpreted as the decomposition of f into
(localized) components Hjf living essentially on suppTjσ = j+suppσ in the
time-frequency plane and the norm ‖Hjf‖22 is the energy of that component.

Using this concept, one has the following fundamental result.

Theorem 8.3.5. Let σ ∈ L1(R2d) be a non-negative symbol satisfying the
condition

A �
∑
j∈Z2d

Tjσ � B, a.e.,

for two constants A,B > 0 and assume that g ∈ S0(Rd). Then f ∈ S0(Rd)
if and only if

∑
j∈Z2d ‖Hjf‖2 < ∞ and this quantity defines an equivalent

norm on S0(Rd).
Similarly, the following norm equivalences characterize S×

0 and L2:

‖f‖S×
0
# sup

j∈Z2d
‖Hjf‖2, ‖f‖22 #

∑
j∈Z2d

‖Hjf‖22.

Using the notion of Gel’fand triples, this result takes a simpler form.

Corollary 8.3.6. Under the conditions of Theorem 8.3.5, the map ι : f �→
(‖Hjf‖2)j∈Z2d is an isomorphism between the Gel’fand triple (S0, L

2,S×
0 )

and a closed subspace of the triple (�1, �2, �∞).

Actually, one can go further. Since S0 = M1 and S×
0 = M∞, all the modu-

lation spaces Mp, 1 � p � ∞ may be obtained by interpolation between S0
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and S×
0 , so that the statement of Corollary 8.3.6 extends to the whole chain.

Thus the map ι is a monomorphism from the LHS {Mp} into the LHS {�p}.
The Feichtinger algebra S0 is often used in time-frequency analysis and it is

considered by many authors as the natural space of test functions. Indeed, the
Banach Gel’fand triple (S0, L

2,S×
0 ) often replaces advantageously Schwartz’

space RHS S ↪→ L2 ↪→ S×.

8.4 Besov Spaces

Besov spaces were introduced around 1960 for providing a precise control on
the smoothness of solutions of certain partial differential equations. Later on,
it was discovered that they are closely linked to wavelet analysis, exactly as
the (much more recent) modulation spaces are structurally adapted to Gabor
analysis. In fact, there are many equivalent definitions of Besov spaces. We
begin by a ‘discrete’ formulation, based on a dyadic partition of unity.

Let us consider a weight function ϕ ∈ S(R) with the following properties:

• supp ϕ = {ξ : 2−1 � |ξ| � 2},
• ϕ(ξ) > 0 for 2−1 < |ξ| < 2,
•
∑∞
j=−∞ ϕ(2−jξ) = 1 (ξ 	= 0).

Then one defines the following functions by their Fourier transform:

• ϕ̂j(ξ) = ϕ(2−jξ), j ∈ Z : high “frequency” for j > 0, low “frequency” for
j < 0,

• ψ̂(ξ) = 1−
∑∞

j=1 ϕ(2−jξ) : low “frequency” part.

Given the weight function ϕ, the inhomogeneous Besov space Bs
pq is defined as

Bs
pq = {f ∈ S× : ‖f‖spq <∞}, (8.8)

where ‖ · ‖spq denotes the norm

‖f‖spq := ‖ψ ∗ f‖p +

⎛
⎝ ∞∑
j=1

(2sj‖ϕj ∗ f‖p)q
⎞
⎠

1/q

, s ∈ R, 1 � p, q � ∞. (8.9)

The space Bs
pq is a Banach space and it does not depend on the choice of the

weight function ϕ, since a different choice defines an equivalent norm. Note
that Bs

22 = Hs, the (fractional) Sobolev space or Bessel potential space.
For f ∈ Bs

pq, one may write the following (weakly converging) expansion,
known as a dyadic Littlewood–Paley decomposition:

f = ψ ∗ f +
∞∑
j=1

ϕj ∗ f. (8.10)
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Clearly the first term represents the (relatively uninteresting) low “frequency”
part of the function, whereas the second term analyzes in detail the high
“frequency” component.

An equivalent, ‘continuous’, definition is based on the notion of modulus
of smoothness. For f ∈ Lp and h > 0, this is the quantity

ωp(f, h) := ‖f(·+ h)− f(·)‖p .

Then, for 0 < s < 1 and q <∞, the space Bs
pq consists of all functions f ∈ Lp

for which the following norm is finite:

‖f‖Bspq := ‖f‖p +
( ∫ ∞

0

[h−sωp(f, h)]q
dh

h

)1/q

.

This norm is equivalent to the norm (8.9). A similar norm may be defined
for s > 1 and for q = ∞.

Another equivalent norm (again for 0 < s < 1) yet is the following:

‖f‖Bspq # ‖f‖p +
( ∞∑
j=0

[2sjωp(f, 2−j)]q
)1/q

.

Besov spaces enjoy many familiar properties (for more details, we refer to the
literature):

(i) Inclusion relations: The following relations hold, where all embeddings
are continuous:

• S ↪→ Bs
pq ↪→ S×;

• Bs
pq ↪→ Lp, if 1 � p, q � ∞ and s > 0;

• for s1 < s2, B
s2
pq ↪→ Bs1

pq (1 � q, p � ∞);
• for 1 � q1 < q2 � ∞, Bs

pq1 ↪→ Bs
pq2 (s ∈ R, 1 � p � ∞);

• for s − 1/p = s1 − 1/p1, Bs
pq ↪→ Bs1

p1q1 (s, s1 ∈ R, 1 � p � p1 �
∞, 1 � q � q1 �∞).

In the terminology of Section 5.2.1, the first statement means that the
spaces Bs

pq are interspaces for the RHS S ↪→ L2 ↪→ S×. The inclusion
relations above mean that the family of spaces Bs

pq contains again many
chains of Banach spaces, but no more.

(ii) Interpolation: Besov spaces enjoy nice interpolation properties, in all
three parameters s, p, q.

(iii) Duality: one has (Bs
pq)

× = B−s
p q (s ∈ R).

(iv) Translation and dilation invariance: every space Bs
pq is invariant under

translation and dilation.
(v) Regularity shift: let Jσ : S× → S× denote the operator Jsf =

F−1
{

(1 + | · |2)s/2Ff
}
, s ∈ R. Then Jσ is an isomorphism from Bs

pq

onto Bs−σ
pq . Thus Jσ is totally regular for σ � 0, but not for σ > 0.
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It is also useful to consider the homogeneous Besov space Ḃs
pq, defined as

the set of all f ∈ S× for which ‖f ‖̇spq < ∞, where the quasi-norm ‖ · ‖̇spq is
defined by

‖f ‖̇spq :=

⎛
⎝ ∞∑
j=−∞

(2sj‖ϕj ∗ f‖p)q
⎞
⎠

1/q

(this is only a quasi-norm since ‖f ‖̇spq = 0 if and only if supp f̂ = {0}, i.e.,
f is a polynomial). Note that, if 0 	∈ supp f̂ , then f ∈ Ḃs

pq if and only if
f ∈ Bs

pq.
The spaces Ḃs

pq have properties similar to the previous ones and, in addi-
tion, one has Bs

pq = Lp ∩ Ḃs
pq for s > 0, 1 � p, q � ∞. In particular, every

space Ḃs
pq is invariant under translation and dilation, which is not surprising,

since these spaces are in fact based on the ax+b group, consisting precisely of
dilations and translations of the real line, via the coorbit space construction
(see Section 8.5(ii) below).

Besov spaces are well-adapted to wavelet analysis, because the definition
(8.8) essentially relies on a dyadic partition (powers of 2). Historically, the
connection was made with the discrete wavelet analysis, for that reason.
Indeed, there exists an equivalent definition given in terms of decay of wavelet
coefficients. More precisely, if a function f is expanded in a wavelet basis, the
decay properties of the wavelet coefficients allow to characterize precisely to
which Besov space the function f belongs. In addition, the Besov spaces may
also be characterized in terms of the continuous wavelet transform. These
properties will be discussed below.

In order to go into details, we have to some recall basic facts about the
wavelet transform (for simplicity, we restrict ourselves to one dimension).
Whereas the STFT is defined in terms of translation and modulation, the
continuous wavelet transform is based on translations and dilations:2

(Wψs)(b, a) = a−1

∫ ∞

−∞
ψ (a−1(x − b)) s(x) dx, a > 0, b ∈ R, s ∈ L2(R).

(8.11)

In this relation, the wavelet ψ is assumed to satisfy the admissibility condition

cψ :=
∫ ∞

−∞
dω |ω|−1|ψ̂(ω)|2 <∞,

which implies
∫∞
−∞ ψ(x) dx = 0. In addition, the wavelet ψ is said to have N

vanishing moments (N ∈ N) if it verifies the conditions

2 This is the so-called L1 normalization. It is more frequent to use the L2 normalization,
in which the prefactor is a−1/2 instead of a−1.
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∫
R

xn ψ(x) dx = 0, for n = 0, 1, . . . , N − 1.

This property improves the efficiency of ψ at detecting singularities in a
signal, since the wavelet ψ is then blind to polynomials up to order N − 1,
which constitute the smoothest part of the signal, i.e., the part which contains
the smallest amount of information.

However, discretizing the two parameters a and b in (8.11) leads in general
only to frames. In order to get orthogonal wavelet bases, one relies on the
so-called multiresolution analysis of L2(R). This is defined as an increasing
sequence of closed subspaces of L2(R):

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . (8.12)

with
⋂
j ∈ Z

Vj = {0} and
⋃
j ∈Z

Vj dense in L2(R), and such that

(1) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 ;
(2) There exists a function φ ∈ V0, called a scaling function, such that the

family {φ(· − k), k ∈ Z} is an orthonormal basis of V0.

Combining conditions (1) and (2), one sees that {φjk ≡ 2j/2φ(2j · −k), k ∈
Z} is an orthonormal basis of Vj . The space Vj can be interpreted as an
approximation space at resolution 2j. Defining Wj as the orthogonal com-
plement of Vj in Vj+1, i.e., Vj ⊕ Wj = Vj+1, we see that Wj contains the
additional details needed to improve the resolution from 2j to 2j+1. Thus
one gets the decomposition L2(R) =

⊕
j∈ Z

Wj . The crucial theorem then
asserts the existence of a function ψ, called the mother wavelet, explicitly
computable from φ, such that {ψjk ≡ 2j/2ψ(2j · −k), k ∈ Z} constitutes an
orthonormal basis of Wj and thus {ψjk ≡ 2j/2ψ(2j · −k), j, k ∈ Z} is an
orthonormal basis of L2(R): these are the orthonormal wavelets. Thus the
expansion of an arbitrary function f ∈ L2 into an orthogonal wavelet basis
{ψjk, j, k ∈ Z} reads

f =
∑
j,k∈Z

cjk ψjk, with cjk = 〈ψjk|f〉. (8.13)

Additional regularity conditions can be imposed to the scaling function φ.
Given r ∈ N, the multiresolution analysis corresponding to φ is called r-
regular if

∣∣∣∣d
nφ

dxn

∣∣∣∣ � cm(1 + |x|m), for all n � r and all integers m ∈ N.

Well-known examples include the Haar wavelets, the B-splines, and the var-
ious Daubechies wavelets.
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As a result of the ‘dyadic’ definition (8.8)-(8.9), it is natural that Besov
spaces can be characterized in terms of an r-regular multiresolution analysis
{Vj}. Let Ej : L2 → Vj be the orthogonal projection on Vj and Dj =
Ej+1 − Ej that on Wj . Let 0 < s < r and f ∈ Lp(R). Then, f ∈ Bs

pq(R) if,
and only if, ‖Djf‖p = 2−js δj , where (δj) ∈ �q(N), and one has

‖f‖spq # ‖E0f‖p +
(∑
j∈Z

2jsq‖Djf‖qp
)1/q

.

Specializing to p = q = 2, one gets a similar result for Sobolev spaces: given
f ∈ H−r(R) and |s| < r, f ∈ Hs(R) if, and only if, E0f ∈ L2(R) and
‖Djf‖2 = 2−js εj , j ∈ N, where (εj) ∈ �2(N).

But there is more. Indeed, modulation spaces and Besov spaces admit
decomposition of elements into wavelet bases and each space can be uniquely
characterized by the decay properties of the wavelet coefficients. To be precise,
let {ψjk, j, k ∈ Z} be an orthogonal wavelet basis coming from an r-regular
multiresolution analysis based on the scaling function φ. Then the following
results are typical:

(i) Inhomogeneous Besov spaces: f ∈ Bs
pq(R) if it can be written as

f(x) =
∑
k∈Z

βkφ(x − k) +
∑

j�0,k∈Z

cjk ψjk,

where (βk) ∈ �p and
(∑

k∈Z
|cjk|p

)1/p = 2−j(s+1/2−1/p) γj , with (γj) ∈
�q(Z).

(ii) Homogeneous Besov spaces: let |s| < r. Then, if f ∈ Ḃs
pq(R), its wavelet

coefficients cjk verify
(∑

k∈Z
|cjk|p

)1/p = 2−j(s+1/2−1/p) γj , where (γj) ∈
�q(Z). Conversely, if this condition is satisfied, then f = g + P , where
g ∈ Ḃs

pq and P is a polynomial.

We conclude this section with some examples of unconditional wavelet
bases, as announced in Section 3.4.4. For precise definitions, we refer to the
literature.

• The Haar wavelet basis is defined by the scaling function φH = χ[0,1] and
the mother wavelet ψH = χ[0,1/2]−χ[1/2,1]. It is a standard result that the
Haar system is an unconditional basis for every Lp(R), 1 < p <∞.

• The Lemarié-Meyer wavelet basis is an unconditional basis for all Lp

spaces, Sobolev spaces, homogeneous Besov spaces Ḃs
pq (1 � p, q <∞).

• There is a class of wavelet bases (Wilson bases of exponential decay) that
are unconditional bases for every modulation space Mp,q

m , 1 � p, q < ∞,
but not for Lp, 1 < p <∞, p 	= 2.

The characterization of Besov spaces in terms of discrete wavelet coeffi-
cients is standard, but there exists also an interesting one in terms of the
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continuous wavelet transform (CWT). A preliminary step is to reformulate
the CWT (8.11) in Lp. The result is that, for any admissible wavelet ψ, the
CWT map Wψ : f(x) �→ (Wψf)(b, a) is a bounded linear operator from Lp(R)
into Lp(R)× L2(R∗

+,
da
a ) and one has

‖f‖p #
(∫ +∞

−∞

(∫ +∞

0

|(Wψf)(b, a)|2 da
a

)p/2
db

)1/p

.

The familiar Parseval formula extends to this context too (for pairs of vectors
belonging to Lp, resp. Lp, with 1/p + 1/p = 1, as usual), and so does the
reconstruction formula.

Now we come back to Besov spaces. For simplicity, we quote the results
only in the simplest case, which is s non-integer, denoting by [s] the integer
part of s. Then one has:

Proposition 8.4.1. (1) Let f ∈ Bs
pq(R), 1 � p, q < ∞, s non-integer. Let

ψ be a wavelet such that (xs−[s]ψ) ∈ L1(R), with [s] + 1 vanishing moments.
Then the wavelet transform of f satisfies the condition

∫ ∞

0

(
a−s‖(Wψf)(·, a)‖

)q da
a

<∞.

(2) Conversely, let s > 0, non-integer, and ψ a real-valued C[s]+1 wavelet,
with all derivatives rapidly decreasing. If f, f ′, . . . , f [s] ∈ Lp(R), 1 < p <
∞, and if a−s‖Wψf(·, a)‖p ∈ Lq(R∗

+,
da
a ), 1 � q � ∞, then f belongs to

Bs
pq(R).

Thus, as expected, the behavior at small scales of the wavelet transform
indeed characterizes Besov spaces.

8.4.1 α-Modulation Spaces

The α-modulation spaces (α ∈ [0, 1]) are spaces intermediate between mod-
ulation and Besov spaces, to which they reduce for α = 0 and α → 1,
respectively. A possible definition of these spaces runs as follows. Whereas
the modulation spaces are defined in terms of the Gabor transform, the
α-modulation spaces rely on the so-called flexible Gabor-wavelet transform,
that is,

(V α
ψ f)(x, ω) = 〈TxMωDw−α(ω)ψ|f〉, (8.14)

where Da is the unitary dilation operator:

Daf(x) = a−d/2f(a−1x), a > 0, f ∈ L2(Rd), (8.15)



314 8 PIP-Spaces and Signal Processing

and w−α is, as usual, the weight function w−α(ω) = (1 + |ω|)−α, α ∈ [0, 1).
Clearly, for α = 0, this reduces to the Gabor transform, whereas, for α = 1,
one gets a simple variant of the wavelet transform. The intermediate case
α = 1/2 appears in the literature under the name of FBI transform (for
Fourier-Bros-Iagolnitzer).

Then, for s ∈ R, for all 1 � p, q �∞ and for α ∈ [0, 1], one can define the
α-modulation space via the relation

Mp,q
s+α(1/q−1/2),α := {f ∈ S×(Rd) : V α

ψ f ∈ Lp,qws (R2d)} (8.16)

with the norm

‖f‖Mp,q
s+α(1/q−1/2),α

= ‖V α
ψ f‖p,qws .

Here Lp,qws (R2d) denotes, as usual, the weighted mixed-norm L2 space with
weight ws = (1 + |ω|)s:

‖F‖Lp,qws :=

(∫
Rd

(∫
Rd

|F (x, ω)|pdx
)q/p

(1 + |ω|)sqdω
)1/q

, 1 � p, q <∞.

The usual modifications apply when p = ∞ or q = ∞.
For α = 0, the space Mp,q

s,0 coincides with the modulation space Mp,q
ws .

For α → 1, the space Mp,q
s,α tends to the inhomogeneous Besov space Bs

p,q.
Thus we may write Mp,q

s,1 = limα→1 M
p,q
s,α, where the limit is to be taken in

a geometrical (but somewhat imprecise) sense. In order to appreciate the
true signification of these facts in signal processing, one needs some group-
theoretical technology that we will introduce in the next section.

8.5 Coorbit Spaces

Coorbit spaces constitute a far reaching generalization of the function spaces
described above. They provide a unified description of a number of function
spaces useful in signal processing, some examples of which will be detailed at
the end of this section. The construction is based on integrable group repre-
sentations and thus requires a substantial amount of new concepts. Therefore
our treatment will be very sketchy here, since otherwise this would lead us too
far from our main subject. In particular, propositions will be stated without
proof.

The starting point is the notion of (square) integrable group representa-
tion. Let G be a locally compact group with left Haar measure dg and U
a (strongly continuous) irreducible representation in a Hilbert space H. For
a fixed nonzero vector η ∈ H, denote by Vηφ the representation coefficient
(matrix element) Vηφ(g) := 〈U(g)η|φ〉, a continuous bounded function on G.
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Then the representation U is said to be square integrable, resp. integrable, if
there exists at least one nonzero vector η ∈ H (called admissible) such that
Vηη ∈ L2(G, dg), resp. Vηη ∈ L1(G, dg). Every integrable representation is
square integrable.

Let U be a square integrable representation in H and let A denote the
set of all admissible vectors. The crucial fact is the existence of orthogonality
relations. Namely, there exists a unique positive, self-adjoint, invertible op-
erator3 C in H, with dense domain D(C) equal to A, such that, for any two
admissible vectors η and η′ and arbitrary vectors φ, φ′ ∈ H, one has

∫
G

Vη′φ′(g)Vηφ(g) dg = 〈Cη|Cη′〉 〈φ′|φ〉. (8.17)

Furthermore C = λI, λ > 0, if, and only if, G is unimodular. As an important
consequence of the relations (8.17), one has the convolution identity

Vηφ ∗ Vη′φ′ = 〈Cη|Cφ′〉Vη′φ, ∀ η, φ′ ∈ D(C), η′, φ ∈ H. (8.18)

Here the convolution on G is defined as

(χ ∗ ξ)(g) =
∫
G

χ(g1)ξ(g−1
1 g) dg1.

In particular, normalizing the vector η ∈ D(C) by ‖Cη‖ = 1, one gets the
reproduction formula

Vηφ = Vηφ ∗ Vηη. (8.19)

In other words, the function K(g, g1) = 〈U(g−1
1 g)η|η〉 is a reproducing kernel

on G.
Given a fixed admissible vector η ∈ H, the map Vη : φ �→ Vηφ(g) is

called the coherent state transform or CS transform on G (sometimes called
abusively the wavelet transform). The map Vη is an isometry from H into
L2(G, dg) and satisfies Vη(U(g)φ) = LgVηφ, where Lg is the left regular
representation. In other words, Vη intertwines U and L, and U is equivalent
to a subrepresentation of L, hence U belongs to the discrete series of G.

The orthogonal projection from L2(G) onto the range of Vη is given by
the convolution operator ξ �→ ξ ∗ Vηη. Thus a function ξ ∈ L2(G) belongs to
the range of Vη, i.e., ξ = Vηφ for some φ ∈ H if and only if ξ ∗ Vηη = ξ.

Now we are ready for defining coorbit spaces. We start with a unitary,
irreducible, integrable representation U of G in H. Given a weight function
w (i.e., a positive continuous submultiplicative function) on G, define the
following set of analyzing vectors:

Aw := {η ∈ H : Vηη ∈ L1
w(G)}.

3 The operator C is called the Duflo-Moore operator.
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Since U is irreducible, Aw is a dense subspace of H, assumed to be nontrivial.
Then, fixing a nonzero vector η ∈ Aw, one defines the space

H1
w := {φ ∈ H : Vηφ ∈ L1

w(G)}.

H1
w is a U -invariant Banach space for the norm

‖φ‖H1
w

:= ‖Vηφ‖1w.

It is dense in H and independent of the choice of the vector η ∈ Aw.
Next one considers the conjugate dual (H1

w)× of H1
w (called the reservoir)

and thus one gets the triplet

H1
w ↪→ H ↪→ (H1

w)×. (8.20)

In other words, we obtain a RHS whose extreme spaces are Banach spaces,
thus a Banach Gel’fand triple and a pip-space. The action of U on H1

w can
be extended to (H1

w)× by duality:

〈φ,U(g)ψ〉 := 〈U(g−1)φ, ψ〉, for φ ∈ H1
w, ψ ∈ (H1

w)×.

Therefore the CS transform can also be extended as Vηψ(g) := 〈U(g)η, ψ〉 for
ψ ∈ (H1

w)×. This extension has the following properties, which clearly mean
that we are in a pip-space-setting.

Proposition 8.5.1. (i) The inner product of H extends to a sesquilinear
U -invariant pairing between H1

w and (H1
w)×. For any ψ ∈ (H1

w)×,
the CS transform Vηψ(g) := 〈U(g)η, ψ〉 is a continuous function in
L∞

1/w(G).
(ii) The map Vη : (H1

w)× → L∞
1/w(G) is one-to-one and intertwines U and

L, i.e., one has Vη(U(g)ψ) = LgVηψ, ∀ψ ∈ (H1
w)×.

(iii) If η is normalized by ‖Cη‖ = 1, the reproducing formula holds true:

Vηψ = Vηψ ∗ Vηη, for all ψ ∈ (H1
w)×.

Let now Y be a solid Banach function space (actually, a Köthe function space)
on G, that is, a Banach space of functions on G, continuously embedded in
L1

loc(G), and satisfying the solidity condition (Section 4.4). Then the coorbit
space of Y under the representation U is the space

CoY := {ψ ∈ (H1
w)× with Vηψ ∈ Y }.

As natural norm, one takes ‖ψ‖CoY := ‖Vηψ‖Y . The basic properties of these
spaces are as follows.

Theorem 8.5.2. (i) CoY is a U -invariant Banach space, continuously em-
bedded into (H1

w)×.
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(ii) CoY is independent of the choice of the analyzing vector η ∈ Aw, i.e.,
different vectors define the same space with an equivalent norm.

(iii) CoY is independent of the reservoir (H1
w)×, i.e., if w1 is another weight

with w(g) � Cw1(g) for all g ∈ G and Aw1 	= {0}, then both weights
generate the same space CoY .

The proof of this theorem relies on the following proposition, which is crucial
for the applications.

Proposition 8.5.3. (i) Given η ∈ Aw, a function Ψ ∈ Y is of the form
Vηψ for some ψ ∈ CoY if and only if Ψ satisfies the reproducing formula,
i.e., Ψ = Ψ ∗ Vηη. It follows that

(ii) Vη : CoY → Y establishes an isometric isomorphism between CoY and
the closed subspace Y ∗Vηη of Y , whereas Ψ �→ Ψ∗Vηη defines a bounded
projection from Y onto that subspace.

(iii) Every function Ψ = Ψ ∗ Vηη is continuous and belongs to L∞
1/w(G).

Further interesting properties of coorbit spaces are summarized in the
following

Proposition 8.5.4. (i) CoL∞
1/w = (H1

w)×.
(ii) CoL2 = H.
(iii) Assume that Y has an absolutely continuous norm (i.e., Y × = Y α, the

Köthe dual, see Section 4.4). Then

(CoY )× = CoY α = CoY ×.

As a consequence, CoY is reflexive if Y is reflexive.

Besides the fact that coorbit spaces provide a unified description of a num-
ber of useful function spaces, their advantage is that, for all these spaces, the
coorbit language yields interesting atomic decompositions. This means that
every element in a given space of functions or distributions can be repre-
sented as a sum of simpler functions, called atoms. Then many properties of
the space, such as duality, interpolation, operator theory, growth and smooth-
ness properties, can be characterized in terms of such atoms. Furthermore,
the atoms are obtained in a unified way by the action of a group on the space,
this being, of course, the coherent state formalism. In turn, such atomic de-
compositions may be used as a discretization technique that allows to obtain
in a simpler way various types of frames in the spaces in question. This is of
crucial importance for the applications, in particular approximation theory.

The key to the atomic decompositions is that one can associate to each
Banach function space Y a sequence space Yd that characterizes the proper-
ties of Y . One starts with a discrete set of points X = (xi)i∈I in G such as
the one used in the definition of a BUPU in Section 8.2, that is,

(i) For a given neighborhood Uo of the identity in G, the family X is Uo-
dense, i.e., (xiUo)i∈I covers G.
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(ii) The family X is relatively separated, that is, for any relatively compact
set W with nonempty interior, supi∈I card{k : xkW ∩ xiW 	= ∅} < ∞
(here card stands for the cardinality of the set).

Then, given a Banach function space Y as before and a discrete family
X = (xi)i∈I , one defines the associated discrete Banach space as

Yd := {Λ = (λi)i∈I with
∑
i∈I

λi χxiW ∈ Y }

with the natural norm ‖Λ‖Yd := ‖
∑
i∈I |λi|χxiW ‖Y . The space Yd does not

depend of the choice of W , different sets yield the same space Yd with equiv-
alent norms. If the functions of compact support are dense in Y , then the
finite sequences form a dense subspace of Yd. To give an example, if Y = Lpm,
then Yd = �pm, with the weights m(i) = m(xi).

Using this tool, the central result is the atomic decomposition in CoY . Let
X = (xi)i∈I be a discrete family as above and Yd the discrete Banach space
associated to Y , with Λ = (λi)i∈I . Then, roughly speaking, one has:

(i) Analysis: There exists a bounded operator A : CoY → Yd, thus

‖Af‖Yd � C0‖f‖CoY ,

such that every f ∈ CoY can be represented as f =
∑

i∈I λiU(xi)η,
where Af = Λ = (λi)i∈I .

(ii) Synthesis: Conversely, every element Λ ∈ Yd defines an element f =∑
i∈I λiU(xi)η in CoY with

‖f‖CoY � C1‖Λ‖Yd.

In both cases, convergence is in the sense of the norm of CoY , if the finite
sequences are dense in Yd, in the weak*-sense of (H1

w)× otherwise.
Associated discrete Banach spaces are the key to a number of interesting

results about coorbit spaces. In fact, the Banach space structure of CoY is
closely related to that of Yd, although it is not known whether the two are
always isomorphic. For instance:

(1) CoY ⊆ CoZ if, and only if, Yd ⊆ Zd. In particular, CoY = CoZ if and
only if Yd = Zd.

(2) CoY shares with Yd all properties which are inherited by closed subspaces
and finite direct sums of Banach spaces.

(3) CoY is reflexive if and only if Yd is reflexive.
(4) Whenever CoY ⊆ CoZ, the inclusion J : CoY → CoZ is automatically

continuous. The same is true for Jd : Yd → Zd.
(5) Moreover, J is compact (resp. Hilbert-Schmidt, nuclear) if and only if Jd

is compact (resp. Hilbert-Schmidt, nuclear)
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In order to go further into the properties of the class of coorbit spaces, in
the pip-space spirit, we need one more qualification. A coorbit space CoY is
called minimal if H1

w is norm dense in CoY . It is called maximal if it is not
properly contained in another coorbit space defining the same norm on H1

w.
Then one has:

Proposition 8.5.5. (i) CoY is a minimal coorbit space if and only if the
finite sequences are dense in Yd, if and only if (Yd)× = (Yd)α.

(ii) CoY is a maximal coorbit space if and only if CoY = CoZα for some
Banach function space Z, if and only if Yd = Zαd for some appropriate
sequence space Z.

Finally, there is a result that pertains to lattice properties of the coorbit
spaces (there are further results concerning the hereditary properties of in-
terpolation methods).

Proposition 8.5.6. (i) The family of all minimal coorbit spaces is closed
with respect to finite intersections and sums.

(ii) The family of all maximal coorbit spaces is closed with respect to inter-
sections and sums.

(iii) The family of all reflexive coorbit spaces is closed with respect to duality,
intersections and sums.

For instance, for two minimal coorbit spaces, one has:

(CoY 1 ∩ CoY 2)× = (CoY 1)× + (CoY 2)×

(CoY 1 + CoY 2)× = (CoY 1)× ∩ (CoY 2)×,

and all four spaces are minimal coorbit spaces. Similarly for reflexive spaces.
It is clear that further pip-space-type results could be obtained by combin-

ing the coorbit space methodology with the theory of Köthe sequence spaces
developed in Section 4.3.

We are going now to indicate very briefly a number of examples of coorbit
spaces of interest for signal processing.

(i) The Weyl-Heisenberg group and modulation spaces

The (reduced) Weyl-Heisenberg group is Hd = R
d × R

d × T, with ele-
ments h = (x, y, τ) and group law h1h2 = (x1, y1, τ1)(x2, y2, τ2) := (x1 +
x2, y1 + y2, τ1τ2e

iy1x2). The group Hd is unimodular, with Haar measure
dh = dx dy dτ . The relevant representation is the so-called Schrödinger rep-
resentation, which forms the basis of nonrelativistic quantum mechanics,
namely,

(
U(x, y, τ)φ

)
(z) := τ

(
MyTxφ

)
(z) = τe2πixyφ(z−x), z ∈ R

d, φ ∈ L2(Rd, dz).
(8.21)
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Notice there are many different normalizations in the literature, both for
the group and the representation. It follows that Vηφ is simply the Gabor
transform, multiplied by the innocuous factor τ ∈ T, and one shows that the
Schrödinger representation is integrable. To that effect, one proves that

∫
Hd

|Vηφ(h)| dh <∞,

whenever both functions η, φ have compactly supported Fourier transforms.
Choose now the weight function ws(x, y, τ) := (1 + |y|)s, s � 0, and the
weighted Lp spaces Lpws . Then it turns out that the corresponding coorbit
spaces are CoLpws = Mp,p

ws (R2d), belonging to the family of modulation spaces.
For p = 1, in particular, one gets the Feichtinger algebra, CoL1 = S0. For
p = 2, one recovers the fractional Sobolev or Bessel potential spaces Hs.
Finally, applying the discretization procedure mentioned above, one gets for
the atomic decomposition simply the familiar Gabor frames.

In addition to the representation (8.21), the Weyl-Heisenberg group admits
other, nonequivalent, unitary irreducible representations (UIRs), namely,
Uk(x, y, τ) := τkMyTx, k ∈ Z \ {0}. However, the Stone-von Neumann
uniqueness theorem says that any unitary irreducible representation of Hd

is equivalent to some Uk and, moreover, all these representations yield the
same coorbit spaces.

(ii) The affine group and Besov spaces

The full affine group of the line is Gaff = R � R∗ := {(b, a) : b ∈ R, a 	= 0, },
with the natural action x �→ ax+b and group law (b, a)(b′, a′) = (b+ab′, aa′).
The group Gaff is non-unimodular, the left Haar measure is dμ(b, a) =
|a|−2da db and the right Haar measure is dμr(b, a) = |a|−1da db.

Up to unitary equivalence, Gaff has a unique UIR, acting in L2(R, dx),
namely,

(
U(b, a)ψ

)
(x) :=

(
TbDaψ

)
(x) = |a|−1/2 ψ

(
x− b

a

)
, ψ ∈ L2(R, dx) (8.22)

where Da is the unitary dilation operator defined in (8.15). We may also
write

(Vηφ)(b, a) = 〈TbDaη|φ〉 = (Daη
� ∗ φ)(b),

where η�(x) := η(−x). This representation is square integrable, even inte-
grable. This is shown as in the Weyl-Heisenberg case, starting with a function
η ∈ L2(R) such that supp η̂ is compact and bounded away from 0. Then
Vηη ∈ L1

w for many weights w, in particular rs(b, a) := |a|−s, s ∈ R. Then it
follows that φ ∈ CoLprs if and only if
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∫
R∗
‖Daη

� ∗ φ‖p |a|−sp
da

|a|2 <∞.

This means that CoLprs = Ḃ
s−1/2−1/p
pp , a homogeneous Besov space. Of course,

the resulting atomic decompositions are simply wavelet expansions.
The extension to the multidimensional case is easy. One starts with the

similitude group of R
d, consisting of translations, rotations and dilations,

namely, SIM(d) = R
d

� (R+
∗ × SO(d)). Again this group has, up to unitary

equivalence, a unique UIR, acting in L2(Rd):

(
U(b, a, R)ψ

)
(x) = a−d/2ψ(a−1R−1(x− b)), a > 0, b ∈ R

d, R ∈ SO(d).

Then the analysis is the same as for d = 1 and leads to multidimensional
wavelet expansions.

(iii) SL(2,R) and Bergman spaces

The group SL(2, R) is the group of all real 2×2 matrices of determinant equal
to 1 and it is unimodular. It has a family of square integrable representations
(the discrete series), acting in Hilbert spaces of functions analytic in the
upper half-plane C

+ := {z = x + iy ∈ C, y > 0}. The representation spaces
are special cases of the so-called Bergman spaces Ap,β , 1 � p < ∞, β > 1,
defined as follows:

Ap,β := {f analytic in C
+ : ‖f‖pp,β =

∫∫
C+
|f(z)|p yβ dxdy

y2
<∞}. (8.23)

For any integer m � 2, the discrete series representation Um is defined on
A2,m by (

Um

(
a b

c d

)
f

)
(z) := f

( dz − b

−cz + a

)
(−cz + a)−m. (8.24)

Consider now the simpler functions fm(z) := (z + i)−m. The following prop-
erties are known:

(i) fm ∈ A2,m for all m � 2.
(ii) Vfmfm = 〈Um(·)fm|fm〉 ∈ L1(SL(2,R)), ∀m � 3, that is, fm ∈ H1(Um),

but H1(U2) = {0}.
(iii) For m � 3, one has fm ∈ Ap,pm/2, 1 � p <∞, and Um acts isometrically

on Ap,pm/2.

As a consequence, the Bergman spaces are coorbit spaces of Lp(SL(2,R))
under the representation Um, namely, Ap,pm/2 = Co(Lp, Um).

(iv) The Weyl-Heisenberg group and Fock-Bargmann spaces

The Fock-Bargmann space F ≡ F0, introduced in Section 1.1.3, Example (v),
may be generalized as follows:
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F(p) = {f(z) entire on C
d : ‖f‖p

F(p) :=
∫

Cd

|f(z)|p dμ(z) <∞}, (8.25)

where dμ(z) = π−de−|z|2dν(z) is the Gaussian measure on C
d. Thus F(2) = F

is a Hilbert space, on which the Weyl-Heisenberg group acts via the following
representation:

(
U(x, y, τ)f

)
(z) = τe−iπxye−|w|2/2ewzf(z−w), w = x+ iy ∈ C

d, f ∈ F(2).
(8.26)

Choosing the function g(z) ≡ 1, one sees that

|(Vgf)(x, y, τ)| = |f(w)|e−|w|2/2,

so that Vgf ∈ Lp(Hd) if and only if f ∈ F(p). In other words, Co(Lp(Hd)) =
F(p). As for atomic decompositions, one gets all sorts of sampling theorems
for entire functions.

As a last remark, it should be mentioned that the whole theory of coorbit
spaces may be generalized to the case of a representation of a locally compact
group G which is only integrable modulo a subgroup H . In that case, the
analysis takes place not on the group G itself, but on the quotient manifold
X = G/H . A good example is the two-sphere S2 = SO(3)/SO(2).

Notes for Chapter 8

Section 8.1. Mixed norm spaces are described in detail in Benedek–Panzone
[44], Bertrandias–Datry–Dupuis [45, 46]. For their applications in func-
tional analysis and, in particular, the Schur tests of boundedness, we refer
to Samarah et al. [174]. A nice application in signal processing, in the con-
text of sparse representations of signals, may be found in Kowalski–Torrésani
[130]. Here the authors consider hierarchized indices, as described in the
text, and use (1,2)- and (2,1)-norms. The idea is that �1 norms favor spar-
sity, whereas �2 norms do not.

• Amalgam spaces (Lp, �q) are discussed in detail in the review papers by
Fournier–Stewart [97] and Holland [123]. Some information may also be
found in the monograph of Gröchenig [Grö01, Sec.11.1]. In the notation
W (Lp, �q) or W (Lp, Lq)), W stands for Wiener, since this author was the
first to consider a space of this type. Indeed he introduced the spaces
W (L1, �2) and W (L2, �1) in [190], then W (L1, �∞) and W (L∞, �1) in [191]
and the textbook [Wie33]. Weighted Wiener amalgams are reviewed by
Heil [122]. The general theory was developed by Feichtinger [79–81], using
the notion of bounded uniform partition of unity (BUPU). It is often
applied to Gabor analysis, see for instance in Gröchenig–Heil–Okoudjou
[113] and in Feichtinger–Weisz [92].
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Section 8.3. Time-frequency analysis, more precisely Gabor analysis, and
modulation spaces are studied in the monograph of Gröchenig [Grö01,
Sec.11.1], that we follow closely. A good review paper on modulation spaces
is Feichtinger [82].

• The Feichtinger algebra S0 was introduced by Feichtinger [78]. A com-
prehensive study may be found in Feichtinger–Zimmermann [93]. Banach
Gel’fand triples and their application in Gabor analysis, in particular to
localization operators, are studied by Dörfler–Feichtinger–Gröchenig [74]
and Feichtinger–Luef–Cordero [91]. The concept extends naturally to lo-
cally compact abelian groups, see for instance, Feichtinger–Kozek [90]
or the monograph of Reiter–Stegeman [RS00]. As a replacement of the
standard Schwartz’ space RHS (S, L2,S×), the Banach Gel’fand triple
(S0, L

2,S×
0 ) has found a natural role in the connection between Gabor

analysis and noncommutative geometry [145,146].

Section 8.4. Besov spaces are described in the monographs of Bergh–
Löfström [BL76, Sec.6.2] and Triebel [Tri78b, vol.II, Chap.2]. For Littlewood-
Paley dyadic decompositions, see Stein [Ste70, Sec. IV.5].

• A standard reference for wavelet analysis is the textbook of Daubechies
[Dau92]. The characterization of Besov spaces in terms of the decay of dis-
crete wavelet coefficients is analyzed in the monograph of Meyer [Mey90,
Chap.II.9 and Chap.VI.10]. The analogous result in terms of the continu-
ous wavelet transform is due to Perrier–Basdevant [164].

• Several examples of unconditional wavelet bases are given by Gröchenig
[112]. The case of Wilson bases is due to Feichtinger–Gröchenig–Walnut
[87].

• The flexible Gabor-wavelet transform was introduced by Feichtinger–
Fornasier [89] as a transform intermediate between the Gabor (α = 0)
and the wavelet transforms (α = 1). The case (α = 1/2) is called the
Fourier–Bros–Iagolnitzer or FBI transform. For the latter, we refer to
the monograph of Delort [Del92]. The α-modulation spaces based on this
transform have been introduced independently by P. Gröbner [83, Grö92]
and Päivärinta–Somersalo [161], and further analyzed by Dahlke et al. [64]
and Fornasier et al. [96]. Actually they are a particular case of the family
of function spaces intermediate between modulation and Besov spaces in-
troduced by Nazaret–Holschneider [151]. There is a considerable literature
about the α-modulation spaces, mostly in the context of pseudodifferential
operators. Typical examples are the papers by Borup [53] and Borup–
Nielsen [54,55]. As a general reference for pseudodifferential operators, we
may mention the classical text of Shubin [Shu01] or Folland’s monograph
[Fol89]. On the other hand, α-modulation spaces provide an intrinsic adap-
tivity which is useful for the analysis of very complex signals, containing
both stationary components and transients. A nice example is their use
for disentangling car crash signals [159].
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Section 8.5. Coorbit spaces were introduced by Feichtinger–Gröchenig [84–
86, 88]. Here we follow closely [85] and [86], in particular Proposition 8.5.1,
Theorem 8.5.2 and Proposition 8.5.3 are taken from the former paper.

• For information about square integrable representations, see the review
paper of Ali–Antoine–Gazeau–Mueller [6], the textbook of Ali–Antoine–
Gazeau [AAG00], especially Chapter 8, and the papers by Grossmann–
Morlet–Paul [120,121]. A deeper analysis, including integrable representa-
tions, may be found in Warner’s treatise [War72, Sec. 4.5.9].

• Coorbit spaces on quotient manifolds have been constructed by Dahlke
[63, 64], using the theory of square integrable representations modulo a
subgroup developed by Ali–Antoine–Gazeau [3]-[6]. See also the textbook
of Ali–Antoine–Gazeau [AAG00].

• The Weyl-Heisenberg group Hd is often denoted GWH in the physics lit-
erature, in particular in Ali et al. [6] and in the textbook [AAG00]. For
instance, there one writes τ = eiθ ∈ T and uses a different normalization,
namely,

g = (θ, q, p), θ ∈ R, (q, p) ∈ R
2d,

with multiplication law

g1g2 = (θ1 + θ2 + ξ
(
(q1, p1); (q2, p2)

)
, q1 + q2, p1 + p2),

where ξ is the multiplier function

ξ
(
(q1, p1); (q2, p2)

)
=

1
2

(p1q2 − p2q1).

There the Schrödinger representation takes the form

(
U(θ, q, p)φ

)
(x) = eiθeip(x−

q
2 )φ(x − q), φ ∈ L2(R, dx).

A standard reference for the Weyl-Heisenberg group is Folland’s mono-
graph [Fol89].

• For representations of SL(2,R), see, for instance, the monograph of Lang
[Lan75, chap. IX]. Actually, there are two versions of the discrete series
representations mentioned here. In the SL(2,R) presentation, the standard
representation space is the Bergman space A2,m of functions analytic in
the upper half-plane. But, since SL(2,R) is isomorphic to SU(1,1), there is
an equivalent version for which the representation space is the Bergman
space Km−2 of functions analytic in the unit disk. The spaces Kα are
defined in (4.55).




